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Sampling with Polyominoes

Victor Ostromoukhov
Université de Montréal

Figure 1: (Left) Each sampling point of this blue-noise distribution sits on exactly one polyomino. (Right) A set of equiareal polyominoes
can be directly mapped on a sphere and hierarchically subdivided (two consecutive levels of subdivision are shown). The method allows fast
low-noise low-artifact importance sampling of arbitrary HDR functions (a Gaussian spot is shown on the rightmost sphere).

Abstract

We present a new general-purpose method for fast hierarchical im-
portance sampling with blue-noise properties. Our approach is
based on self-similar tiling of the plane or the surface of a sphere
with rectifiable polyominoes. Sampling points are associated with
polyominoes, one point per polyomino. Each polyomino is re-
cursively subdivided until the desired local density of samples is
reached. A numerical code generated during the subdivision pro-
cess is used for thresholding to accept or reject the sample. The
exact position of the sampling point within the polyomino is de-
termined according to a structural index, which indicates the poly-
omino’s local neighborhood. The variety of structural indices and
associated sampling point positions are computed during the off-
line optimization process, and tabulated. Consequently, the sam-
pling itself is extremely fast. The method allows both deterministic
and pseudo-non-deterministic sampling. It can be successfully ap-
plied in a large variety of graphical applications, where fast sam-
pling with good spectral and visual properties is required. The
prime application is rendering.

Keywords: Importance sampling, Blue noise, Polyominoes, Non-
periodic tiling, Deterministic sampling.

1 Rationale

Sampling is universally used in computer graphics. Hundreds of ar-
ticles are devoted to studying important properties and limitations
of sampling. It is generally accepted today that sampling with blue-
noise properties is preferable, for many reasons: for avoiding alias-
ing, for producing visually satisfactory artifact-free distributions,

Monomino Domino L-tromino

T-tetromino P-pentomino G-hexomino

Figure 2: (Top) Some polyomino shapes. (Bottom-left) A 12× 9
rectangle filled with 18 G-hexominoes. (Bottom-right) Production
rule used for generating tiling with 92-rep G-hexominoes.

etc. For a thorough discussion about the role of blue-noise distribu-
tions in computer graphics, we refer the interested reader to a recent
comprehensive compendium [Pharr and Humphreys 2004].

Very recently, a family of very fast techniques for the generation
of blue-noise or Poisson-disc-like distributions have appeared [Os-
tromoukhov et al. 2004; Kopf et al. 2006; Dunbar and Humphreys
2006; Lagae and Dutré 2006]. All of them work in almost-linear
time, with respect to the number of samples, with very low com-
putational cost per sample. Each of the cited techniques has im-
portant advantages and limitations. Namely, Penrose tiling-based
sampling [Ostromoukhov et al. 2004] shows rather strong artifacts
(residues of the tiling’s own frequencies) in Fourier spectra, which
may become harmful in rendering. Boundary sampling [Dunbar
and Humphreys 2006] and corner Wang tiling-based sampling [La-
gae and Dutré 2006] do not offer any mechanism for smooth vari-
ation of the sample density as a function of arbitrary importance.
Finally, recursive Wang tiling-based sampling [Kopf et al. 2006]
produces a higher level of noise, compared to the other techniques
(see Figure 7). Another important limitation of the latter technique
consists in the large number of samples per tile (thousands, as pre-
sented in their paper). This is obviously an obstacle for hierarchical
rendering algorithms, where the total number of samples is only a
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few dozens, and where the treatment of each sample, even rejected,
has a cost.

The method presented in this paper helps to overcome the limita-
tions of all cited approaches. We build our approach on Penrose-
based sampling, with two notable differences: we use rectifiable
polyominoes instead of Penrose tiling, and we use conventional
base-N interpretation of the codes for calculating thresholds, rather
than the Fibonacci number system used in [Ostromoukhov et al.
2004]. As for the algorithm of adaptive importance sampling
with polyominoes, it is very close to that used in the cited article.
Pseudo-code for our algorithm is provided in Appendix A.

Let us present the rationale for using polyominoes. Polyomino or n-
omino is a plane topological disc, consisting of n edge-to-edge adja-
cent squares. Figure 2-top shows a few simple polyominoes. Poly-
ominoes and their properties have been extensively studied in math-
ematics, and more precisely in combinatorial geometry [Golomb
1996; Grünbaum and Shephard 1986; Clarke 2006]. A typical
problem related to polyominoes can be formulated as follows: de-
termine whether a given planar polygon can be filled, with no gaps,
by a given set of polyominoes. For example, Figure 2-bottom-left
shows how the rectangle of dimensions 12×9 can be filled with 18
identical G-hexominoes.

