Distributed Computing
Models & Algorithms

Sébastien Tixeuil
sebastien.tixeuil@lip6.fr

Three Domains

Three Approaches

Complexity-driven

Complexity-driven

Problem
1

Model-driven

2

Problem
< 1)

Problem
3
Problem

A
.4

Problem-driven

Model @
B
Model
A

1

A Map of Models

Model ¢ >
@ @
Model Model
A D

A Map of Models A Map of Models

00O e
OO0 OO

A Map of Models A Map of Models

Model ¢ > Model ¢ >
Model Model Model Model
A D A D

A Map of Models

o
O

Static Networks

Parallel Computing

Parallel Computing

Parallel Computing

Parallel Computing

 Tractable Sequential Problems
* Homogeneity

* Synchrony

» Reliable

» Focus on Efficiency

Distributed Computing

Distributed Computing

Distributed Computing

e = S—
A, b) e - §
: 14

ok 5 = — :

% E v A x it Y

. w E | E :

s i = > *® - -
-.;,‘ »]
; . | 1

44 il |

et i ,.
[e

Distributed Computing

°

Distributed Computing

* Intrinsically distributed problems
* Heterogeneity

* Asynchrony

* Unreliable

* Focus on Computability and Complexity

Distributed Computing

A distributed system is one in which the failure
of a computer you didn’t even know existed
can render your own computer unusable.

Leslie Lamport

Distributed Computing
Elements

Distributed Computing
Elements

Distributed Computing
Processor Actions

25, =9
ot

e

=

|
AU

Distributed Computing
Processor Actions

g

iig;‘ J‘V’ 1o
<~ o . =3
Yorgyf oraio”

1=

Distributed Computing
Processor Actions

i
UQ!}}(}U()!HOU

1

Distributed Computing
Processor Actions

UQ!}}(}U()!HOU

1=

Distributed Computing
Link Actions

- Ao sa T
ERN G !
‘Jt :” "‘ = }J «Jouwu“

WMQQWNW

— 1= :II:

Distributed Computing
Link Actions

Q, 4};3;& o ' ;,jﬁ
|
WMQQouW’ %mqﬂmuw

1L =)

Asynchronous
Distributed Execution

» Sequence of « processor or link » actions

* (liveness) Each processor executes an infinite
number of actions (or terminates)

* (liveness) Each enabled link action eventually
occurs

Client-Server

* Initially.
* Send Request to Server

» Upon receipt of Response from Server:
- Terminate

» Upon receipt of Request from Client.

» Send Response to Client

Client-Server

oF =

+©.Q»
-0 @

Client-Server

O O

1L 1L

Client-Server

O O

1= 1L

Client-Server

O O

1L =1L

Client-Server

O O

1L 1=

Client-Server

O O

=1L 1L

Client-Server

O O

1L 1L

Space-Time Diagram

\ 4

5Y
3

Communication Graph

Communication Graphs

Lo
%5~ 4]

Communication Graph
Models

Communication Graph
Models

Happens Before

Z C
v

Happens Before

\ 4

-) K\V
ps N

@, o—=0—>

time

\ 4

!
4

Synchronous Distributed
Execution

 Alternating sequence of processor and link

phases

* In the processor phase, all processors that have
not terminated execute their actions

* In the link phase, all links execute their actions

Space-Time Diagram

>
AN

N N N =

Flooding

o @
W ®

Synchronous Flooding

Synchronous Flooding

- 3

Synchronous Flooding

oe

Synchronous Flooding

Synchronous Flooding

B

Synchronous Flooding

5

Synchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

- 3

Asynchronous Flooding

0@

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Asynchronous Flooding

Configurations

Configurations

o

O

—~
./

&

Configurations

Executions

Executions

Synchronous vs.
Asynchronous

Synchronous vs.
Asynchronous

|_ eader Election

&

| eader Election

y
”

—(

| eader Election

|_ eader Election

©- @
e o
@ @

IDL=1D

|_ eader Election

&

| eader Election

| eader Election

|_ eader Election

(o (2)

101

|_ eader Election

()
56

e« ?

