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Abstract We present an efficient
method for importance sampling the
product of multiple functions. Our
algorithm computes a quick approxi-
mation of the product on-the-fly,
based on hierarchical representations
of the local maxima and averages
of the individual terms. Samples
are generated by exploiting the
hierarchical properties of many
low-discrepancy sequences, and
thresholded against the estimated
product. We evaluate direct illumin-
ation by sampling the triple product
of environment map lighting, surface
reflectance, and a visibility function
estimated per pixel. Our results

show considerable noise reduction
compared to existing state-of-the-art
methods using only the product of
lighting and BRDF.
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1 Introduction

Monte Carlo methods are widely used in photo-realistic
rendering, but many samples are needed for noise-free re-
sults. Importance sampling is a popular way to improve
the performance by concentrating the sampling efforts to
important regions. Ideally, the sampling density should
be proportional to the function itself, but this is hard to
achieve in practice. In this paper, we focus on integrating
the direct illumination under environment map lighting.
The problem involves a product of the lighting, surface
reflectance, and local visibility. This product has to be
computed on-the-fly for each pixel, as precomputation is
infeasible due to the large amounts of data.

We store hierarchical representations of the local max-
ima and averages of the involved functions. For any in-
terval, the product of the functions’ individual maxima is
always a conservative estimate of the product’s local max-
imum. This can be used for rejection sampling, but many

samples would be rejected in regions where the maximum
is overly conservative. Instead, we compute an approxi-
mation of the product by hierarchically multiplying the
local averages. The estimation is then refined in regions of
potentially high contribution, indicated by the local max-
imum. Samples are generated by thresholding against this
approximated product, exploiting the hierarchical proper-
ties of many low-discrepancy sequences.

Unlike many previous methods, we aim for quickly gen-
erating samples approximately following the product distri-
bution. In terms of overall performance, this is better than
going through great effort to create a small set of near opti-
mal samples. This is particularly true today, when ray trac-
ing has reached interactive speeds. The complexity of our
product approximation grows only linearly with the number
of terms. Hence, it is possible to use more than two functions
at a small extra cost. As a proof of concept, we conser-
vatively approximate the visibility per pixel, and directly
sample the triple product of lighting, BRDF, and visibility.
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Fig. 1. Our algorithm can sample the product of multiple functions
exhibiting a very wide range of frequencies. This image results
from sampling the triple product of environment map lighting, sur-
face reflectance and estimated visibility

2 Previous work

In this paper, we concentrate on computing the direct il-
lumination using Monte Carlo integration. For a general
overview of Monte Carlo methods, we refer to [7, 11]. In
this context, the rendering equation [12] involves an inte-
gral over the product of lighting, material reflectance, and
visibility. These are all potentially high-frequency, which
makes it expensive to compute their product. In addition,
the exact visibility is unknown, and must be locally esti-
mated.

Many techniques exist for importance sampling only
one of the three functions. Numerical BRDF models can
often be analytically inverted, e.g., [2, 25], and measured
materials can be efficiently sampled [15, 16]. Another ex-
ample is environment map sampling [1, 14, 19]. It is also
possible to draw samples from a weighted combination of
multiple functions [23]. However, none of these methods
take the product of the functions into account.

Talbot et al. [22] suggest importance resampling,
where an initial set of samples is first drawn from a sim-
pler distribution. Then, by giving the samples appropriate
weights and resampling the initial set, they obtain samples
approximately following the product distribution. Burke
et al. [3] generate a large set of samples according to one
of the product’s individual terms, and use either rejection
sampling or resampling to pick out the most important
ones based on the remaining terms.

Other work has focused on explicitly estimating and
sampling the product. Clarberg et al. [4] precompute
wavelet representations of the lighting and materials.
These are multiplied on-the-fly, and uniform points are
warped into the desired distribution. Cline et al. [5] avoid
the precomputation by using a summed-area table for the
light source, which is hierarchically divided into smaller

regions based on peaks in the BRDF. A major advantage
is that spatially varying materials are supported.

We compute an approximation of the product by hi-
erarchically multiplying precomputed representations of
the maxima and averages of the individual terms. The
approximation is adaptively refined, and samples are
placed by hierarchical thresholding of low-discrepancy
sequences, similar to [19]. Quasi-random numbers [17]
are crucial for reducing the variance, and have a long
history in computer graphics [13]. Our simple approach
has a number of advantages. First, it gives a very fast
algorithm. Second, our method allows inexpensive on-the-
fly rotations of the involved functions (e.g., the BRDF),
which means we avoid storing redundant pre-rotated data,
and thus reduce memory requirements. Third, we can in-
clude additional terms in the product at a small cost. This
opens up for novel sampling strategies.

