
Logical Methods in Computer Science
Vol. 13(4:14)2017, pp. 1–34
https://lmcs.episciences.org/

Submitted Oct. 28, 2016
Published Nov. 22, 2017

A FRAMEWORK FOR CERTIFIED SELF-STABILIZATION?

KARINE ALTISEN, PIERRE CORBINEAU, AND STÉPHANE DEVISMES
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Abstract. We propose a general framework to build certified proofs of distributed self-
stabilizing algorithms with the proof assistant Coq. We first define in Coq the locally
shared memory model with composite atomicity, the most commonly used model in the
self-stabilizing area. We then validate our framework by certifying a non trivial part of an
existing silent self-stabilizing algorithm which builds a k-clustering of the network. We also
certify a quantitative property related to the output of this algorithm. Precisely, we show
that the computed k-clustering contains at most bn−1

k+1
c + 1 clusterheads, where n is the

number of nodes in the network. To obtain these results, we also developed a library which
contains general tools related to potential functions and cardinality of sets.

1. Introduction

In 1974, Dijkstra introduced the notion of self-stabilizing algorithm [24] as any distributed
algorithm that resumes correct behavior within finite time, regardless of the initial con-
figuration of the system. A self-stabilizing algorithm can withstand any finite number of
transient faults. Indeed, after transient faults hit the system and place it in some arbitrary
configuration — where, for example, the values of some variables have been arbitrarily
modified — a self-stabilizing algorithm is guaranteed to resume correct behavior without
external (e.g., human) intervention within finite time. Thus, self-stabilization makes no
hypothesis on the nature or extent of transient faults that could hit the system, and recovers
from the effects of those faults in a unified manner.

For more than 40 years, a vast literature on self-stabilizing algorithms has been developed.
Self-stabilizing solutions have been proposed for many kinds of classical distributed problems,
e.g., token circulation [31], spanning tree construction [13], clustering [9], routing [25],
propagation of information with feedback [7], clock synchronization [18], etc. Moreover,
self-stabilizing algorithms have been designed to handle various environments, e.g., wired
networks [31, 13, 9, 25, 7, 18], WSNs [4, 38], peer-to-peer systems [10, 8], etc.

Progress in self-stabilization has led to consider more and more adversarial environments.
As an illustrative example, the three first algorithms proposed by Dijkstra in 1974 [24]
were designed for oriented ring topologies and assuming sequential executions only, while
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nowadays most self-stabilizing algorithms are designed for fully asynchronous arbitrary
connected networks, e.g., [31, 9, 19].

Consequently, the design of self-stabilizing algorithms becomes more and more intricate,
and accordingly, the proofs of their respective correctness and complexity are now often tricky
to establish. However, proofs in distributed computing, in particular in self-stabilization, are
commonly written by hand, based on informal reasoning. This potentially leads to errors
when arguments are not perfectly clear, as explained by Lamport in its position paper [35].
So, in the current context, such methods are clearly pushed to their limits, since the question
on confidence in proofs naturally arises.

This justifies the use of a proof assistant, a tool which allows to develop certified proofs
interactively and check them mechanically. In this paper, we use Coq [39], recipient of
the ACM 2013 Software system Award. Coq has been successfully employed for various
tasks such as mathematical developments as involved in the Feit-Thompson theorem [30],
formalization of the correctness of a C compiler [36, 37], certified numerical libraries [28],
and verification of cryptographic protocols [3, 14].

1.1. Contribution. We propose a general framework to build certified proofs of self-
stabilizing algorithms for wired networks with the tool Coq. We first define in Coq the
locally shared memory model with composite atomicity, introduced by Dijkstra [24]. This
model is the most commonly used in the self-stabilizing area. Our modeling is versatile,
e.g., it supports any class of network topologies (including arbitrary ones), the diversity of
anonymity levels (from fully anonymous to fully identified), and various levels of asynchrony
(e.g., sequential, synchronous, fully asynchronous).

We show how to use and validate our framework by certifying a non trivial part of an
existing silent self-stabilizing algorithm proposed in [19] which builds a k-clustering of the
network. Starting from an arbitrary configuration, a silent algorithm converges within finite
time to a configuration from which all communication variables are constant. This class of
self-stabilizing algorithms is important, as self-stabilizing algorithms building distributed
data structures (such as spanning tree or clustering) often achieve the silent property, and
these silent self-stabilizing data structures are widely used as basic building blocks for more
complex self-stabilizing solutions, e.g., [19, 20].

Using a usual proof scheme, the certified proof consists of two main parts, one dealing
with termination and the other with partial correctness.

For the termination part, we developed tools on potential functions and termination at
a fine-grained level. Precisely, we define a potential function as a multiset containing a local
potential per node. We then exploit two criteria that are sufficient to meet the conditions
for using the Dershowitz-Manna well-founded ordering on multisets [22]. These two criteria,
and the associated proof scheme, are versatile enough to be applied to prove the termination
many other (silent) algorithms, whether using our framework, or by hand. We also provide
tools to build termination proofs of algorithms consisting of prioritized sets of actions. These
tools use a lexicographical order on multisets of local potentials. Notice that the termination
proof we propose for the case study assumes a distributed unfair daemon, the most general
scheduling assumption of the model. By contrast, the proof given in [19] uses a stronger
scheduling hypothesis, namely, a distributed weakly fair daemon.

The partial correctness part consists of showing that (1) a k-clustering is defined in the
network whenever the algorithm has terminated, and (2) a quantitative property related to
this k-clustering; namely the computed k-clustering contains at most bn−1

k+1c+ 1 clusterheads,
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where n is the number of nodes in the network. To obtain this latter result, we provide a
library dealing with cardinality of sets in general and properties on cardinals of finite sets
w.r.t. basic set operations, i.e., Cartesian product, disjoint union and subsets.

This work is an extended version of [1]; it represents about 17,560 lines of code (as
computed by coqwc: 5k lines of specifications, 10k lines of proofs) written in Coq 8.6 compiled
with OCaml 4.04.1.

1.2. Related Work. Many formal approaches have been used in the context of distributed
computing. There exist tools to validate a given distributed algorithm, such as the tools
embedded with TLA+ (a model checker and a proof assistant) [34]. Constructive approaches
aim at synthesizing algorithms based on a given specification and a fixed topology; many of
them are now based on SMT-solvers, see [6, 27]. Note that model-checking as well as synthesis
are fully automated, but require to fix the topology and sometime the scheduling (e.g.,
synchronous execution). Moreover, these techniques usually succeed with small topologies,
due to computation limits. For example, model checking has been also successfully used
to prove impossibility results applying on small-scale distributed systems [23]. In contrast,
a proof assistant may validate a given algorithm for arbitrary-sized topologies, but is only
semi-automated and requires heavy development for each algorithm. We now focus on works
related to certification of distributed algorithms, most of them using Coq.