@0

| eader Election

101

| eader Election

101

| eader Election

101

| eader Election

| eader Election

- Message complexity ?

* Lower bound ?

- Weaker model ?

* NolIDs?
* No Orientation ?

* General communication graph ?

Static Networks

SIWILEY

Distributed Algorithms

Distributed

Computing

Passively Mobile
Networks

Mobility-induced
Dynamic Networks

(J (J

Mobility-induced
Dynamic Networks

()

Mobility-induced
Dynamic Networks

(

Static Algorithms for
Mobile Networks

Link Lifetime

Link Lifetime

V2

U1

Link Lifetime

Link Lifetime

40 ——Bandwidth(Mbps] === RSSI[dBm) -50
35 L 55
- -60

w
o

VA% =

bl Y

=
Q.

'Q —
HRE / _ o E
"=-5 20 75 2
E e ’.._________\X“ | 20 §
= \ - -85

-]

N
o
1
!
|
)
!
N
~N
/)
4
|
)
)
L]
T
.
©
o

T T T T T T T T

T T T T T T T T T
S O O M 0 N - O
O m o0 < m 0 ™M I~
— —

Separation between vehicles (m)

On the use of WiMAX and Wi-Fi to provide in-vehicle connectivity and media distribution.
Lerotholi S. Mojela ; Marthinus J. Booysen, Industrial Technology (ICIT), 2013 IEEE International
Conference on

U2
r
U1
Link Lifet
40 —— Bandwidth(Mbps) === RSSI(dBm) 50
35 L 55
=30 ‘A - -60 On the use of WiMAX and Wi-Fi to
'gzs A~ W [gg £ provide in-vehicle connectivity and
£ // \'\X 75 £ media distribution. Lerotholi S.
% 15 l"‘ s \ zg 2 Mojela ; Marthinus J. Booysen,
3 10 7 c\\ L -0 Industrial Technology (ICIT), 2013
U G / Q 95 IEEE International Conference on
0 — o <100
228588 I "8 L08R
LRIFS2 “5RIRE

Separation between vehicles (m)

Fig. 4b shows a graph of the two vehicles traveling in
opposite directions at an average relative speed of 64 km/h
in an urban area. The average contact time recorded was 33s
and the average maximum communication range was found to
be 302 m with an average bandwidth of 13.7 Mbps per test
run taken over the period of established contact, average jitter
of 1.88 ms and an average of 51.7 MB data transferred per
contact period. The maximum peak bandwidth of 31.7 Mbps

Round-trip Time

Barcelona % Paris % Tokyo % Toronto % Washington
® 44173ms ® 11.876ms ® 242.819ms ® 96.619ms © 93.342ms
® 295.323ms ® 280111ms ® 241.541ms 199.854ms 211.48ms
® 4971ms ® 20.041ms ® 275.013ms © 103.027ms © 113.909ms
® 43745ms ® 25.574ms ® 272459ms ® 117751ms © 100.623ms
® 143.543ms © 114.941ms ® 145.957ms ® 76173ms ® 34194ms
® 35431ms ® 4542ms ® 240.519ms ® 85102ms ® 75484ms
® 157.289ms © 141484ms ® 112.265ms ® 58.689ms ® 71.88Ims
® 74.806ms ® 55.67ms ® 299.067ms © 137.808ms © 144.68ms
® 130.6ms ® 77551ms 171.641ms ® 1778ms ® 47161ms
® 31.085ms - ® 260.569ms © 103.015ms © 107.643ms
® 59785ms ® 27.894ms ® 285462ms ® 123.358ms ® 115.657ms
® 267753ms ® 268.811Ims - 172.841ms 186.818ms

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Mobility vs. Global State

Stateless Algorithms

Statelessness

HTTP

UDP TCP

RIP | OSPF | BGP

Lower layers

Statelessness

Lower layers

Statelessness

Lower layers

Stateless Routing

A routing algorithm is stateless if it is designed
such that devices store no information about
messages between transmissions. It is stateful
otherwise.