As a proof of concept, we include a third importance
function, representing an estimation of the visibility. We
use a conservative approximation of the geometry with
inner spheres [24], and build a low resolution visibility
map per pixel. By including a visibility term, we effec-
tively avoid sampling in directions guaranteed to be oc-
cluded. Very few other techniques exist, which exploit
visibility to reduce the variance. Ghosh et al. [9] propose
a two-pass method. First, they apply bidirectional impor-
tance sampling [3] to compute an initial estimate and to
identify partially occluded pixels. Then, the noise is re-
duced by redistributing the variance from nearby pixels
using Metropolis sampling.

3 Approximate product importance sampling

Our sampling method is based on hierarchical threshold-
ing of candidate points against an estimate of the function
to be sampled. The idea is to gradually fill the sampling
domain, and then perform a rejection test. Thresholding,
or rejection sampling (see Fig. 2), is a classic Monte Carlo
technique for sampling an arbitrary function. First, we
extend the method to efficiently handle the product of mul-
tiple functions, by using a conservative estimate of the
product’s maximum. Then, we introduce a fast approxi-
mation of the product to avoid a large number of slow
evaluations of the individual functions. We use 1D ex-
amples throughout for clarity, but our method generalizes
to any dimension.

3.1 Hierarchical sample generation

We generate candidate samples using low-discrepancy se-
quences that can be hierarchically constructed. By this
we mean any sequence where samples can be iteratively
added, while being uniformly distributed. One example
is the van der Corput (VDC) sequence [17, 21]. Using
a VDC sequence in base b, a sample’s position, Xi , is
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Fig. 2. In rejection sampling, samples are first drawn from a simpler
envelope distribution, q(x), and then randomly thresholded against
the importance function p(x). This can be illustrated as filling the
space under q(x) with random points, and then rejecting all points
above p(x). The probability of accepting a sample, xi , is equal to
p(xi)/q(xi)

defined as the radical inverse of its index i . Any posi-
tive integer i in base b can be expressed as a sequence of
digits dm . . . d2d1 uniquely defined by i = ∑m

j=1 djb j−1.
The radical inverse is obtained by reflecting these digits
about the decimal point. For instance, if b = 2, the radical
inverse of 4 = (100)2 is (0.001)2 = 0.125.

This sequence can be constructed recursively, in which
case each subdivision multiplies the number of samples
by b. We set a maximum level of subdivision L, which will
generate N = bL samples, and define a sample’s threshold
value as Yi = i/N. Now, for f(x), such that 0 ≤ f(x) < 1,
a sample is rejected if f(Xi) < Yi . This process is il-
lustrated in Fig. 3. Note that our definition of threshold
values assures that, as samples are generated, their thresh-
old values are strictly increasing. This is a key point that
will be exploited in the following section.

3.2 Sampling using max trees

The efficiency of rejection sampling relies on how well the
envelope function approximates the desired importance

Fig. 3. Sample generation gradually filling the space using a van der
Corput sequence. Note that Yj > Yi for j > i

function. A bad fit means more tested samples, many of
which will be discarded. Consider the case of sampling
a product with multiple terms:

f(x) =
∏

i

fi(x). (1)

The construction of a good envelope function for Eq. 1 can
be a difficult problem. For example, in the case of direct il-
lumination, the individual terms represent lighting, BRDF,
and visibility.

We propose to precompute a hierarchical representa-
tion of the maximum for each individual term, which we
call the max tree. The max tree is created by recursively
subdividing the domain, storing the maximum over each
child in a tree structure. For discrete functions, e.g., en-
vironment maps, finding the maximum over a region is
straightforward. For analytical functions, such as many
BRDFs, it is in some cases possible to derive an expres-
sion for the maximum. However, to remain general, we
rely on point sampling of the function, and use extensive
oversampling to reduce the risk of missing peaks. This as-
sumes the function is reasonably smooth, but it gives no
guarantee of finding the true maximum.