Several works have shown that proof assistants (in particular Coq) are well-suited
to certify the correction of algorithms as well as impossibility results in various kinds of
distributed systems. Certification of non fault-tolerant (consequently non self-stabilizing)
distributed algorithms in Coq is addressed in [11, 12, 17]. In [16], an impossibility proof for
the gathering problem is certified. Notice that [16, 17] consider mobile distributed systems.
Precisely, these works are dedicated to swarms of robots that are endowed with motion
actuators and visibility sensors and deployed in in the Euclidean plane. These robots are
weak, i.e., they are anonymous, uniform, unable to explicitly communicate, and oblivious
(they have no persistent memory).

Certification in the context of fault-tolerant, yet non self-stabilizing, distributed com-
puting is addressed in [32, 2]. Küfner et al. [32] propose to certify (using the proof assistant
Isabelle) fault-tolerant distributed algorithms. Their framework deals with masking fault-
tolerance whereas self-stabilization is non-masking by essence. Moreover the network topology
is restricted to fully connected graphs. Bouzid et al. [2] certify impossibility results for
swarms of robots that are subjected to Byzantine faults using a model based on the one
described in [16].

To the best of our knowledge, only three works deal with certification of self-stabilizing
algorithms [15, 21, 33]. First, [21] proposes to certify in Coq self-stabilizing population
protocols. Population protocols are used as a theoretical model for a collection (or population)
of tiny mobile agents that interact with one another to carry out a computation. The
movement pattern of the agents is unpredictable, and communication is implicit between close
agents (there is no notion of communication network). A formal correctness proof of Dijkstra’s
seminal self-stabilizing algorithm [24] is conducted with the PVS proof assistant [33], where
only sequential executions are considered. In [15], Courtieu proposes a setting for reasoning
on self-stabilization in Coq. He restricts his study to very simple self-stabilizing algorithms
(e.g., the 4-states algorithm of Ghosh [29]) working on networks of restrictive topologies
(lines and rings).
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1.3. Roadmap. The rest of the paper is organized into two parts. The first one, from
Section 2 to Section 5, describes the general framework. The case study is given in Sections 6-
8. Section 9 is dedicated to concluding remarks and perspectives.

In the next section, we describe how we define the locally shared memory model with
composite atomicity in Coq. In Section 3, we express the definitions of self-stabilization
and silence in Coq, moreover we certify a sufficient condition to show that an algorithm is
silent and self-stabilizing. We present tools for proving termination in Section 4 and tools
for proving quantitative properties in Section 5. In Section 6, we present an algorithm called
C(k) (the case study), its specification, and the assumptions under which it will be proven.
In Section 7, we present the termination proof of C(k). Section 8 deals with the partial
correctness of C(k).

Along this paper, we present our work together with few pieces of Coq code that
we simplify in order to make them readable. In particular, we intend to use notations
as defined in the model or in the algorithm. The Coq definitions, lemmas, theorems,
and documentation related to this paper are available as an online browsing at http:

//www-verimag.imag.fr/~altisen/PADEC/. All source codes are also available at this
URL. We encourage the reader to visit this web page for a deeper understanding of our
work.

2. Locally Shared Memory Model with Composite Atomicity

In this section, we explain how we model the locally shared memory model with composite
atomicity in Coq. This model has been introduced by Dijkstra [24], and since then it is the
most commonly used in the self-stabilizing area.

2.1. Distributed Systems. We define a distributed system as a finite set of interconnected
nodes. Each node has its own private memory and runs its own code. It can also interact
with other nodes in the network via interconnections. The model in Coq reflects this by
defining two independent types:

• A Network is equipped with a type Node, representing nodes of the network. A Network

defines functions and properties that depict its topology, i.e., interconnections between
nodes. Those interconnections are specified using the type Channel.
• The Algorithm of a node p is equipped with a type State, which describes the memory

state of p. Its main function, run, specifies how p executes and interacts with other nodes
through channels (type Channel).

2.2. Network and Topology. Nodes in a distributed system can directly communicate
with a subset of other nodes. As commonly done in the literature, we view the communication
network as a simple directed graph G = (V,E), where V is set of vertices representing nodes
and E ⊆ V × V is a set of edges representing direct communication between distinct nodes.
We write n to denote the numbers of nodes: n = |V |.

Two distinct nodes p and q are said to be neighbors if (p, q) ∈ E. From a computational
point of view, p uses a distinct channel cp,q to communicate with each of its neighbors q: it
does not have direct access to q. In the type Network, the topology is defined using this narrow
point of view, i.e., interconnections (edges of the graph) are represented using channels only.
In particular, the neighborhood of p is encoded with the set Np which contains all channels

http://www-verimag.imag.fr/~altisen/PADEC/
http://www-verimag.imag.fr/~altisen/PADEC/
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cp,q outgoing from p. The sets Np, for all p, are modeled in Coq as lists, using the function
(peers: Node → list Channel). The function (peer: Node → Channel → option Node) re-
turns the destination neighbor for a given channel name, i.e., (peer p cp,q) returns (Some q),
or ⊥1 if the name is unused. We also define the shortcut ternary relation (is_channel p c p’)

as (peer p c) equals (Some p’) where p and p’ are nodes and c a channel.
Communications can be made bidirectional, assuming a property called sym_net, which

states that for all nodes p1 and p2, the network defines a channel from p1 to p2 if and only if it
also defines a channel from p2 to p1. In case of bidirectional links (p, q) and (q, p) in E, p can
access its channel name at q using the function (ρp: Channel → Channel). Thus, we have
the following identities: ρp(cp,q) equals cq,p ∈ Nq and ρq(cq,p) equals cp,q ∈ Np. In our Coq
model, the role of ρp is assigned to the function (reply_to: Node → Channel → Channel).

As a last requirement, we suppose that, since the number of nodes in the network
is finite, we have a list, called all_nodes, containing all the nodes. In particular, this
assumption makes the emptiness test decidable: this test states that for any function
(f: Node → option A) (with A, some type), one can compute whether f always returns ⊥
for any parameter. This test is used in the framework to detect termination of the algorithm.

As a means of checking actual usability of the Network type definition, we have defined
a function that can build any finite Network from a description of its topology given by a list
of lists of neighbors.

2.3. Computational Model. In the locally shared memory model with composite atomicity,
nodes communicate with their neighbors using finite sets of locally shared registers, called
variables. A node can read its own variables and those of its neighbors, but can only write
to its own variables.

2.3.1. Distributed Algorithm. Each node operates according to its local program. A
distributed algorithm A is defined as a collection of n programs, each operating on a single
node. The state of a node in A is defined by the values of its local variables and is represented
using an abstract immutable Coq datatype State. Such a datatype is usually implemented
as a record containing the values of the algorithm variables. A node p can access the states
of its neighbors using the corresponding channels: we call this the local configuration of p,
and model it as a function typed (Local_Env := Channel → option State) which returns
the current state of a neighbor, given the name of the corresponding channel (or ⊥ for an
invalid name).

