Automates finis clôtures

Théorème.

 L_1 et L_2 reconnaissables :

- V_t^{\star} L_1 ? reconnaissable si déterministe $(V_t, Q, q_0, Q F, T)$
- $L_1 \cap L_2$? reconnaissable

$$(V_t, Q_1 \times Q_2, (q_0^1, q_0^2), F_1 \times F_2, T)$$
 $(p, q) \xrightarrow{a} (p', q') \operatorname{ssi} p \xrightarrow{a} p' \operatorname{et} q \xrightarrow{a} q'$

- $L_1 \cup L_2$?
- $L_1 \circ L_2$?

X. URBAIN LIFLC 2024 UCBL1 UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE

Automates finis clôtures

Automate fini non déterministe avec transitions vides : (V_t, Q, q_0, F, T) où

- V_t vocabulaire fini
- Q ensemble fini d'état
- $q_0 \in Q$ état initial
- $F \subseteq Q$ ensemble d'états finals (ou acceptants)
- T fonction de transition, application $Q \times (V_t \cup \{\varepsilon\}) \to \mathcal{P}(Q)$

Lecture de w en n étapes, $n \ge |w|$

X. URBAIN LIFLC 2024 UCBL1 UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE

42

Automates finis clôtures

ε -clôture : $\mathcal{E}(q) = \{ p \in Q \mid q \xrightarrow{\varepsilon \star} p \}$

Théorème.

Pour
$$A = (V_t, Q, q_0, F, T)$$
 avec ε transitions, soit $A_{\varepsilon} = (V_t, Q, q_0, E(F), E(T))$ où
$$E(T)(q, \alpha) = \bigcup_{p \in \mathcal{E}(q)} T(p, \alpha) \text{ pour chaque } q \in Q, \alpha \in V_t$$

$$E(F) = \{q \in Q \mid \mathcal{E}(q) \cap F \neq \varnothing\}$$

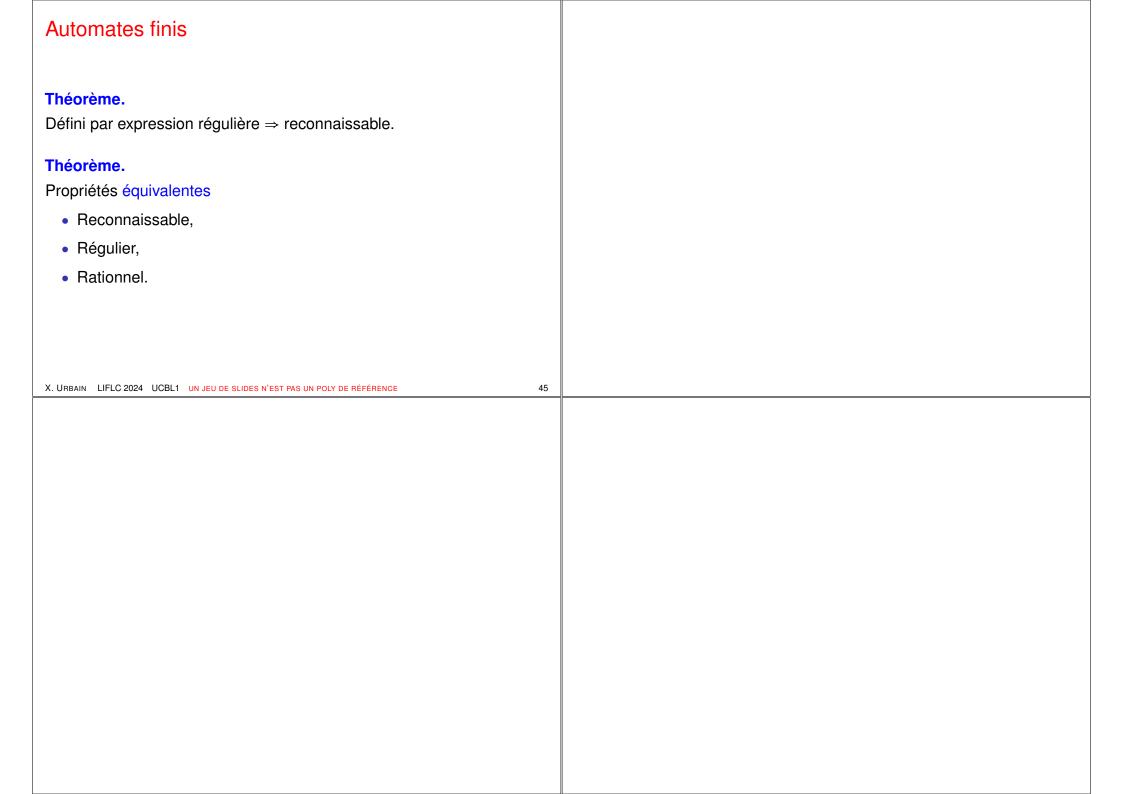
 A_{ε} sans ε et $\mathcal{L}(A_{\varepsilon}) = \mathcal{L}(A)$

Automates finis clôtures

Théorème.

 L_1 et L_2 reconnaissables :

- V_t^{\star} L_1 reconnaissable
- $L_1 \cap L_2$ reconnaissable
- $L_1 \cup L_2$ reconnaissable
- $L_1 \circ L_2$ reconnaissable



Automates finis : pb. de taille?