By multiplying together the individual maxima, we get
an upper bound for the product. More formally, for any
region [a, b] in the function domain, the following holds
true:

max
x∈[a,b] f(x) ≤

∏

i

( max
x∈[a,b] fi(x)). (2)

Note that this upper bound gives a tighter fit at finer sub-
divisions. We generate samples by recursively subdividing
the domain, while evaluating Eq. 2 at each level. Since
samples are hierarchically generated and have ever in-
creasing threshold values, we can safely stop the recursion
as soon as a sample threshold value is larger than the local
maximum, as illustrated in Fig. 4. This effectively limits
the number of generated samples.

3.3 Product approximation

To speed up the sampling, we compute an approximation
of the product, against which potential samples are thresh-
olded. Hence, we avoid the expensive evaluation of the
involved functions (e.g., environment map and BRDF) for
each candidate point. On the negative side, we get sam-
ples only approximately following the target distribution,
which increases the variance. However, in our application,
faster sampling more than makes up for this, in terms of
overall quality vs. time.

Previous work on importance sampling for direct illu-
mination has used product approximations based on, e.g.,
wavelets [4] and summed-area tables [5]. We take a sim-
pler approach, and multiply the local averages of the indi-
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Fig. 4. Using the local maximum (solid black line), we can prune
branches where all subsequent samples will be rejected (orange
boxes), and thereby reduce the rejection rate

vidual terms. Looking at an interval [a, b], we use:

1

b−a

b∫

a

∏

i

fi(x)dx ≈
∏

i

(
1

b−a

b∫

a

fi(x)dx

)

, (3)

where the individual local averages,
∫ b

a fi(x)dx/(b −a),
are precomputed and stored in an average tree, similar to
our max tree. We denote the piecewise constant import-
ance function obtained this way by h(x).

Equation 3 is clearly a crude approximation to the
product, especially at coarse levels in the hierarchy. How-
ever, it converges towards the correct result at finer sub-
divisions. Note that, by construction, we adaptively re-
fine the approximation where the function maximum is
large, thereby minimizing the approximation error in re-
gions having a significant contribution to the integral. This
is a key point of our method. A challenging example is
shown in Fig. 5.

3.4 Avoiding bias

The deterministic nature of low-discrepancy sequences
implies a fixed distribution of sample positions. To avoid
bias, we use scrambling [8, 20] and randomly permute
the assignment of sample positions when subdividing.
The discretization of threshold values is another source
of bias, which we address by adding a random offset in
the range [0, 1/N) to each threshold value. This is a well-
known technique [11], which ensures that, on average, the
correct number of samples is selected.

The use of a low-discrepancy sequence based on the
radical inverse yields samples at fixed positions, aligned
on a grid defined by the level of subdivision. As the sam-
ples only cover a subset of the domain, the solution will

Fig. 5. Two non-overlapping peaks present a challenging case. Our
product approximation (red) fails at coarse levels, as seen on the
left. However, the large maximum (blue) around the left peak, will
trigger further subdivision until the missing peaks are found, as
shown on the right

be biased. To address this fact, all results in this paper
were generated using the VDC-sequence with jittering on
sample positions. However, it is possible (but more costly)
to achieve better blue noise properties by taking the local
neighborhood into account using structural indices, as in,
Polyomino-based sampling [18].

3.5 Sample count

As mentioned in Sect. 3.1, the number of candidate sam-
ples is N = bL , where b is the subdivision factor and L
is the maximum level of subdivision. Since candidates
are uniformly distributed, the average number of accepted
samples n̄ is equal to N scaled by the integral of the im-
portance function, H = ∫

h(x)dx, as follows:

n̄ = H ×bL . (4)

To obtain n samples on average, we scale h by a factor c,
which is given by:

c = n

H ×bL
. (5)

It is essential that c ·h(x) remains in [0, 1) for our rejection
test to be valid. This is ensured by increasing L up to the
point where c ·h(x) < 1. Note that c varies per pixel and
cannot be precomputed.

As h(x) is defined through the sampling process, its
integral H is initially unknown. In order to estimate the
number of samples that will be generated, we approxi-
mate H by performing two subdivisions and then com-
puting the average of h(x) at that level. If the final num-
ber of samples widely differs from n, we refine c and
repeat the process. In our application, using a 20% tol-
erance, the average number of sampling iterations rarely
exceeds 1.3.