The program of each node p in A consists of a finite set of guarded actions:

〈guard〉 ↪→ 〈statement〉
The guard is a Boolean expression involving variables of p and its neighbors. The statement
updates some variables of p. An action can be executed only if its guard evaluates to true;
in this case, the action is said to be enabled. A node is said to be enabled if at least one of
its actions is enabled. The local program at node p is modeled by a function run of type
(State → list Channel → Local_Env → (Channel → Channel) → option State).

This function accesses the local topology and states around p. It takes as first argument
the current state of p. The two other arguments are Np and ρp. These arguments allow the

1Option type is used for partial functions which, by convention, return (Some _) when defined, and None
otherwise. None is denoted by ⊥ in this paper.
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function to access the local states of p’s neighbors. The returned value is the next state
of node p if p is enabled, ⊥ otherwise. Note that run provides a functional view of the
algorithm: it includes the whole set of possible actions, but returns a single result; this
model is thus restricted to deterministic algorithms.2

2.3.2. Semantics. A configuration g of the system is defined as an instance of the states of all
nodes in the system, i.e., a function typed (Env := Node → State). For a given node p and
a configuration (g: Env), the term (g p) represents the state of p in configuration g. Thanks
to this encoding, we easily obtain the local configuration (type Local_Env) of node p by
composing g and peer as a function (local_env g p) := (fun (c: Channel) => option_map g

(peer p c)), where option_map g (peer p c) returns (g p’) when (peer p c) returns Some p’,
and ⊥ otherwise. Hence, the execution of the algorithm on node p in the current configura-
tion g is obtained by: (run (g p) Np (local_env g p) ρp); it returns either ⊥ if the node
is disabled or (Some s) where (s: State) is the next state of p. We define (enabled_b g p)

as the Boolean value (type bool) true if node p is enabled in configuration g and false

otherwise.
Assume the system is in some configuration g. If there exist some enabled nodes, a

daemon3 selects a non-empty set of them; every chosen node atomically executes its algorithm,
leading to a new configuration g’. The transition from g to g’ is called a step. To model
steps in Coq, we use functions with type (Diff := Node → option State). We simply call
difference a variable of type Diff. A difference contains the updated states of the nodes that
actually execute some action during the step, and maps any other node to ⊥. Steps are
defined as a binary relation 7→ over configurations expressed in Coq by the relation Step:
(Step g’ g) holds for g 7→ g’.4 It requires that there exists a difference d such that

• at least one node actually changes its state,,
• every update in d corresponds to the execution of the algorithm, namely, run
• and the next configuration, g’, is obtained applying the function (diff_eval d g) given

by: ∀(p: Node), (g’ p) = (d p) if (d p) 6= ⊥, and (g’ p) = (g p) otherwise.

An execution of A is a sequence of configurations g0 g1 . . . gi . . . such that gi−1 7→ gi for
all i > 0. Executions may be finite or infinite and are modeled in Coq with the type

CoInductive Exec: Type :=

| e_one: Env → Exec

| e_cons: Env → Exec → Exec

and the predicate

CoInductive is_exec: Exec -> Prop :=

| i_one: ∀(g: Env), terminal g → is_exec (e_one g)

| i_cons: ∀(e: Exec) (g: Env),

is_exec e → Step (Fst e) g → is_exec (e_cons g e)

where the keyword CoInductive generates a greatest fixed point capturing potentially infinite
constructions5. Considering first the constructor i_cons, function (Fst e) returns the first

2Finite non-determinism could be handled by having run output (list State) instead of (option
State).

3The daemon achieves the asynchrony of the system.
4Note the inverse order of the parameters in Step.
5As opposed to this, the keyword Inductive only captures finite constructions.
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configuration of execution e. Thus, a variable (e: Exec) actually represents an execution of
A when (is_exec e) holds, since each pair of consecutive configurations g, g’ in e satisfies
(Step g’ g).

Considering now the constructor i_one, proposition (terminal g) means that g is a
terminal configuration, namely, no action of A is enabled at any node in g. In our framework,
a terminal configuration is any configuration g where run returns ⊥ for every node. Note
that this predicate is decidable thanks to the emptiness test. The predicate is_exec requires
that only executions that end with a terminal configuration are finite; every other execution
is infinite.

As previously stated, each step from a configuration to another is driven by a daemon.
In our case study, we assume that the daemon is distributed and unfair. Distributed means
that while the configuration is not terminal, the daemon should select at least one enabled
node, maybe more. Unfair means that there is no fairness constraint, i.e., the daemon might
never select an enabled node unless it is the only one enabled. Notice that the propositions
Step and is_exec are sufficient to handle the distributed unfair daemon.

2.3.3. Read-Only Variables. We allow a part of a node state to be read-only: this is
modeled with the type ROState and by the function (RO_part: State → ROState) which
typically represents a subset of the variables handled in the State of the node. The projection
RO_part is extended to configurations by the function (ROEnv_part g := (fun (p: Node)

=> RO_part (g p))), which returns a value of type ROEnv.
We add the property RO_stable to express the fact that those variables are actually read-

only, namely no execution of run can change their values. From the assumption RO_stable,
we show that any property defined on the read-only variables of a configuration is indeed
preserved during steps.

The introduction of Read-Only variables has been motivated by the fact that we want to
encompass the diversity of anonymity levels from the distributing computing literature, e.g.,
fully anonymous, semi-anonymous, rooted, fully identified networks, etc. By default, our
Coq model defines fully anonymous network thanks to the distinction between nodes (type
Node) and channels (type Channel). We enriched our model to reflect other assumptions.

For example, consider the fully identified assumption. Identifiers are typically constant
data, stored in the node states. In our model, they would be stored in the read-only part of
the state. Furthermore, identifiers should be constant and unique all along the execution of
the algorithm (see the assumption in the case study). This means they should be unique in
the initial configuration and kept constant during the whole execution.

We define a predicate Assume_RO on ROEnv (in the case of fully identified assumption,
Assume_RO would express uniqueness of identifiers) that will be assumed in each initial
configuration. From RO_stable, this property will remain true all along any execution.
Furthermore, the predicate Assume_RO can express other assumptions on the network such as
connected networks or tree networks (for this latter, see again the case study). As a shortcut,
for any configuration (g: Env), we use notation Assume g := (Assume_RO (ROEnv_part g)).

2.4. Setoids. When using Coq function types to represent configurations and differences,
we need to state pointwise function equality, which equates functions having equal values
(extensional equality). The Coq default equality is inadequate for functions since it asserts
equality of implementations (intensional equality). So, instead we chose to use the setoid
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paradigm: we endow every base type with an equivalence relation. Setoids are commonly
used in Coq for subsets, function sets, and to represent set-theoretic quotient sets (such as
rational numbers or real numbers); in particular we make use of libraries Coq.Setoids.Setoid
and Coq.Lists.SetoidList.