In this paper, we consider a special class of rectifiable polyominoes.
A polyomino is said to be “rectifiable” if several copies of the poly-
omino form a rectangle. Rectifiable polyominoes can always be
presented in terms of self-similar L 2-rep constructions (also called
production rules), where the larger version of the polyomino is built
out of L 2 identical copies of the polyomino. Here, L is the linear
scaling factor in the L 2-rep construction, and A = L 2 is the area
scaling factor. An example of a production rule for decomposition
of the 92-rep G-hexomino into 92 identical G-hexominoes is shown
in Figure 2-bottom-right (in this case L = 9, and A = L 2 = 92).
Applying the production rules iteratively, and keeping the size of
polyominoes constant, one can fill an arbitrarily large planar patch,
and, at the limit, the entire plane [Grünbaum and Shephard 1986].
For a given rectifiable polyomino, L is not unique: a variety of
L 2-rep constructions, for different linear scaling factors L , can
be found. [Clarke 2006] presents the largest known collection of
L 2-rep polyominoes, sometimes called “reptiles”.

In this paper, we exploit very distinct spectral properties of recti-
fiable polyominoes. These properties are the consequence of the
non-periodic, self-similar nature of L 2-rep polyominoes. In fact,
according to Statement 10.1.1 in [Grünbaum and Shephard 1986],
if a monohedral L 2-similarity tiling has a unique production rule,
then such a tiling is not periodic.

(a) (b) (c)
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Figure 3: (a) Stratified jitter, and its Fourier amplitude spectrum.
(b) Sampling dots are restricted to the central area of each square.
In this example, allowed area shown in yellow is 1/4 of the area of
the square. (c) Jittering within the central area of G-hexominoes.
Note that whereas the allowed area has the same ratio 1/4, its
Fourier spectrum is much better.

The sampling method presented in this paper is applicable to many
L 2-rep polyominoes. Although we have experimented with several
rectifiable polyominoes, we decided to use, for the purpose of illus-
tration, the 92-rep G-hexomino composed of six squares (its pro-
duction rule is shown in Figure 2) which produces the best distribu-
tions we have found so far, and the 22-rep P-pentomino composed
of five squares (production rules are shown in Figure 9) which gen-
erates a quad-tree structure, very useful in computer graphics.

One of the simplest and the most popular sampling methods used
in rendering is stratified jittering. The plane is cross-ruled, and one
sampling point is randomly placed per square, as shown in Fig-
ure 3a. Its Fourier spectrum shows good angular isotropy. Dif-
ferent studies have shown good global uniformity of the distribu-
tion. Nevertheless, there is no guarantee of good local distribu-
tion: clusters of dots or relatively large holes may appear here
and there, as is clearly visible in Figure 3a. This results in rela-
tively large noise, compared to Poisson-disc or blue-noise distri-
butions. A naı̈ve “improvement” of stratified jittering would be to
restrict the allowed sample’s position to a smaller central part of
each square, shown in Figure 3b in yellow. The strong regular-grid
component in its Fourier spectrum may result in severe aliasing ar-
tifacts. In contrast, placing sampling points within the central area
of each G-hexomino, as shown in Figure 3c, produces much bet-
ter Fourier spectra and consequently many fewer aliasing artifacts.
This Fourier spectrum is indeed far from being a perfect blue-noise
spectrum, but it shows clearly one important thing: there are spatial
pavements of the plane that are better than others, from the spec-
tral point of view. As we show in this article, applying relaxation
on this initially good distribution considerably improves the spectra
(see Figures 6 and 7).

We take advantage of two important properties of rectifiable poly-
ominoes. First, their construction is simple and deterministic, and
their geometrical properties can be exhaustively studied. Second,
rectifiable polyominoes are fundamentally self-similar. Conse-
quently, we can easily build a sampling system very close to the
Penrose tiling-based one, but without residual peaks in the Fourier
domain.

As in the Penrose tiling-based system, the key notion we need is
that of structural index, which designates the local neighborhood
of each tile. The idea is quite simple: polyominoes having iden-
tical neighborhoods, and consequently identical structural indices,
will behave similarly in the process of relaxation. All useful infor-
mation such as optimal position of the sampling points within each
polyomino can be indexed by structural indices and referred to one
reference level of subdivision or octave.

In the next section, we show how structural indices can be found
for polyominoes. Then, we describe very briefly the process of op-
timization and ranking. In Section 4, we present a method for over-
coming the limitations of deterministic sampling with polyominoes.
In Section 5, we discuss some of the timing issues. Finally, in Sec-
tion 6, we draw some conclusions and discuss future work related
to this article.

