CSc 30400 Introduction to Theory of Computer Science
8th Homework Set

1. Run the machine that partially computes the function f(n) = logn
from the slides for the following input numbers:

input e, machine should loop)

()
(b)
c)
)
)
)

input 1, machine should halt and output 0)
(input 11, machine should halt and output 1)
(d

(e
(f

This question is time consuming. If you understand how Turing Ma-
chines work you don’t have to do it. However, running it will help you
design a TM for language Lo (see question 3 below). Also make sure
that you understand what a partially computable function is (logn is
not defined for n = 0, 3 or 6, so the machine shouldn’t give an output
when the input is one of these numbers, it should loop for ever).

input 111, machine should loop)
input 111111, machine should loop)

0
1
2
3
6
8 (input 11111111, machine should halt and output 3)

A~~~ I/~ N N —~

2. (question 4 from set 7). In many cases as we saw in class, it is useful
when designing a Turing machine to have a special symbol (for example
a $) to denote the start (left end) of the tape (just like the $ symbol
we used in PDAs to denote the end of the stack). By using this symbol
you can easily move between states (if you are in state ¢; and see the
$ symbol then move to state ¢;). Design a transition diagram that
shifts the input by one block to the right and places a $ in the leftmost
position and accepts when the process is done (of course you could do
this by moving one block to the left and placing the $ there but I don’t
want to see this solution...)

Example: [0][1[0]0]1]] ---, should produce [$[0[1]0J0]1]]---

3. (question 5 from set 7) Design Turing Machines that accept the lan-
guages Ly — L, of questions 1 and 2 of set 7. Make sure that you also
give a “high level program” for every case and not only the transition
diagram of the machine. In all parts the alphabet 3 contains only the
symbols that are used each time in the language (for example, for Ls:
¥ =1{0,1,#}). You are free to define the alphabet I" of the tape to be
whatever you want.

4.

5.

*6.

Show that the following functions are computable (design Turing ma-
chines that compute them)

(a) f:IN—=N, f(n)=3n+2
*Mb) fNxN—=N, f(z,y) =x-y

Show that f: IN — IN with

f(n):{n—?), n>3

T, else

is partially computable (design a Turing machine that partially com-
putes it). The T symbol denotes that f is undefined for values 0,1 and
2.

The task in this question is to prove that Computable functions are
closed under composition. In other words you should prove that, if two
functions f : N — IN and g : N — IN are computable then fog: IN — N
is also computable.

(a) We said that when we design a machine with output we only
require the output to be consecutive but we don’t require the
head to point to the leftmost symbol. In this part, you have to
fix this. Take an arbitrary Turing machine with output. When
it reaches the final state it has a bunch of consecutive 1s on the
tape but the head doesn’t point to the first one. Make the final
state non final (think of the final state being your new start state)
and try to write some more transitions in order to make sure that
when the machine halts the head is in the first 1 of the output.

Hint: There are three possibilities:

e The head points to some symbol of the output

e The head points to a blank box somewhere in the left of the
output

e The head points to a blank box somewhere in the right of the
output

Your transition should take care of all those situations. For the
first one you should go left until you find the beginning of the
output (a blank box). Taking care of rest two would also be a
simple task if you knew whether you were on the right or on the
left side of the output (just move towards the correct direction
until you find the output) but this is not the case. Moving in the

head

« S—

Figure 1: Zig-zag move in order to reach the output

wrong direction would make the machine loop for ever. Make a
zig zag search like the one shown in the figure. You should place
several mark signs (for example §) in order to do so (place a mark
sign when you see a new blank box and then change direction).
When you find the output you have to remove the extra mark
signs you put.

If f and g are computable then there are TMs M; and M, that
compute them. We would like to compute f(g(x)). Running M,
on input x would give us g(z). Part (a) of this question ensures
us that the output that we are taking from M, is of the form
“consecutive 1s and the head points to the first symbol of the
string”, so it can serve as an input to M; as is. Can you combine
My and M; in such a way that f o g is computed?