Consequently, every function type is endowed with a partial equivalence relation (i.e.,
symmetric and transitive) which states that, given equivalent inputs, the outputs of two
equivalent functions are equivalent. However, we also need reflexivity to reason about it, i.e.,
functions are equivalent to themselves. In the context of partial equivalence relations, objects
that are equal to themselves are said to be proper elements (in Coq: Proper R x := R x x).
For example, all elements of base types are proper since we use equivalence relations. Proper
functions are also called compatible functions or relation morphisms : they return equivalent
results when executed with equivalent parameters. Through all the framework, we assume
compatible configurations and differences only. We also prove compatibility (properness) for
every function and predicate defined in the sequel. Additionally, we assume that equivalence
relations on base types are decidable.

As an example, let us consider configurations. The equality for type Node is noted
(eqN: relation Node) and assumes

(eqN_equiv: Equivalence eqN; eqN_dec: Decider eqN).

Note that (relation Node) stands for (Node → Node → Prop); (Equivalence eqN) defines
the conjunction of reflexivity, symmetry, and transitivity of the relation eqN; (Decider eqN)

expresses that the relation is decidable by ∀(p p’: Node), {eqN p p’} + {¬ eqN p p’},
where {A} + {B} is the standard Coq notation for computational disjunction between A and
B, i.e., Booleans carrying proofs of A or B.

The decidable equivalence relation on type State, noted eqS is defined similarly. Now,
the equality between configurations, which are functions of type (Env: Node → State), is
defined by eqE := (eqN ==> eqS).This means that, for any two configurations (g1 g2: Env),
(eqE g1 g2) is defined by

∀(p1 p2: Node), eqN p1 p2 → eqS (g1 p1) (g2 p2)

(in this model, (eqN p1 p2) means that p1 and p2 represent the same node in the
network). Note that eqE is not reflexive a priori. We enforce reflexivity assuming compatible
configurations only: any compatible configuration (g: Env) will satisfy

Proper eqE g := ∀ (p1 p2: Node), eqN p1 p2 → eqS (g p1) (g p2)

This means that for any two equivalent nodes p1 and p2, i.e., such that (eqN p1 p2), we expect
that (g p1) and (g p2) produce the same result with respect to eqS: (eqS (g p1) (g p2)).

3. Self-Stabilization and Silence

In this section, we express self-stabilization [24] in the locally shared memory model with
composite atomicity using Coq properties.
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3.1. Self-Stabilization. Consider a distributed algorithm A. Let S be a predicate on
executions (type (Exec → Prop)). A is self-stabilizing w.r.t. specification S if there exists a
predicate P on configurations (type (Env → Prop)) such that:

• P is closed under A, i.e., for each possible step g 7→ g’, (P g) implies (P g’):

closure P := ∀(g g’: Env), Assume g → P g → Step g’ g → P g’

• A converges to P, i.e., every execution contains a configuration which satisfies P:

convergence P := ∀(e: Exec),

Assume (Fst e) → is_exec e →
safe_suffix (fun suf: Exec => P (Fst suf)) e

where (safe_suffix S e) inductively checks that execution e contains a suffix that satisfies
S.
• A meets S from P, i.e., every execution which starts from a configuration where P holds,

satisfies S:

spec_ok S P := ∀(e: Exec),

Assume (Fst e) → is_exec e → P (Fst e) → S e.

The configurations which satisfy the predicate P are called legitimate configurations. The
following predicate characterizes the property of being self-stabilizing for an algorithm:

self_stab S := ∃P, closure P ∧ convergence P ∧ spec_ok S P.

3.2. Silence. An algorithm is silent if the communication between the nodes is fixed from
some point of the execution [26]. This latter definition can be transposed in the locally
shared memory model as follows: A is silent if all its executions are finite.

Inductive finite_exec: Exec → Prop :=

| f_one: ∀(g: Env), finite_exec (e_one g)

| f_cons: ∀(e: Exec) (g: Env),

finite_exec e → finite_exec (e_cons g e).

silence := ∀(e: Exec), Assume (Fst e) → is_exec e → finite_exec e.

By definition, executions of a silent and self-stabilizing algorithm w.r.t some specification
S end in configurations which are usually used as legitimate configurations, i.e., satisfying P.
In this case, S can only allow constrained executions made of a single configuration which is
legitimate; S is then noted SP. To prove that A is both silent and self-stabilizing w.r.t. SP,
we use, as commonly done, a sufficient condition which requires to prove that

• all terminal configurations of A satisfy P:

P_correctness P := ∀(g: Env), Assume g → terminal g → P g

• and all executions of A are finite:

termination := ∀(g: Env), Assume g → Acc Step g.

The latter property is expressed with (Acc Step g) for every configuration g. The inductive
proposition Acc is taken from Library Coq.Init.Wf which provides tools on well-founded
induction. The accessibility predicate (Acc Step g) is translated into

(∀(g’: Env), Step g’ g → Acc Step g’) → Acc Step g
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Namely, the base case of induction holds when no step is possible from current configuration
g and then, inductively, any configuration g’ that eventually reaches such a terminal
configuration satisfies (Acc Step g’).

The sufficient condition, used to prove that an algorithm is both silent and self-stabilizing,
is expressed and proven by:

Lemma silent_self_stab (P: Env → Prop):

P_correctness P ∧ termination → silence ∧ self_stab SP.

4. Tools for Proving Termination

Usual termination proofs are based on some global potential built from local ones. For
example, local potentials can be integers and the global potential can be the sum of them.
In this case, the argument for termination may be, for example, the fact that the global
potential is lower bounded and strictly decreases at each step of the algorithm. Global
potential decrease is due to the modification of local states at some nodes, however studying
aggregators such as sums may hide scenarios, making the proof more complex. Instead, we
build here a global potential as the multiset containing the local potential of each node
and provide a sufficient condition for termination on this multiset. Our method is based
on two criteria that are sufficient to meet the conditions for using the Dershowitz-Manna
well-founded ordering on multisets [22]. Given those criteria, we can show that the multiset
of (local) potentials globally decreases at each step. Note that instead of developing our
own library, we have built specialized termination theorems on top of existing work, namely
the Coq Standard Library for the lexicographic product ordering and the CoLoR library [5]
for multisets and the Dershowitz-Manna ordering.

We also provide tools for algorithms that have (local) priorities on actions, e.g, an action
i is enabled at node p only if every action j, with j < i, is disabled at p. The overall idea is
to ease the proof by considering a given set of actions separately from the others and to
prove the termination of the algorithm assuming that only this set of actions is executed.
Once termination is proved for each set of actions separately, we use tuples of multisets
ordered with the lexicographical order to prove the termination of the whole algorithm.