Flooding

W

Stateless Flooding

Stateless Flooding

O

Stateless Flooding

Re:

Stateless Flooding

Stateless Flooding

ge

O}

Stateless Flooding

Y

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

Stateless Flooding

O

Stateless Flooding

RS

O}

Stateless Flooding

Y

Flooding v2

KQ (; K-1
_>
K-1

TTL Flooding

TTL Flooding

CF

TTL Flooding

R

TTL Flooding

TTL Flooding

1
1
1
1%_§
1
1

TTL Flooding

TTL Flooding

Flooding v3

W ®

Stateful Flooding

@

Stateful Flooding

e

Stateful Flooding

Stateful Flooding

i

Stateful Flooding

Stateful Flooding

Stateful Flooding

Geometric Routing

* Each node is aware of its coordinates (and those of
its neighbors)

* The message contains the coordinates of the
destination

» Goal: deliver the message to the destination
without routing tables

Stojmenovic, Ivan (2002). "Position based routing in ad hoc networks". [IEEE Communications
Magazine. 40 (7): 128-134.

Progress vs. Distance

Which Criterion?

* MFR: most forwarding progress

* CR: minimize angular criterion

* Greedy: minimize distance to destination
* NC: nearest closer

* NFP: nearest with forwarding progress

Delivery Guarantee”

Planar Graph Routing

Face Routing

Bose, P.; Morin, P; Stojmenovic, |.; Urrutia, J. (1999). "Routing with guaranteed delivery in ad hoc wireless networks". Proc. of

the 3rd international workshop on discrete algorithms and methods for mobile computing and communications (DIALM '99).
pp. 48-55.

Planar Graphs!

Greedy / Face / Greedy

Self-stabilization

Example

Uo =a
_ Un o o
Upy1 = if U,, is even

Up+1 = 22 if U, is odd

Example
Up=a
Un+1=@ifUn is even
Up+1 = 22 if U, is odd
nio(l|2(3|4|5[6|7|8|9]|I0]Il]I2
Un| 7|11 17(26]13[20(10| 5|8 |4 [2]|1]2

Values

Example

Upn

Upt1 = 22ELif U, is odd

,,,,,,,,

n C orrec t., e n' o

Iterations

Unt1 = 5 if U,, is even

Exam»ple

Configurations

Sele—stabilization

;éti‘gbilization Time Stabilized

o

N

"Correct” i

o
o

Time

Self-stabilization

Arbitrary

Legitimate

Self-stabilization Distributed Systems

» Configuration: product of the local states of
system components

» Execution: interleaving of the local executions of
the system components

Distributed Systems Distributed Systems

 Self-stabilizing: Starting from any initial
configuration, the system eventually reaches a

* Classical: Starting from a particular initial configuration from which its behavior is correct

configuration, the system immediately exhibits
correct behavior + Defined by Dijkstra in 1974
» Self-stabilizing: Starting from any initial

configuration, the system eventually reaches a
configuration from which its behavior is correct

* Advocated by Lamportin 1984 to address fault-
tolerant issues

» Stale states due to mobility can be recovered!

Configurations

int x = 0;

if(x == 0) |
// code assuming x equals 0

}

else {
// code assuming x does not equal 0

}

Configurations

Configurations

=

Hypotheses

Atomicity

* A «stabilizing» sequential program

int x = 0;
while(x == x) {
x = 0;

// code assuming x equals 0

}

Atomicity

* A «stabilizing» sequential program

iconst_0
istore_1
goto 7/
iconst_0
istore_1
iload_1
iload_1

if _icmpeqg 5

Problem

O 0 J oy o+~ O

Communications

Communications

&)

oS 0="0

©

Communications

Example

* Shared memory: in one atomic step, read the state
of all neighbors and write own state