3.6 Unbiased Monte Carlo integration

In importance sampling, the probability density function
does, by definition, integrate to 1. We draw samples from
the scaled product approximation, c ·h(x), which must be
divided by its integral, c · H , in order to meet this criteria.
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Since h(x) is piecewise constant, its integral can easily be
computed by summing the contribution of all leaf nodes
during the sampling process:

H = 1

bL

m∑

i=1

hi ×bL−li , (6)

where hi is the value of h(x) over the ith node, and
li ∈ [0, L] is the node’s level in the hierarchy. The size
of the ith node with respect to the maximum level of
subdivision, L, is equal to bL−li . The resulting unbiased
Monte Carlo estimator, 〈F〉, for the integral F = ∫

f(x)dx
is:

〈F〉 = H

n

n∑

i=1

f(xi)

h(xi)
, (7)

where H is computed using Eq. 6. Note that the term H
plays the same role as Lns (i.e., “exitant radiance in the
absence of shadows”) used in [3, 4].

4 Application – direct illumination

The computation of direct illumination from distant HDR
environment map lighting [6] is a problem that has gen-
erated considerable interest in recent years. The outgoing
radiance is given by [12]:

Lo(x → ωo) =
∫

Ω

L(x ← ωi)ρ(ωi ↔ ωo)V(ωi)dω, (8)

where the lighting (L), reflectance (ρ), and visibility (V ),
are integrated over the hemisphere. We define ρ as the
BRDF weighted by the cosine of the incident angle, i.e.,
ρ = fr(ωi ↔ ωo)(ωi · N), as commonly done.

Our algorithm can be used to efficiently sample the
product L ·ρ. We also show that an approximated visibil-
ity term, Ṽ , can be included. By sampling according to
the triple product L ·ρ · Ṽ , we further reduce noise in re-
gions with large occlusion. Results with and without the
visibility term are presented in Sect. 5.

4.1 HEALPix mapping

All involved functions are defined over the (hemi)sphere,
while our algorithm depends on hierarchical subdivision
of the domain into quads. We use the HEALPix (hierarch-
ical equal area isolatitude pixelization) mapping [10], and
divide the sphere into 12 faces (see Fig. 6), as described by
Gorski et al. [10]. Each face is a curvilinear quad, which
can be recursively subdivided into 2×2 smaller quads of
equal area. We apply our sampling scheme on each face
separately.

Fig. 6. After a rotation in the HEALPix mapping, the source quad
usually overlaps a number of quads at the destination. The precom-
puted average at the red dot is linearly interpolated from the nearest
neighbors, marked with blue dots. Similarly, we ensure that the
local maximum is conservative by implicitly considering all quads
marked dark gray

The HEALPix mapping has a number of desirable
properties:

(1) hierarchical representation,
(2) area preservation, and
(3) low distortion.

The preservation of area simplifies our implementation,
as we do not have to compute form factors. Low distor-
tion is important when rotating between different domains
(see Sect. 4.3).

4.2 BRDF representation

A general BRDF is a 4D function parameterized over
incident and outgoing directions, (θi, φi) and (θo, φo) re-
spectively. Isotropic BRDFs, currently implemented in our
system, are reduced to 3D functions depending only on θi,
θo, and |φi −φo|. We store isotropic materials as 2D slices,
i.e., one 2D reflectance map (θi, |φi −φo|) for each θo.
Each slice is first encoded as a mipmap image, and then
mapped to the HEALPix representation. Only the data for
the upper hemisphere is stored.

All materials in the scene are resampled into this rep-
resentation as a precomputation step. To avoid missing
features, we use oversampling and assume the BRDF is
reasonably smooth. This approach is taken by most al-
gorithms using tabulated materials, and rarely presents
a problem. The reflectance maps (as well as the environ-
ment map) are stored in RGB color, and the local maxima
and averages are computed per channel. During sam-
pling, we threshold against the luminance, Y , computed
using the perceptual weighting: Y = 0.299R+ 0.587G
+0.114B.

4.3 Rotations

In our application, the lighting is given by a 2D environ-
ment map in world space, while material reflectance is
defined in the local surface frame. Hence, a rotation be-
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tween the two domains must be performed. This can be
precomputed as in [4], but the increased memory require-
ments would limit us to low-resolution representations.
Instead, our algorithm was designed to support fast on-the-
fly rotation of the importance functions.