4.1. Steps. One difficulty we faced, when trying to apply our method straightforwardly,
is that we cannot always define the local potential function at a node without assuming
some properties on its local state, and so on the associated configuration. Thus, we had
to assume the existence of some stable set of configurations in which the local potential
function can be defined. When necessary, we use our technique to prove termination of
a subrelation of the relation Step, provided that the algorithm has been initialized in the
required stable set of configurations. This point is modeled by a predicate on configurations,
(safe: Env → Prop), and a type safeEnv := { g | safe g } which represents the set of
safe configurations into which we restrict the termination proof. Precisely, safeEnv is a
type whose values are ordered pairs containing a term g and a proof of (safe g). Safe
configurations should be stable, i.e., it is assumed that no step can exit from the set using
the proposition:

stable_safe := ∀(g g’: Env), safe g → Step g’ g → safe g’.

Steps of the algorithm for which termination will be proven is defined by
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safeStep sg2 sg1 := Step (getEnv sg2) (getEnv sg1)

with (sg1 sg2: safeEnv) two safe configurations and where (getEnv sg1) (resp. (getEnv

sg2)) accesses the actual configuration, of type Env, of sg1 (resp. sg2). We aim at proving that
this relation is well-founded. Since we know that property safe is stable from stable_safe,
we have the following lemma (proven by induction, starting from the assumption):

Lemma Acc_Algo_Multiset:

well_founded safeStep → ∀(g: Env), safe g → Acc Step g.

Note that (well_founded R := ∀a, Acc R a), like Acc, is taken from the standard Coq
Library Coq.Init.Wf. Hence, to prove termination of the algorithm as defined in Section 3,
we prove that safeStep is well-founded and use the above lemma to guarantee that the
whole algorithm terminates when initiated from any safe configuration.

We also allow restrictions on the kind of steps that will be handled in termination proofs
because, in some cases, it is easier to partition steps and to prove termination of some
kind of steps separately from the others. We introduce the predicate QTrans: safeEnv →
safeEnv → Prop for that purpose. The relation for which termination will be proven is
then defined by

safeQStep sg2 sg1 := safeStep sg2 sg1 ∧ QTrans sg2 sg1

for any two safe configuration (sg1 sg2: safeEnv). Note that proving termination for all
safe steps just consists in applying the method with QTrans defined as a tautology.

4.2. Potential. We assume that within safe configurations, each node can be endowed with
a potential value obtained using function (pot: safeEnv → Node → Mnat). Notice that Mnat

simply represents natural numbers6 encoded using the type from Library CoLoR.MultisetNat

[5]; it is equipped with the usual equivalence relation, noted =P, and the usual well-founded
order on natural numbers, noted <P.

4.3. Multiset Ordering. We recall that a multiset of elements in the setoid P endowed
with its equivalence relation =P , is defined as a set containing finite numbers of occurrences
(w.r.t. =P ) of elements of P . Such a multiset is usually formally defined as a multiplicity
function m : P ⇀ N≥1 which maps any element to its number of occurrences in the multiset.
We focus here on finite multisets, namely, multisets whose multiplicity function has finite
support. We define equality between multisets, noted ≈, as the equality between multiplicity
functions. Now, we assume that P is also ordered using relation <P , compatible with =P .
We use the Dershowitz-Manna order on finite multisets [22] defined as follows: the multiset
N is smaller than the multiset M , noted N ≺M , if and only if there are three multisets X,
Y and Z such that

• N is obtained from M by removing all elements in X and adding all elements in Y .
Elements in Z are present in both M and N , and ’+’ between multisets means adding
multiplicities, namely

M ≈ Z +X ∧N ≈ Z + Y

• at least one element is removed, i.e.,

X 6≈ ∅
6Natural numbers cover many cases and we expect the same results when further extending to other types

of potential.
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• each element that is added (i.e. in Y ) must be smaller (w.r.t. <P ) than some removed
element (i.e. in X), that is:

∀y ∈ Y, ∃x ∈ X, y <P x

It is shown [22] that if <P is a well-founded order, then the corresponding order ≺ is also
well-founded.

In our context, we consider finite multisets over Mnat, (i.e., =P is =P and <P stands for
<P). We have chosen to model them as lists of elements of Mnat and we build the potential
of a configuration as the multiset of the potentials of all nodes, i.e., a multiset of (local)
potentials of a configuration (sg: safeEnv) is defined by

Pot sg := List.map (pot sg) all_nodes

where all_nodes is the list of all nodes in the network (see Section 2) and (List.map f l) is
the standard operation that returns the list of values obtained by applying f to each element
of l. The corresponding Dershowitz-Manna order is defined using the library CoLoR [5].
The library also contains the proof that (well_founded <P) → (well_founded ≺).

Using this latter result and the standard result which proves (well_founded <P), we
easily deduce (well_founded ≺).

4.4. Termination Theorem. Proving the termination of a set of safe steps then consists
in showing that for any such a step, the corresponding global potential decreases w.r.t. the
Dershowitz-Manna order ≺. We call this proof goal safe inclusion:

safe_incl := ∀(sg1 sg2: safeEnv),

safeQStep sg2 sg1 → (Pot sg2) ≺ (Pot sg1).

We establish a sufficient condition made of two criteria on node potentials which validates
safe_incl. The Local Criterion finds for any node p whose potential has increased, a witness
node p’ whose potential has decreased from a value that is even higher than the new potential
of p:

Hypothesis local_crit: ∀(sg1 sg2: safeEnv), safeQStep sg2 sg1 →
∀(p: Node), (pot sg1 p) <P (pot sg2 p) →
∃(p’: Node), (pot sg1 p’) 6=P (pot sg2 p’) ∧

(pot sg2 p) <P (pot sg1 p’).

The Global Criterion exhibits, at any step, a node whose potential has changed:

Hypothesis global_crit: ∀(sg1 sg2: safeEnv), safeQStep sg2 sg1 →
∃(p: Node), (pot sg2 p) 6=P (pot sg1 p).

Assuming both hypotheses (see Section 7 for the instantiation of these criteria), we are
able to prove safe_incl as follows: we define Z as the multiset of local potentials that did
not change, and X (resp. Y ) as the complement of Z in the multiset of local potentials
(Pot sg1) (resp. (Pot sg2)). Global criterion is used to show that X 6= ∅, and local criterion
is used to show that ∀y ∈ Y,∃x ∈ X, y <P x. Since any relation included in a well-founded
order is also well-founded, we get that relation safeQStep is well-founded.
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4.5. Lexicographical Order. We now provide tools to divide a termination proof according
to given subsets of safe steps. Usually, algorithms made of several actions enforce priority
between them. For example, actions can be prioritized so that only one action is enabled at
a given node at one time; namely, the second action can only be enabled at a node if the first
action is disabled, and so on. In such a case, it is often more convenient to consider each
action separately, i.e., show that when nodes execute a particular action only, the algorithm
converges and then generalize by gradually incorporating the other ones. To that goal, we
consider a partition of safe steps; we detail here the case for two subsets, one having priority
over the other.