2 Structural Indices

Our goal is to identify geometrically identical configurations
around each polyomino, and somehow associate these identical
configurations with the production rules. At first glance, the tiling
produced with rectifiable polyominoes appears intricate and diffi-
cult to understand (see, for example, Figure 1). But, with the mind’s
eye, we can easily find the desired identical configurations that we
call structural indices.
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Polyominoes are built of adjacent squares; the square vertices form
a square lattice as shown in Figure 4. Let us mark each individual
tile with letters around each lattice point as shown in Figure 4. Mir-
rored shapes are marked differently, as shown in the inset. All we
need is to walk through the tiling, identify all unique combinations
of marks, and tabulate them. For example, the combination {aBCp-
cboh-edgf-gfed-hhcb-feig-dpkj-onml-mlon-kjdp-qcbr-saAt} corre-
sponds to structural index 22, as shown in Figure 4 with a bold blue
label (we conventionally start with the lattice point marked with
‘a’, then continue with the lattice point marked with ‘bc’, etc.; the
enumeration is clockwise). This identification is rotation-invariant.

Several properties related to structural indices can be proved. First,
for a given production rule, the number of structural indices is finite.
For example, for the 92-rep G-hexomino, the number of structural
indices is 436. Second, subdivision of a polyomino having a certain
structural index produces a unique combination of structural indices
in the subdivided configuration. Figure 4-right shows a configura-
tion of structural indices, after subdivision of the polyomino hav-
ing structural index 22. We tabulate the set of such configurations
for all existing structural indices, and we call this table “structural
indices production rules”. This table is used in every subdivision,
according to the polyomino’s attribute “structural indices”, which is
an index to the “structural indices production rules”. Thus, starting
with a polyomino having any structural index, we can determin-
istically define all structural indices of all polyominoes, after any
number of subdivisions.

3 Relaxation and Ranking

As we already mentioned, one sampling point is associated with ev-
ery polyomino. Polyominoes with different structural indices have
different sampling point positions, and polyominoes with identical
structural indices have identical sampling point positions. The po-
sitions are expressed in terms of coefficients of two basis vectors
associated with each polyomino, and relative to a conventional ref-
erence point of each polyomino.

Now, our goal is to determine a table of near-optimal positions of
the sampling point positions, indexed by structural indices. We start
the optimization process with the table filled with arbitrary values.
Producing a large number of uniform test patches, we determine all
sampling positions with the current value of the table. Performing
Lloyd relaxation on sampling points, we modify the table of sam-
pling point positions, and repeat this process iteratively, until the
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Figure 4: (Left) Labeling pentominoes and finding structural in-
dices. (Right) Mapping the “structural index” attribute during the
subdivision.

one octave

(a) (b)

Figure 5: Ranking, “Void-and-cluster” method: (a) at the begin-
ning of the octave, the sampling points are placed far apart, (b)
whereas at the end of the octave, the holes are far apart.

sampling points achieve stable positions. During optimization, we
deliberately restrict sampling points within the polyominoes. This
process is easy to implement, and produces very good results in
a few iterations. In fact, polyominoes having similar geometrical
neighborhoods behave similarly.

The near-optimal solution we have obtained so far is valid only
for a configuration where the area of interest is uniformly filled
with polyominoes, and all polyominoes have the associated sam-
pling points “on” or “selected”. This results in discrete sample
densities of {1,A ,A 2,A 3, ...}, which represents consecutive oc-
taves, or levels of subdivision of the initial polyomino. To perform
smooth transitions in densities within the octaves, we need to per-
form thresholding, which is very close to that used in Penrose tiling-
based sampling. For this purpose, we maintain a special “code” at-
tribute, similar to the “f-code” of the Penrose tiling-based sampling.
All A polyominoes in one subdivision step are ordered. During the
subdivision, an ordinal number of the tile is left-concatenated to
the code. The resulting number is the threshold value; it is directly
interpreted as an integer in base A . Starting with one tile, after
n subdivisions we obtain A n different threshold values between 0
and A n−1.

We need to determine the optimal ordering, or ranking (the term
used in [Kopf et al. 2006]). We have used for ranking Ulichney’s
“void-and-cluster” method [Ulichney 1993], adapted for polyomi-
noes. This greedy method is simple. Testing among all possible
candidates, we select the one that produces the smallest cluster of
dots, or produces the smallest hole (void). Applying this process
iteratively, we can rank all A sub-polyominoes in one subdivision.
The effect of ranking can be seen in Figure 5. At low ranks (be-
ginning of the octave, Figure 5a), the sampling points are placed
far apart, whereas at high ranks, the holes are far apart, which is
the direct consequence of applying the “void-and-cluster” method.
In the middle of the octave, ranking according to this method pro-
duces sub-optimal distributions of sampling points, which must be
corrected in the final optimization step. The entire octave is sub-
divided into a number of discrete levels, and Lloyd relaxation is
performed at each level. The result of this relaxation is very satis-
factory (see Figure 6).