- Guarded command

Guard — Action

Predicat Executed if

the1 Guard is true

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := Min e Neighbors; { Distance; + 1}

Example

true — Distance; := Min e Neighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjecNeighbors; { Distance; + 1}

Example

true — Distance; := MinjecNeighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjeNeighbors; { Distance; + 1}

Example

true — Distance; := MinjecNeighbors; { Distance; + 1}

Example

true — Distance; := MinjecNeighbors; { Distance; + 1}

Scheduling

» Scheduler (a.k.a. Daemon): the daemon chooses
among activatable processes those that will
execute their actions

* can be seen as an adversary whose role is to
prevent stabilization

Spatial Scheduling

true — color; := Min{A\ {color;|j € Neighbors;}}

A=-{@O@00)

Spatial Scheduling

OnOnO0=0O

Temporal Scheduling

1
token — pass token to left neighbor with probability 3

token = ' no token = O

Temporal Scheduling Temporal Scheduling

1
token — pass token to left neighbor with probability 3

token = . no token = O

Temporal Scheduling A Map of Daemons

A Map of Daemons

A Map of Daemons

Self-Stabilization

Population Protocols

Population Protocols

Dana Angluin, James Aspnes, Zoé Diamadi, Michael J. Fischer, René Peralta:
Computation in networks of passively mobile finite-state sensors. Distributed
Computing 18(4): 235-253 (2006)

Population Protocols

bR &

Population Protocols

Population Protocols

- Definition

» A Population Protocol is a 6-tuple (X,Y,Q,1,0,T)
* X: Set of inputs
» Y: Set of outputs
* Q: Set of states
* I: Input mapping function, X — Q
* O: Output mapping function, Q — O

* T: Transition function, Q X Q —> QX Q

O NONe
O @ O O

Example 1

®

ONOROR®

SN aoNe
O @ O O

oX NoNe SN NON®

o 00

o 00

Example 1b

® C

:

()

EXample 2

. InputS: ‘
. outputs: @ :

-#@>#()7

OO0
® O

¢

e 0o
C o

;] C®O0

CQQ‘Q
Hh o ee

5o &
00 o

C 0O 0o
C 0o e O

¢oe

O C
® O

¢

C C
C C

$§ O®0

e e O

O C
®

¢

e C
© 0

O C
® O

¢

C C
C C

$§ O®0

O C
® O

¢

e C
© 0

.o

O O

® O

O O
® O

¢

© O
© O

C @O0

OO0
®)

¢ I ¢

oo

OO0
®)

¢

e

O O
*O c @0

mm O @O

© O

C C 0\/@
"% @ 0

O O
® O

m m o
C @-C
©° o@®vcC
0
cC-@® C

See

Example 3

cmpus: (o) (1) (2) (3)
rounis(0) (1) (2 0O @ OO

- Summod 4 ?

Example 3

@
O 0 U

@
o 00U

ONONONO

ONOSONO

OnORON
o 00U

e &
D Q@

Do

@) ()
ONORONO

e &
D Q

MMS@
ol - RONO
OO0

o &
D Q@

Do

=2 @) &
ONORAONO

e &
D Q@

wm@ee@
@) (=
ORORONO

Do

e

V000 e

ONOSONO

() . @ ()

© ©

ON Y FOM
O © 0~ e

Population Protocols

New Models for
Population Protocols

Othon Michail
loannis Chatzigiannakis

Dynamic Graphs

Time-varying Graphs

* A time-varying graph (TVG) is a 5-tuple (V,E,T,p.I)

* V: set of nodes

* E: (labelled) set of edges

o T: lifetime, TC T

* p: presence function, Ex T — {0,1}

* |: latency function, ExT— T

Time-varying Graphs Time-varying Graphs

* A time-varying graph (TVG) is a 5-tuple (V,E,T,p’,I’)