We consider two relations over safe configurations, noted (Trans1 Trans2: safeEnv →
safeEnv → Prop). This may represent steps induced by two different actions. We assume
for each a local potential (pot1 pot2: safeEnv → Node → Mnat) and as in Section 4.3, we
build the corresponding multisets of local potentials, for any safe configuration sg, by
(Poti sg := List.map (poti sg) all_nodes) with i ∈ {1, 2}. Here we expect that Trans1 has
priority on Trans2. To encode this priority, we require that when a step from Trans2 occurs,
the multisets of potentials measured by the action from Trans1 (Pot1) is left unchanged:

Hdisjoint := ∀(sg sg ’: safeEnv),

Trans2 sg ’ sg → (Pot1 sg) ≈ (Pot1 sg ’).

The idea is to prove that steps from Trans1 and Trans2 taken together, namely the
union of the relations Trans1 and Trans2, converge, provided that steps from Trans1 (resp.
Trans2) terminate when taken separately.

We use the following ordering relation: for any two safe configurations (sg sg’: safeEnv),
sg <lex sg’ is defined by

(Pot1 sg) ≺ (Pot1 sg ’)

∨ (Pot1 sg) ≈ (Pot1 sg) ∧ (Pot2 sg) ≺ (Pot2 sg ’).

<lex is built using the lexicographical order from the Library ColoR, applied on pairs of
multisets of local potentials. We also use results from this library to show that <lex is well
founded, as far as the order on local potentials, <P, is.

Now, the argument is the same as for the Termination Theorem (see 4.4): any order
included in a well-founded order is also well-founded. We aim at showing that (Trans1 ∪
Trans2) is well-founded using the following argument: (Trans1 ∪ Trans2) should be included
into relation <lex. To obtain this, we first use the assumption Hdisjoint that ensures
priorities between Trans1 and Trans2. Second, we require safe inclusion for both relations
Trans1 and Trans2, namely:

safe_incl1 := ∀(sg sg ’: safeEnv),

Trans1 sg ’ sg → (Pot1 sg ’) ≺ (Pot1 sg).

safe_incl2 := ∀(sg sg ’: safeEnv),

Trans2 sg ’ sg → (Pot2 sg ’) ≺ (Pot2 sg).

This ensures that, at any safe step of Trans1 (resp. Trans2), the corresponding global
potential decreases. From this we obtain our goal:

Lemma union_lex_wf2: well_founded (Trans1 ∪ Trans2 ).

Our framework also contains the same results for three relations; the lemma corresponding
to the above one is called union_lex_wf3.
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Proving the two assumptions are satisfied (namely, the priorities between Trans1 and
Trans2, and safe inclusion for both relations Trans1 and Trans2) implies the termination of
the algorithm, while considering both relations Trans1 and Trans2 separately. In particular,
we can use the Termination Theorem given in 4.4 to show the safe inclusion of each relation,
by instantiating the local and global criteria for each relation.

5. Tools for Quantitative Properties

To handle some quantitative properties of an algorithm, we have to set up a library dealing
with cardinality of sets in general and also cardinals of finite sets. The need for a new
library arises from the absence of setoid-compatible formalization of set cardinality. For
example, the Ensembles and Finite_Sets module from the Coq standard library relates
subset (predicates) over a fixed universe type U, and elements are considered up to Leibniz
equality (see definition of Singleton). Instead, we build a theory allowing to compare the
cardinality of arbitrary setoids (i.e. of sets of equivalence classes) built on top of distinct
types instead of subsets over the same type.

The library contains basic properties about set operations such as Cartesian product,
disjoint union, and subset. Proofs are conducted using standard techniques.

5.1. Cardinality on Setoids. To be able to order cardinalities, we define a property, called
Inj, on a pair of setoids (A,=A) and (B,=B) which requires the existence of an injective
and compatible function, inj, from A to B whose domain is A. Namely:

• Inj_compat: inj is compatible (see Section 2.4),
• Inj_left_total: domain of inj is A, i.e., any element in A is related to at least one

element in B,
• Inj_left_unique: inj is injective, i.e., any element in B is related to at most one (w.r.t.

=A) element in A.

Relation Inj is proven reflexive and transitive. We model cardinality ordering using the
three-valued type (Card_Prop := Smaller | Same | Larger) and the following property Card.
Card distinguishes the different ways Inj can apply to pairs of setoids:

• (Card Smaller A B)7 is defined by (Inj A B) which expresses that A has a cardinal
smaller or equal to that of B, w.r.t. equalities =A and =B;
• Similarly, (Card Larger A B) is defined by (Inj B A)

• and (Card Same A B) by (Inj B A ∧ Inj A B).

(Card prop) is reflexive and transitive for any value of prop in Card_prop. It is also antisym-
metric in the sense that (Card Smaller) and (Card Larger) implies (Card Same) for a given
pair of setoids (trivial from the definitions).

7We omit parameters =A and =B for better readability.
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5.2. Finite Cardinalities. We now focus on finite setoids and define tools to express their
cardinalities. We first define, for a given natural number N , the setoid

MN := {i: nat | i < N }.

MN simply models the set of natural numbers {0, 1, ..., N − 1}.8 We first proved that Inj

captures finite cardinality ordering

Lemma Inj_le_iff: ∀(m n: nat), Inj Mm Mn ↔ m ≤ n.

and the corresponding corollaries with Card, e.g.,

∀(m n: nat), Card Smaller Mm Mn ↔ m ≤ n.

(similar corollaries exist for Larger and Same). The following predicate Num_Card is then
used to express that a setoid A has cardinality at least (resp. at most, resp. equal to)
some natural number n with Num_Card prop A n := (Card prop A Mn) where prop is any
Card_Prop. For instance, (Num_Card Smaller A n) means that A contains at most n elements
w.r.t. =A.

5.3. Cartesian Products. We developed results about Cartesian products. First, the
Cartesian product is monotonic w.r.t. cardinality:

Lemma Inj_prod: ∀prop , Card prop A1 A2 → Card prop B1 B2 →
Card prop (A1 ×B1) (A2 ×B2).

where (A1,=A1), (A2,=A2), (B1,=B1), (B2,=B2) are any setoids. Now, we showed that:

∀ n m: nat , Card Same (Mn ×Mm) Mn×m

namely, the Cartesian product of Mn = {0, ..., n − 1} and Mm = {0, ...,m − 1} contains
the same number of elements as Mn×m = {0, ..., n×m − 1}. This latter result is shown
using encoding functions from Mn ×Mm to Mn×m and from Mn×m to Mn ×Mm. This
intermediate result allows one to easily deduce that the cardinality of a Cartesian product is
the product of cardinalities:

∀prop (n m: nat), Num_Card prop A n → Num_Card prop B m →
Num_Card prop (A×B) (n×m)

5.4. Disjoint Unions. We developed similar lemmas about the disjoint union of sets, noted
+. The main results is:

∀prop (n m: nat), Num_Card prop A n → Num_Card prop B m →
Num_Card prop (A+B) (n+m)

8In Coq, the values of MN are ordered pairs containing a natural number i and a proof of i < N and
MN is equipped with the standard equality on type nat, wrapped to be able to compare values of type MN .
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5.5. Subsets. We proved many toolbox results, about subsets, which are expressed using
Card as well as Num_Card. For instance,

• any subset of a set A has Smaller cardinality than that of A,
• a set is one of its subsets with Same cardinality,
• the empty subset contains 0 element,
• a non-empty set contains at least 1 element,
• a singleton contains exactly one element.