The resulting lookup table of sampling point positions is two-
dimensional: one dimension is the structural index, and the other is
the place within the octave for which the optimization is performed.
We call the second index “importance index”. Note that except for
ranking, the optimization process and the structure of the table of
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one octave

(a)

(b)

(c)

(d)

(e)

Figure 6: Ranking and optimization. (a) One octave is shown as a smooth gray-scale importance image: importance varies according to
the x axis. (b) Ranking allows generation of sampling points, which correspondxs to the importance image shown in (a). The distribution
is sub-optimal in the mid-octave. (c) Sampling points, after final relaxation. Notice that this distribution is almost optimal. (d) The same
octave, divided into 10 discrete sub-levels. Flat patches of constant sub-levels importance are shown, together with the corresponding Fourier
amplitude spectra (e).

sampling point positions described in this section are very close to
that used in [Ostromoukhov et al. 2004].

For an arbitrary importance image, our method produces very sat-
isfactory results, as shown in Figures 1-right and 10. Spectral
analysis of the sampling distributions produced with the proposed
method shows good spectral characteristics combined with low
noise and nice visual aspect of the distribution (Figures 6 and 7).

We have also performed an anti-aliasing test, using the setting
of [Kopf et al. 2006]. We used the zone plate test pattern sin(x2 +
y2), putting one sample per pixel, then filtering with three pixel-
wide Gaussian kernel (see Figure 8). As expected, our method dra-
matically diminishes the artifacts of [Ostromoukhov et al. 2004].
Also, it diminishes very considerably the noise level, when com-
pared to [Kopf et al. 2006]. This figure confirms the observations
visible to the naked eye: our new method is a low-noise and low-
artifact method of sampling.

4 Overcoming the Limitations of Determinis-
tic Sampling

In rendering, deterministic sampling can be seen as a substan-
tial limitation. A trivial modification can be applied in order to
transform the proposed deterministic sampling into a pseudo-non-
deterministic one. We pre-calculate a large number of variants of
initial “seed” patches that cover the area of interest. To produce
different non-correlated distributions, we choose randomly among

the variants.

One particular polyomino, the P-pentomino, is very well-suited for
this goal. We used the simplest self-similar subdivision of this poly-
omino, having area subdivision factor A = 22. There are two vari-
ants of the subdivision scheme shown in Figure 9. A large variety
of initial seed patches of square shape, formed of 20 pentominoes
each, can be easily constructed.

The optimization and ranking are almost identical to that explained
in the previous section. The only notable modification is in finding
structural indices. With multiple subdivision schemes, pentominoes
having different subdivision schemes are marked differently. For
example, the yellow pentominoes in Figure 9 can be marked with
“abc...”, whereas the blue pentominoes are marked with “αβγ...”.
This leads to a larger number of structural indices to be manipulated
by the system, but the rest our initial method works perfectly.

This particular variant presents a number of advantages. First, it
results in a simple quad-tree subdivision structure. Second, the
operations of scaling and threshold calculation are reduced to bit-
manipulation operations, directly supported by any processor. Fi-
nally, the “seed” patches of 20 pentominoes can be directly mapped
of the surface of a sphere, as shown in Figure 1. Our preferred
spherical mapping is HEALPix [Gorski et al. 2005], because of its
low-distortion and Jacobian-preserving properties. Consequently,
all pentominoes on each initial patch sitting on HEALPix’s 12 faces
(see Figure 1) are equiareal, as are all subdivided pentominoes hav-
ing the same level of subdivision. The results produced with this
variant are very satisfactory, both spectrally and visually.

We tested our pseudo-non-deterministic sampling with pentomi-
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Figure 7: Comparison with the state-of-the-art techniques for fast generation of blue-noise patterns. Note that Corner Wang Tiling and
Boundary Sampling do not offer any mechanism for smooth variation of the sample density as a function of arbitrary importance.

Jittered Grid Penrose Tiling Recursive Wang Tiling Polyominoes
RMS Error: -8.1218dB RMS Error: -8.0873dB RMS Error: -8.2463dB RMS Error: -8.4118dB

Figure 8: Anti-aliasing test, using the zone plate test pattern sin(x2 + y2).