* V: set of nodes tin [2,5]

latency = 3

* E: (labelled) set of edges

e T: lifetime, TC T z @
* p’: node presence function, V xT — {0,1}

* I’: node latency function, V. xT — T l

Evolving Grapbs Example

B

Car
LYON
\0 - Plane
7
1 MARSEILLE PARIS

t=0 t=2 t=5

Example

G
9
oo

Example

9

[5,6) U [7.,8)
[2,5) [2.5)

[5,6) U [7,8)
[2,5) [2,5)
@ [1 VS) @

Evolving Graphs

@ Evolving Graphs

[2,5) [2,5)
@ [1 VS) @

@ Evolving Graphs

[2,5) [2.5)
@ [1 va) @

(e)
°°

9
- Evolving Graphs

[2,5) [2,5)
@ [1 va) @

O ORENO
‘ O
00 ONO

@ Evolving Graphs
S

© ©
[2.5) 12.5) G 6
@[m@ GQ ‘ 5 b

;

ONO

@ Evolving Graphs

® O 0
[2.5) 12.5) 0 Q
@@ e° .0

ONO

9
Evolvmg Graphs

@@HAA

OROJORO

9
Evolvmg Graphs

GROTEEELE

ONOJOROJORO

Journeys from C to A
®©
(2]

° 60 o

©
OnG,
[o

sgﬁ@

:H

Shortest Journey
™)
(2)

° &b o

©
OnG,
[o

sgﬁ@

:H

Foremost Journey

cale s

Fastest Journey

Ses el

Condition for Broadcast?

e 00

2 & ¢
@@m@m

Condition for Broadcast?

e 00

« o A
O 0 000 0 0 D €

Condition for Broadcast?

Oi OG\G OIG

There exists a node (C) from which a journey reaches
every other node

Condition for Election?

e 0 O

O,) (»)
RN

Condition for Election?

e 0 O

z ® O ©
o0 93 - YO >

Condition for Election?

e 0 O

R

There exists a node (C) such that there exists a journey
from every other node to it

Condition for

Global Calculus?
) = @

o 00U
OO
OO

© &b ok

i
()
(=)
)

(=)
Q/.@
)

SN O=0O
)

Condition for

Global Calculus?
) = @

°—®°®

g 9% Ggﬁ

Condition for
Global Calculus?

There exists a node (Center) such that there exists a
journey from every other node to it and back

5) o ¢
@7@9?}9%9

Connectivity Classes

There exists a node r from which a journey
reaches every other node 1 ~- x

There exists a node r such that there exists a
journey from every other node to it * ~ 1
There exists a node r such that there exists a

journey from every other node to to and back
155%

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro:
Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

* There exists a journey between any two nodes * ~~

* There exists a roundtrip journey between any two
nodes *x

* There exists a journey between any two nodes

infinitely often x 2% %

» Every edge appears infinitely often . R .

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro:
Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

* Every edge appears infinitely often, and there is an
upper bound between between two occurrences

» Every edge appears infinitely often with some
period p

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro:
Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

More Classes

* At any time, the graph is connected
* Every spanning subgraph lasts at least T time units
» Every edge appears infinitely often, and the

underlying graph is a clique R
* — %

Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, Nicola Santoro:
Time-varying graphs and dynamic networks. IJPEDS 27(5): 387-408 (2012)

A Classification

l(‘v‘

¥

A Classification

ENgED
<
GDeEn

(B

A Classification

&

.§.>*<.E.>+<*W*> <L:*

Sl

3 A

e
(.?.> <*E*> <*x*>+<*w*

P
e

A Classification

Anytime Elect
Shortest Foremost Anyone & Compute &
Broadcast Broadcast Broadcast Broadcast Broadcast

.?.)-{.?.H*Z%Q < L% le*>

A

%
(2 () Cad(=emn)

Fastest Population Elect Elect Elect
Broadcast Protocols Anyone & Anyone Someone
Broadcast