5.6. Number of Elements in Lists. To prove the existence of finite cardinality for finite
setoids, we use lists, since, for example, the setoid of nodes of the network is encoded
in our framework as the list all_nodes. We now consider a setoid A, whose equality =A

satisfies the classical excluded middle property (∀a1 a2: A, a1 =A a2 ∨ a1 6=A a2) and
a predicate function (P: A → Prop), which also satisfies the classical excluded middle
property (∀a: A, P a ∨ ¬ P a). Under these conditions, we can prove:

∀(l: list A), ∃(n: nat), Num_Card Same {a: A | P a ∧ a ∈=A
l} n

namely, for any list l, the set of elements in l (w.r.t. =A) which satisfies predicate P has
finite cardinality n. Or, equivalently, assuming the existence of a list l which contains every
element of type A, we get that the number of elements which satisfy P is finite:

∀(l: list A), (∀(a: A), a ∈=A
l) →

∃(n: nat), Num_Card Same {a: A | P a } n.

When predicate function P returns True for all argument values, this provides the number of
elements of list l, up to =A.

6. k-Clustering Algorithm C(k)

We have certified a non trivial part of the silent self-stabilizing algorithm proposed in [19].
Given a non-negative integer k, this algorithm builds a k-clustering of a bidirectional
connected network G = (V,E) containing at most bn−1

k+1c + 1 k-clusters, where n is the
number of nodes. A k-cluster of G is a set C ⊆ V , together with a designated node h ∈ C,
such that each member of C is within distance k of h.9 A k-clustering is then a partition of
V into distinct k-clusters.

The algorithm proposed in [19] is actually a hierarchical collateral composition [20] of
two silent self-stabilizing sub-algorithms: the former builds a rooted spanning tree, the latter
is a k-clustering construction which stabilizes once a rooted spanning tree is available in
the network. In this paper, we focus in the certification of the second part, namely, the
construction, in a self-stabilizing and silent way, of a k-clustering on a rooted spanning
tree containing at most bn−1

k+1c+ 1 clusterheads. The k-clustering is actually organized as a
spanning forest. Each k-cluster is an in-tree of height at most k rooted at its clusterhead.
Moreover, each k-cluster is colored with the identifier of its clusterhead. Hence, each node
p should compute the identifier of its clusterhead c and the channel corresponding to its
parent link, that is, the link from p to its parent in the k-cluster, that is, the unique neighbor
of p on the shortest path from p to c in the k-cluster.

The code of the algorithm, called C(k), is given in Algorithm 1. We have used our
framework to encode C(k), its assumptions and specification, and to certify its correctness.

9The distance ‖p, q‖ between two nodes p and q is the length of a shortest path linking p to q in G.
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Algorithm 1 C(k), code for each process p

Constant Input: Id(p) ∈ Ids; Par(p) ∈ Np ∪ {⊥}

Variable: p.α ∈ Z; p.parC ∈ Np ∪ {⊥}; p.headC ∈ Ids

Predicates:
IsShort(p) ≡ p.α < k
IsTall(p) ≡ p.α ≥ k
kDominator(p) ≡ (p.α = k) ∨ (IsShort(p) ∧ Par(p) =⊥)

Macros:
ShortChildren(p) = {q ∈ Np | Par(q) = ρp(q) ∧ IsShort(q)}
TallChildren(p) = {q ∈ Np | Par(q) = ρp(q) ∧ IsTall(q)}

MaxAShort(p) = max({q.α | q ∈ ShortChildren(p)} ∪ {−1})

MinATall(p) = min({q.α | q ∈ TallChildren(p)} ∪ {2k + 1})

MinCMinATall(p) = if TallChildren(p) = ∅ then ⊥
else min<C

{q ∈ TallChildren(p) | q.α = MinATall(p)}

Alpha(p) = if MaxAShort(p) + MinATall(p) ≤ 2k − 2 then MinATall(p) + 1
else MaxAShort(p) + 1

ParC(p) = if p.α = k then ⊥
else if IsShort(p) then Par(p) else MinCMinATall(p)

HeadC(p) = if kDominator(p) then Id(p) else
else if p.parC /∈ Np then p.headC else p.parC.headC

Actions:
p.α 6= Alpha(p) ↪→ p.α← Alpha(p)
p.α = Alpha(p) ∧ p.parC 6= ParC(p) ↪→ p.parC ← ParC(p)
p.α = Alpha(p) ∧ p.parC = ParC(p) ∧ p.headC 6= HeadC(p) ↪→ p.headC ← HeadC(p)

6.1. Assumptions.

6.1.1. Unique Identifiers. The algorithm C(k) requires that nodes are uniquely identified:
we assume a datatype for identifiers, noted Ids, which is endowed with a decidable equivalence
relation noted eqId. Each node p is equipped with a constant input Id(p) of type Ids that
represents its identifier. We use the predicate uniqueId to represent uniqueness of the
identifiers as follows:

uniqueID Id := ∀(p1 p2: Node), eqId Id(p) Id(p2) -> eqN p1 p2

6.1.2. Spanning Tree. We denote the directed spanning tree and its root by T and r,
respectively: the knowledge of T is locally distributed at each node p using the constant
input Par(p) ∈ Np ∪ {⊥}. When p 6= r, Par(p) ∈ Np and designates its parent in the tree
(precisely, the channel outgoing to its parent). Otherwise, p is the root and Par(p) =⊥.
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We express the assumption about the spanning tree using predicate (span_tree r Par).
This predicate checks that the graph T induced by Par is a subgraph of G which actually
encodes a spanning tree rooted at r by the conjunction of

• r is the unique node such that Par(r) =⊥,
• Par(p), for every non-root node p, is an existing channel outgoing from p,
• T contains no loop.

From the last point, we show that, since the number of nodes is finite, the relation extracted
from Par between nodes and their parents (resp. children) in T is well-founded. We call this
result WF_par (resp. WF_child) and express it using well_founded.

6.1.3. Predicate Assumecl. We instantiate the predicate Assume_RO to express that in any
configuration (g: Env), G is bidirectional, identifiers are unique, and a rooted spanning tree
is available in G (n.b., this latter also implies that G is connected):

Assumecl g := sym_net ∧ uniqueId Id ∧ ∃r, span_tree r Par.