Figure 9: 22-rep P-pentominoes used in pseudo-non-deterministic
importance sampling. (Top) Production rules. Different colors des-
ignate different “subdivision scheme” attributes of each pentomino.
(Bottom) A set of different seed patches composed of 20 pentomi-
noes each. One patch is picked up randomly to cover the area of
interest.

noes in the context of rendering [Rousselle et al. 2007], where we
perform multiple importance sampling of a complex function tak-
ing into account lighting environment, material properties, and vis-
ibility. We have observed consistent improvement over stratified
jittering, in this particular context.

5 Timing

The sampling algorithm presented in this paper performs very few
calculations at run time. All useful information concerning the sub-
division process, such as basis vectors associated with each poly-
omino, positions of sampling points, etc., is tabulated. Conse-

quently, the algorithm is extremely fast. Our timing numbers are
very comparable to those mentioned in [Kopf et al. 2006]. More
than one million of generated samples per second can be reached.

We would like to stress that low-level implementation details of our
algorithm can be optimized. This is particularly true in the case
of 22-rep pentominoes, presented in the previous section. In this
case, all operations of scaling and threshold calculation are reduced
to bit-manipulation operations. The execution time of our heavily
lookup-table-dependent algorithm depends on the available hard-
ware architecture, namely on the amount of cache memory.

6 Conclusion and Future Work

The sampling method presented in this paper offers a number of
advantages, compared to the best state-of-the-art algorithms for fast
importance sampling with blue noise. Our algorithm produces ex-
cellent low-noise low-artifact sampling distributions. It has been
tested in the context of a complex rendering environment, and has
shown no, or at worst negligible, aliasing artifacts. The run-time al-
gorithm is almost trivial. Although the off-line optimization process
is greedy and requires certain skills in manipulating non-periodic
tilings, most of the people will never need to implement the opti-
mization: C++ code together with all needed pre-calculated data
structures are publicly available on our web site1.

In the future, we would like to acquire a better understanding of
the relationship between the basic polyomino’s subdivision scheme

1http://www.iro.umontreal.ca/~ostrom/SamplingWithPolyominoes
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and the spectral properties achieved with the optimization. As is
shown in the impressive web site [Clarke 2006], the space of pos-
sible rectifiable polyominoes is unbounded. We have experimented
with only a dozen subdivision schemes. A more thorough and sys-
tematic exploration of the space of all possible polyominoes would
presumably provide much insight. We would like also to experi-
ment with different optimization strategies, in order to better con-
trol the spectral properties.

Another interesting issue directly related to the present work would
be importance sampling with blue noise in 3D. We are confident
that many applications in computer graphics could benefit from
such an efficient space sampling and partitioning algorithm with
good properties. Polycubes [Clarke 2006] are well-suited for this
purpose. This will be the topic of future research.
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APPENDIX A: Pseudo-code of the Adaptive
Subdivision and Sampling with Polyominoes

ADAPTIVESAMP(p o f type polyomino)
1 � Structure polyomino contains the fields:
2 � structuralIndex
3 � LOS: level of subdivision
4 � refPoint
5 � v1, v2: polyomino’s basis vectors
6 � code: used for computing threshold
7 local LOS← GETMAXLOSWITHINPOLYOMINO(p)
8 if p.LOS≥ local LOS
9 then � Terminal: no need for more subdivisions

10 local importance← GETLOCALIMPORTANCE(p)
11 threshold← INTEGERINBASEA (p.code)
12 if local importance≥ threshold
13 then � Output selected sample
14 iimp← GETIMPORTANCEINDEX(local importance)
15 {k1,k2}← lut[p.structuralIndex, iimp]
16 position← p.re f Point + k1 ∗ p.v1 + k2 ∗ p.v2
17 OUTPUTSAMPLE(position)
18 return
19 else � Need more subdivisions
20 {p1, . . . , pA }← SUBDIVIDEUSINGPRODUCTIONRULES(p)
21 return {ADAPTIVESAMP(p1), . . . ,ADAPTIVESAMP(pA )}

Routine GETIMPORTANCEINDEX() can be implemented by lo-
girithmically subdividing each octave into lut size2 discrete levels:

GETIMPORTANCEINDEX(local importance)
1 return blut size2 ∗ (LOGBASEA (local importance)mod 1)c

Linear subdivision of octaves into lut size2 sub-octaves is equally
possible.

Importance Image Levels of Subdivision

2 1
3

4
5

6

Figure 10: An arbitrary smooth importance function, importance-
sampled using 22-rep P-pentominoes. Notice seamless transitions
between levels of subdivision.

6