Nettoyage

Inaccessible : q tel que $\not\equiv w \mid q_0 \xrightarrow{w \star} q$

Improductif: q tel que $\not\equiv w \mid q \xrightarrow{w \star} q_f \in F$

Élimination des inaccessibles et improductifs sans danger

$$\mathcal{L}(A) = \mathcal{L}(B) \text{ ssi } (\mathcal{L}(A) \cap \overline{\mathcal{L}(B)}) \cup (\overline{\mathcal{L}(A)} \cap \mathcal{L}(B)) = \emptyset$$
 Coûteux \Rightarrow Automate minimal

X. Urbain LIFLC 2024 UCBL1 UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE

Automates finis : pb. de taille?

Relation d'équivalence sur états d'automates déterministes complets

$$p \equiv q \text{ ssi } \forall w, (\exists q_f \in F, \ p \xrightarrow{w \star} q_f) \iff (\exists q_f \in F, \ q \xrightarrow{w \star} q_f)$$

p et q indistinguables

$$p \equiv_{k} q \text{ ssi } \forall w \text{ tel que } |w| \leq k, (\exists q_{f} \in F, \ p \xrightarrow{w \star} q_{f}) \iff (\exists q_{f} \in F, \ q \xrightarrow{w \star} q_{f})$$

$$Q \times Q \supseteq \equiv_{0} \supseteq \equiv_{1} \supseteq \equiv_{2} \supseteq \cdots \supseteq \equiv_{k-1} \supseteq \equiv_{k} \qquad \qquad \exists k_{j}, \ \equiv_{k_{j}} \equiv_{k_{j+1}} \exists k_{j} \in \mathbb{R}$$

Lemme.

 $Si \equiv_k \equiv_{k+1} alors \equiv \equiv_k$

Preuve. $q \equiv_{k+1} q' : \forall w, |w| \leq k+1, (q \xrightarrow{w} q_f) \Leftrightarrow (q' \xrightarrow{w} q'_f) \equiv_{k+1} \equiv_{k+2}$? $|\alpha w| = k+2, q \xrightarrow{\alpha} q_1 \text{ et } q' \xrightarrow{\alpha} q'_1 \text{ alors } q \equiv_{k+1} q' \Rightarrow q_1 \equiv_k q'_1 \Rightarrow q_1 \equiv_{k+1} q'_1$ $\text{donc } (q_1 \xrightarrow{w} q_f) \Leftrightarrow (q'_1 \xrightarrow{w} q'_f) \text{ donc } (q \xrightarrow{aw} q_f) \Leftrightarrow (q' \xrightarrow{aw} q'_f)$

X. URBAIN LIFLC 2024 UCBL1 UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE

47

Automates finis : pb. de taille?

Relation d'équivalence sur états d'automates déterministes complets

$$p \equiv q \text{ ssi } \forall w, (\exists q_f \in F, \ p \xrightarrow{w \star} q_f) \iff (\exists q_f \in F, \ q \xrightarrow{w \star} q_f)$$

p et q indistinguables

$$p \equiv_k q \text{ ssi } \forall w \text{ tel que } |w| \leq k, (\exists q_f \in F, \ p \xrightarrow{w \star} q_f) \iff (\exists q_f \in F, \ q \xrightarrow{w \star} q_f)$$

$$Q\times Q\ \supseteq \equiv_0 \supseteq \equiv_1 \supseteq \equiv_2 \supseteq\ \cdots\ \supseteq \equiv_{k-1} \supseteq \equiv_k$$

$\exists k_j, \equiv_{k_j} \equiv \equiv_{k_{j+1}}$

Théorème.

$$A_m = (V_t, Q_{/\equiv}, [q_0], F_{/\equiv}, T_m)$$
 où $T_m : [p] \xrightarrow{\alpha}_{A_m} [q]$ ssi $p \xrightarrow{\alpha}_A q$

- A_m déterministe minimal complètement spécifié $\mathcal{L}(A_m) = \mathcal{L}(A)$
- Si A_m et B (dét. compl. $| \mathcal{L}(B) = \mathcal{L}(A)$) autant d'états alors $B \sim A_m$

Automates finis: implantation

Type abstrait : (V_t, Q) Automate

Spécification:

initial: (V_t, Q) Automate $\rightarrow Q$

 $acceptant: (V_t, Q) \ \textit{Automate} \times Q \rightarrow \mathsf{bool\acute{e}en}$

transition : (V_t, Q) Automate $\times Q \times V_t \rightarrow Q$

Fonctions:

exécute : (V_t, Q) Automate $\times Q \times V_t^* \to Q$

 $reconnaît: (V_t, Q)$ Automate $\times V_t^* \to booléen$

X. URBAIN LIFLC 2024 UCBL1 UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE

ENTER ENTER CORP. ON SECURE OF SECURE OF THE SECURE OF THE

Automates finis: implantation

Priorité: vitesse ou mémoire

$$q_0 \qquad \boxed{ [(\alpha_0, q_j); (\alpha_1, q_i), \dots] }$$

$$q_1 \qquad \boxed{ [(\alpha_0, q_k); (\alpha_1, q_l), \dots] }$$

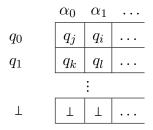
$$\vdots$$

$$\bot \qquad \boxed{ [] }$$

Transition un peu plus complexe car recherche

Automates finis: implantation

Priorité : vitesse ou mémoire



Par convention états de 1 à n et symboles de 1 à p

Si trop gros: matrices creuses...

X. URBAIN LIFLC 2024 UCBL1 UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE

Automates finis → transducteurs

Transducteurs rationnels:

Automates finis avec transitions étiquetées par une sorte

→ génération de tokens

Convention : si choix alors plus grand préfixe $(\alpha \vee s \alpha \alpha)$

Erreurs jusqu'ici : LEXICALES