Arnaud Casteigts, Paola Flocchini, Bernard Mans, Nicola Santoro: Shortest, Fastest,
and Foremost Broadcast in Dynamic Networks. Int. J. Found. Comput. Sci. 26(4):
499-522 (2015)

Actively Mobile
Networks

Mobile Agents

Mobile Agents

Mobile Agents

Problems to Solve

» Exploration (perpetual or with stop)
- Mapping

- Rendez-vous

- Black hole search

- Capturing an intruder

Models

Network (anonymous vs. ID based)

Agents (anonymous vs. ID based)

- Synchrony

Initial (structural) knowledge
Communications (none, peebles, whiteboards)

Agent memory (infinite, bounded, constant)

Mapping

Mapping

Rendez-vous

* Two (or more) mobile agents must meet in a
graph

They start on distinct locations

« Computability?

Complexity?

Rendez-vous in ID Graphs

DFES to find

Smallest ID Node

Rendez-vous in
Anonymous Graphs

Rendez-vous in Anonymous Graphs
Anonymous Graphs with Known ID (1,2) Agents

Anonymous Graphs Anonymous Graphs
with Known ID (1,2) Agents with Known N, ID Agents

Anonymous Graphs Anonymous Graphs
with Known N, ID Agents with Known N, ID Agents

Black Hole Search Black Hole Search

Black Hole Search

* A single black hole in the graph
* The black hole does not disconnect the graph
* |ldentify each adjacent edge

* Minimize #agents, #moves

Synchronous Agents

Synchronous Agents

-
1%

e

A
O—0O O—®
> > Q
Fave Fave
IR IR
*V// ‘I{;

N2
~

1% 195
58
Asynchronous

Black Hole Search

Asynchronous
Black Hole Search

- @
vy
IRy
3 2

Asynchronous
Black Hole Search

- @
vy
IRy
3 2

Asynchronous
Black Hole Search

Mobile Robots

Mobile Robots

Mobile Robots d

& C L

Q‘Q“b@ &

Mobile Robots

» Autonomous (no central control)
* Homogeneous (run same algorithm)
* Identical (indistinguishable)

* Silent (no explicit communication)

Robot Life Cycle

get a snapshot

Use sensors to observe the world,

Robot Life Cycle

Execute the algorithm,
get a destination point

Use motors to move toward
the destination point

Robot Life Cycle

remain idle for a while

Yl £ o

Q‘Q”b"? &

Visibility

Visibility

Limited Visibility

y

Visibility

O

Multiplicity Detection

How many robots do you see?

« No detection 1
* Weak multiplicity detection >1

» Strong multiplicity detection

Multiplicity

Multiplicity

Memory

Algorithm

Persistent Memory

Volatile Memory

Oblivious Robot Memory

Algorithm

Per@nory

Volatile Memory

Oblivious Robot Life Cycle

remain idle for a while,
forget about the past

Memory

Scheduling
i ol 4¢£if
e

(y Look—Compute—~Move

Scheduling
[
r ‘\/:2 4

(y Look—Compute—~Move

FSYNC
1 2 3 4 5 6
r @) O O O O O
r2 O O O O O O
ra @) O O O O O
Scheduling

r
ro

rs

r:\/ ‘\frg “4\

(y Look—Compute—~Move
ASYNC

1 2 3 4 5 6

SSYNC
1 2 3 4 5 6
r @) O O O O
r2 O O O O
ra @) @) O
Scheduling

Two Axes
Direction and Orientation

One Axis
Direction and Orientation

S
#H % +w

Two Axes
Direction

+
+++ +

Chirality
/ !
< .
o
<—x—T ‘
| Ny %
»

No Agreement

I
W

Overview

Scattering

Scattering

No two robots should occupy the same position

* No deterministic solution

L

* No termination without multiplicity detection

Scattering

1 toss

O(log(n)loglog(n)) rounds

Yoann Dieudonné and Franck Petit. Scatter of robots. Parallel Processing Letters 19.01 (2009): 175-184.