The estimations of a quad’s maximum and average
(Eqs. 2 and 3) are both local operators, depending only
on the values of the corresponding nodes in each term.
Hence, we can simply rotate the coordinates used for lo-
cating a quad in the hierarchical representation. However,
after rotation, a quad usually covers multiple quads at the
destination. The low distortion in the HEALPix mapping
helps reduce the overlap, but special care has to be taken to
ensure that our estimation of the maximum remains con-
servative. We proceed as illustrated in Fig. 6.

4.4 Visibility approximation

One of the advantages of our method is that we can inex-
pensively include additional terms in the product. A nat-
ural extension is to use an estimated visibility map to steer
samples away from occluded directions.

We use a visibility estimation inspired by [24]. Each
object in the scene is approximated by a set of inner
spheres. These spheres are aggregated into a hierarchy, but
only leaves act as occluders (to preserve inner conserva-
tivity). To create a visibility map, we traverse the sphere
hierarchy and the HEALPix hierarchy in parallel. If the
cone enclosing a quad of the HEALPix mapping is com-
pletely occluded by a leaf sphere, the quad is marked as
occluded (zero visibility). Other quads are set to fully vis-
ible (one). Then, we propagate these values upwards and
store their maxima and averages.

The cost of building the visibility approximation is in-
dependent of the number of samples. Hence, the amortized
cost is smaller for high-quality rendering, where more
samples are used. In our implementation, a visibility map
is built per pixel, which is expensive with many occluders.
Another approach is to reuse the visibility estimate over
several pixels, or use adaptive updates. We have saved
this for future work. Other occluder primitives can also
be added. In addition to spheres, our implementation sup-
ports infinite planes.

The visibility term gives a large variance reduction
where the information is accurate. In other parts, e.g,
along shadow edges, the effect is smaller. To handle such
regions, we have experimented with adaptive sampling.
We increase the number of samples for each pixel where
the number of occluded visibility rays is above a certain
threshold, e.g., 50%, and repeat the sampling process.

4.5 Early termination and biased evaluation

In our algorithm presented in Sect. 3, samples are always
placed in leaf nodes at the maximum level of subdivision.
This gives an importance function that is accurate, but at

a higher cost. Here, we present two optional extensions for
increasing the performance.

First, we propose to terminate the recursion as early as
possible. For this, we identify branches with at most one
sample. Our sample threshold values are, by definition,
strictly increasing. Thus, when we reach a point where
the next threshold value is larger than the local maximum,
only the current sample can possibly be accepted. Instead
of traversing the hierarchy up to the leaf level, we place
the sample in the current node and terminate. This gives
a faster algorithm, but at the expense of a small increase in
variance.

Second, we propose a biased version of our algorithm.
Instead of point sampling the exact L and ρ in evalu-
ating the rendering equation, we use the local averages
as sample values for samples placed in large nodes. To
avoid visual artifacts, e.g., with highly specular materials,
we combine unbiased and biased evaluations. This is best
explained with an example. Consider the case where the
BRDF and the environment map are precomputed up to
levels 5 and 8 respectively. If a sample is placed in a node
at level 7, we compute the exact BRDF value, but use the
precomputed average of the environment over the node.
The sample is then assigned the product of these values.
Note that this approach, although biased, is consistent, i.e.,
it converges towards the correct solution.

We have found the combination of these two exten-
sions to be extremely useful. When a sample is placed at
lower levels in the hierarchy (large nodes), the average tree
approximately gives us the integral over the node, instead
of a single point-sampled value. This significantly reduces
the variance. In Sect. 5, we present results using both the
unbiased and the biased versions.

5 Results

All results were obtained on a MacBook Pro with an Intel
Core 2 Duo 2.4 GHz (using 1 core), and all functions were
stored uncompressed in quadtrees of different depths. At
depth n, each of the HEALPix mapping’s 12 faces con-
tain 2n ×2n quads. In all images, the environment map
was stored at depth 8, and occupies 24 MB. For a 4k ×4k
angular map, the setup time was 1.46 s.

Isotropic BRDFs are represented with 50 slices com-
puted for outgoing angles uniformly distributed in [0, π/2].
The only user set parameter is the BRDF resolution. In
practice, we use depth 5 for most materials, while diffuse
materials (e.g., the ground in Fig. 1) are stored at depth 4,
and highly specular materials (e.g., the sphere in Fig. 8)
are stored at depth 6. The precomputation times for meas-
ured materials [16] are given in Table 1.