How Many Tosses?

Minimum?
Influence of multiplicity detection?

Relationship with scattering speed?

Scattering

n robots: 2n2 destinations

O(1) rounds

Julien Clément, Xavier Défago, Maria Potop-Butucaru, et al. The cost of probabilistic agreement in oblivious
robot networks. Information Processing Letters, 2010, vol. 110, no 11, p. 431-438.

Optimal Speed

With strong multiplicity detection:

Algorithm with optimal #tosses terminates in O(1) rounds

Without strong multiplicity detection:

® T B
., &) , 0e.°
. 0o *® o o...: <)
n robots finite max #destinations is
#destinations independent of n

O(1) rounds scattering of n robots is impossible

How fast can we go?

Scattering Scattering

Scattering
+MD

Scattering
+MD

Scattering Scattering

Julien Clément, Xavier Défago, Maria Potop-Butucaru, et al. The cost of probabilistic agreement in oblivious Quentin Bramas and Sébastien Tixeuil. The Ramdom Bit Complexity of Mobile Robot Scattering. Int. J. Found.
robot networks. Information Processing Letters, 2010, vol. 110, no 11, p. 431-438. Comput. Sci. 28(2): 111-134 (2017)

Scattering

Scatterin
Scattering +MD 9

Gathering

Gathering

Gathering

Gathering

Impossible for two robots

L (1/2)
(n/2) ‘_I

A bivalent configuration

Gathering vs. Convergence

» Gathering: robot must reach the same point in

finite time

» Convergence: robots must get closer at time goes

by

Center of Gravity
=Ly

=1

Center of Gravity
=Ly

o O
® @
o O

Center of Gravity
=Ly

® o
® Ol
® O

Center of Gravity
of Positions

at :ﬁgmm

FSYNC Gathering

wzégmm

FSYNC Gathering

wzégmm

SSYNC Gathering?

’Lﬁ&

SSYNC Gathering?

—?
3

Convergence & Gathering

n-Gathering n-Gathering
+MD +MD+WF

Convergence 2-Gathering n-Gathering

Convergence & Gathering

n-Gathering n-Gathering

Convergence 2-Gathering n-Gathering +MD +MD+WF

Reuven Cohen and David Peleg. Convergence Properties of the Gravitational
Algorithm in Asynchronous Robot Systems. SIAM J. Comput. 34(6): 1516-1528 (2005)

Convergence & Gathering

n-Gathering n-Gathering

Convergence 2-Gathering n-Gathering +MD +MD+WF

Ichiro Suzuki, Masafumi Yamashita: Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. SIAM J. Comput. 28(4): 1347-1363 (1999)

Convergence & Gathering

n-Gathering n-Gathering

Convergence 2-Gathering n-Gathering +MD +MD+WF

Guiseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2-3): 222-231 (2007)

Convergence & Gathering

n-Gathering n-Gathering
+MD +MD+WF

Convergence 2-Gathering n-Gathering

Thibaut Balabonski, i i i ébastien Tixeuil, Xavier Urbain:
Synchronous Gathering Without Multiplicity Detection: A Certified Algorithm. SSS
2016: 7-19

Convergence & Gathering

n-Gathering n-Gathering
+MD +MD+WF

Convergence 2-Gathering n-Gathering

Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro. Distributed
Computing by Mobile Robots: Gathering. SIAM J. Comput. 41(4): 829-879 (2012)

Convergence & Gathering

n-Gathering n-Gathering
+MD +MD+WF

Convergence 2-Gathering n-Gathering

Quentin Bramas, Sébastien Tixeuil. Wait-Free Gathering Without Chirality. SIROCCO
2015: 313-327

Pattern Formation

Pattern Formation

The goal is to form the pattern,
and then stay stationary

Pattern Formation

Initial configuration Pattern to form
° ¢ °
° e o
° e o o
° . .
[Is it possible?
NO

What about restricting the set of initial configurations?
What about adding conditions on the pattern?
What about adding capabilities to robots?