The estimated visibility function is computed at depth 4
and occupies 8 KB. Figure 7 illustrates a practical situ-
ation where a Buddha is approximated by 110 inner
spheres. It should be noted that the cost of estimating vis-
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Fig. 7. Images illustrating the impact of adding visibility information and adaptive sampling, using 16 samples per pixel and biased ren-
dering. The two gray scale images (bottom row) show the percentage of occluded rays, where black is 100% and white 0%. The bottom
right image shows the sphere approximation used for the Buddha. The leftmost image is a reference

Table 1. Precomputation times for measured materials

Depth n Memory Precomputation

4 2.55 MB 0.36 s
5 9.78 MB 1.35 s
6 38.45 MB 5.31 s

ibility is independent of the number of samples, and the
cost of including a third term in the product is marginal.
For this scene, adding visibility increases the rendering
time by about 14 seconds. The rendering times for the
left image in Fig. 7, at resolution 256 ×256, are given in
Table 2.

Figure 8 shows a comparison against several recent
techniques. Results with sampling of only the BRDF or
the environment map are also included. The material is
a normalized Phong with diffuse and specular lobes. The
shininess coefficient is 5000 for the sphere and 10 for the
plane. These values were chosen to illustrate a full range
of frequencies. Strong light blocked by occlusion results
in a high noise level with algorithms sampling only the
product of lighting and BRDF. This effect is diminished by
taking visibility into account.

This scene presents an extremely easy case for our vis-
ibility estimation, only increasing the rendering time by
11% (with 64 samples). This is not representative for the
general case, but it shows, as a proof of concept, that in-
cluding a visibility approximation can dramatically lower
the noise. More sophisticated algorithms for estimating
the visibility term have been left for future work. The

Table 2. Rendering times for the left image in Fig. 7 at resolution
256×256

Number of Non-adaptive Adaptive
samples No visibility visibility visibility

16 4.1 s 17.8 s 18.3 s
128 14.7 s 28.5 s 33.0 s
512 49.8 s 64.0 s 81.0 s

Table 3. Rendering times for images of Fig. 8

#Samples 4 16 64 256

HT unbiased 5.1 s 7.3 s 10.0 s 20.4 s
HT biased 2.3 s 3.2 s 4.8 s 9.9 s
HT+Vis biased 2.8 s 3.7 s 5.3 s 10.3 s
WIS [4] 6.4 s 6.7 s 7.8 s 11.3 s
Two-stage [5] 0.8 s 1.8 s 5.8 s 19.3 s

images also show that our biased extension gives strong
noise reduction, while being consistently closer to the ref-
erence. The rendering times are given in Table 3.1

Figure 1 illustrates the robustness of our method and
its applicability to a wide range of materials, ranging from
diffuse to highly specular, in a lighting environment with
an extreme dynamic range.

1 Note that the timings are not directly comparable as the algorithms were
implemented in different ray tracers. However, all systems show a perform-
ance similar to pbrt [21].
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Fig. 8. Comparison with other recent methods. For WIS, we used wavelets of 1282 resolution, 2%–5% sparsity and Poisson points as in-
put. For TSIS, we did not use adaptive sampling. BRDF sampling was done analytically, and environment map sampling with the unbiased
version of our algorithm. For our algorithm, the BRDFs for the plane and the sphere were precomputed to HEALPix levels 5 and 6, re-
spectively, and we did not use adaptive sampling. Ground truth is shown at the top. Visibility sampling effectively removes noise due to
occlusion. The variance was measured after tone-mapping

6 Discussion and future work

Our sampling scheme is based on hierarchical threshold-
ing against an approximated importance function. The
approximation is computed from hierarchical representa-
tions of the local maxima and averages, and enables sev-
eral important features. First, we can sample products of
multiple functions, including rotations between different
domains. Second, many useful optimizations are possible,
e.g., early termination and biased integration, which im-
prove speed and reduce noise. Although our method re-
quires the involved functions to be smooth and bounded,
we have found it to be very robust.

For estimating the direct illumination, our results com-
pare favorably to existing state-of-the-art methods. As
a proofofconcept, we include a visibility termestimated per

pixel, and show that it is possible to significantly reduce the
noise due to occlusion. Exploiting visibility information to
speed up the computation of direct illumination is an inter-
esting direction of research. We would also like to remove
some of the limitations of our algorithm, most importantly
the precomputation step. One possibility could be to com-
pute the necessary data on-the-fly directly from analytical
or factorized BRDFs. This would allow spatially varying
materials, which is important in a number of applications.
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