Pattern Formation

Initial configuration Pattern to form

) .« o

i ible?
All robots are here Is it possible?

No, so from now, we assume the initial configuration does not have
points of multiplicity

Pattern Formation

Initial configuration P Pattern to form F
o ® o .\
O O . .
o Is it possible? All robots are here
NO

Guiseppe Prencipe. Impossibility of gathering by a set of autonomous mobile robots.

Theor. Comput. Sci. 384(2-3): 222-231 (2007)

Pattern Formation

Initial configuration Pattern to form
e ® o ¢
o o , , ® o
[e] Is it possible?
e o o

Yes, if robots agree on a common North and a common Right

Yes, if robots agree on a common North and n is odd

Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, Peter Widmayer: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3): 412-447 (2008)

Pattern Formation

Initial configuration P Pattern to form F’

e o o Is it possible?

...assuming a common chirality, and F does not have multiplicity points

Yes, it p(P)|p(F) where p(P)is the symmetricity of P,

the maximum integer such that the rotation by 27 /p(P)
is invariant for P

No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita:
Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P Pattern to form F’

e o *
) Is it possible?
e o o
...assuming a common chirality, and F does not have multiplicity points
Yes, it p(P)|p(F) where p(P) is the symmetricity of P,

the maximum integer such that the rotation by 27 /p(P)
is invariant for p

No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuiji Kijima, Masafumi Yamashita:
Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P Pattern to form F’

e o o Is it possible?

...assuming a common chirality, and F does not have multiplicity points

Yes, it p(P)|p(F) where p(P)is the symmetricity of P,

the maximum integer such that the rotation by 27 /p(P)
is invariant for P

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, Masafumi Yamashita:
Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P Pattern to form F’
° o .
[] Y []
® ®
e o o Is it possible?]

...assuming a common chirality, and F does not have multiplicity points

Yes, it p(P)|p(F) where p(P) is the symmetricity of P,
the maximum integer such that the rotation by 27 /p(P)
is invariant for p

No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuiji Kijima, Masafumi Yamashita:
Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P Pattern to form F’
° o .
[] Y []
® ®
e o o Is it possible?]

...assuming a common chirality, and F does not have multiplicity points

No, otherwise

Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuiji Kijima, Masafumi Yamashita:
Pattern Formation by Oblivious Asynchronous Mobile Robots. SIAM J. Comput. 44(3): 740-785 (2015)

Pattern Formation

Initial configuration P Pattern to form F’
e °
O Y e
® .
e o o Is it possible? ©

...assuming a common chirality, and F does not have multiplicity points
Yes, with a randomized algorithm
... assuming robots do not “pause” while moving

... and using infinitely many random bits per activation

Yukiko Yamauchi, Masafumi Yamashita: Randomized Pattern Formation Algorithm
for Asynchronous Oblivious Mobile Robots. DISC 2014: 137-151

Pattern Formation

Initial configuration P Pattern to form F’
e °
©]) ®
e o o Is it possible? © ®

Yes, with a randomized algorithm

Quentin Bramas, Sébastien Tixeuil: Brief Announcement: Probabilistic Asynchronous
Arbitrary Pattern Formation. PODC 2016: 443-445

ASYNC Pattern Formation

Pattern Agreement Chirality Randomization

Point

Divide
Symmetricity

No Multiplicity

Not a Point

Arbitrary

Mobile Robots

'Distributed Computing by
Oblivious Mobile Robots

Conclusion

Static Networks

« Fundamental, well established model
* Space-centric, complexity results

» Time-centric, computability results

Mobility as an Adversary

» Can corrupt the distributed state of a network

Can reduces communication capacity

» Can increase uncertainty

Can increase protocol complexity

Mobility as a Friend

» Mobility can be the solution to the problem
* Mobility can improve efficiency

* Mobility can promote simplicity

Distributed Computing

Problem

Thank You