6.2. Specification. The goal of algorithm C(k) is to compute a k-clustering using the
spanning tree T . We consider any positive parameter k, (here, k is taken in Z, as for other
numbers, and assumed to be positive) and we model the k-clustering, i.e., the output of
the algorithm, using the predicate kCluster: for a given terminal configuration (g: Env),
the proposition (kCluster g h p) means that node p is in the k-cluster of node h and
h is a clusterhead; precisely, h is the clusterhead of the k-cluster {p | kCluster g h p}.
Note that using this definition, the fact that h is a clusterhead is given by the predicate
(clusterHead g h := kCluster g h h). The predicate kCluster actually designates a k-
clustering when

• for any clusterhead h, the set { p | kCluster g h p } actually represents a k-cluster,
namely, for every node p in this set, there exists a path in this k-cluster (i.e., the path is
made of nodes q such that kCluster g h q) of length smaller than or equal to k from p to
h, and
• the set of k-clusters is a partition of the set of nodes, or equivalently, every node belongs

to a k-cluster and the intersection of any two distinct k-clusters is empty.

The complete check for k-clustering is performed using the conjunction of the two following
predicates on configuration (g: Env):

kCluster_OK g := ∀(h: Node), clusterHead g h →
∀(p: Node), kCluster g h p →
∃(path: list Node), is_path h path p ∧

(∀(q: Node), q ∈ path → kCluster g h q) ∧
(length path) ≤ k

partition_OK g := ∀(p: Node),

(∃(h: Node), kCluster g h p) ∧
(∀(h h’: Node), kCluster g h p → kCluster g h’ p -> eqN h h’)

where predicate is_path detects if the list of nodes path actually represents a path in the
network between the nodes h and p, and length computes the length of the path.

Actually, the algorithm computes a stronger specification. First, it ensures that there
are no more than bn−1

k+1c+ 1 clusterheads in any terminal configuration (g: Env):
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count_OK g := (n− 1) ≥ (k + 1)(|CH| − 1)

where CH is the set of clusterheads, given by { h: Node | clusterHead g h }. Second, in a
terminal configuration g, each node knows the identifier of its clusterhead and the channel
corresponding to its parent link in the k-cluster:

• there exists a local function (on state of a node), (clusterHeadID: State → Ids), which
provides the identifier of the clusterhead of the node, and
• there exists a local function, (clusterParent: State → Channel), which returns the chan-

nel outgoing to the parent of the node in the k-cluster.

This provides the third part of the specification, for a configuration (g: Env):

kCluster_strong g :=

∀(h p: Node), kCluster g h p ↔ eqId Id(h) (clusterHeadID (g p))∧
∀(h: Node), clusterHead g h →
∀(p: Node), kCluster g h p →
∃(path: list Node), agreed_cluster_path g h path p ∧

(length path) ≤ k

where (agreed_cluster_path g h path p) is true if

• (cluster_path g h path p) holds, meaning that path is a cluster path in the network
linking h to p, i.e., the path described by the values of the clusterParent pointers in g,
and
• every node in path declares the same clusterHeadID in g.

Note that for any configuration (g: Env), (kCluster_strong g) enforces (kCluster_OK g).
Hence, the complete specification is given by the conjunction

Pcl g := (kCluster_strong ∧ partition_OK g ∧ count_OK g)

for a configuration (g: Env).

6.3. Algorithm C(k) in Coq. We translate C(k) into the type Algorithm. First, the state
of each node p contains, in addition to Id(p) and Par(p),

• an integer variable p.α,
• a variable p.parC which is either a channel or ⊥, and
• a variable p.headC of type Ids.

Hence, we have instantiated the State of a node as a record containing fields (Par: option

Channel), (Id: Ids), (α: Z), (headC: Ids) and (parC: option Channel). Par and Id are
declared as read-only variables.

Note that to be able to compute a path from each node to its clusterhead, the algorithm
requires that channels are totally ordered (to be able to compute the minimum value on a
set of channels). Hence we assume a strict total order <C on the type Channel. Furthermore,
we chose to encode every number in the algorithm as integers in Z, as α is, since some of
them may be negative (see MaxAShort) and computations use minus (see Alpha).

Now, every predicate and macro of Algorithm 1 can be directly encoded in Coq: for
a node p and a current configuration g, mainly all of them depend on Np, ρp, (g p), and
(local_env g p); then the translation is quasi-syntactic (see Library KClustering_algo in the
online browsing) and provides a definition of run. The definition of C(k), of type Algorithm,
comes with a proof that run is compatible, as a composition of compatible functions, and
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also with a straightforward proof of RO_stable which asserts that the read-only parts of the
state, Par and Id, are constant during steps, when applying run.

6.4. Overview of C(k). A k-hop dominating set of a graph is a subset Dom of nodes
such that every node of the graph is within distance k from at least one node of Dom.
The k-clustering problem is related to the notion of k-hop dominating set, since the set of
clusterheads of any k-clustering is, by definition, a k-hop dominating set.

Algorithm C(k) builds a k-clustering in two phases. During the first phase, C(k) computes
the set of clusterheads as a k-hop dominating set of the spanning tree T (and so of G), using
the variables α and the first action. The second phase consists of building (using variables
parC and headC, and the two other actions) a spanning forest : Algorithm C(k) computes
each k-cluster as an in-tree of height at most k rooted at one of the already computed
clusterhead. Moreover, each k-cluster will be colored with the identifier of its clusterhead.

6.4.1. Building Dom. Dom is constructed in a bottom-up fashion starting from the leaves
of T , using the values of p.α for all p. Precisely, Dom is defined as the set of nodes p such
that the predicate kDominator(p) holds, namely, when p.α = k, or p.α < k and p = r (i.e., p
is the root). The goal of variable p.α at each node p is twofold. First, it allows to determine
a path of length at most k from p to a particular node q of Dom which acts as a witness for
guaranteeing the k-hop domination of Dom. Consequently, q will be denoted as Witness(p)
in the following. Second, once correctly evaluated, the value p.α is equal to ‖p, x‖, where x
is the furthest node in T (p), the subtree of T rooted at p, that has the same witness as p.

The algorithm divides processes into short and tall according to the value of their
α-variable: if p satisfies IsShort(p), i.e., p.α < k, then p is said to be short; otherwise, p
satisfies IsTall(p) and is said to be tall. In a terminal configuration, the meaning of p.α
depends on whether p is short or tall.

If p is short, we have two cases: p 6= r or p = r. In the former case, Witness(p) ∈ Dom
is outside of T (p), that is, the path from p to Witness(p) goes through the parent link of
p in the tree, and the distance from p to Witness(p) is at most k − p.α. See, for example,
in Configuration (I) of Figure 1, k = 2 and m.α = 0 mean that Witness(m) is at most at
distance k − 0 = 2, now its witness g is at distance 2.

In the latter case, p (= r) may not be k-hop dominated by any process of Dom inside
its subtree and, by definition, there is no process outside its subtree, indeed T (p) = T , see
the root a in Configuration (I) of Figure 1. Thus, p must be placed in Dom.

If p is tall, there is at least one process q at p.α − k hops below p such that q.α = k.
Any such a process q belongs to Dom and k-hop dominates p. Hence, p can select any of
them as witness (in the algorithm, we break ties using the order on channels).

The path from p to Witness(p) goes through a tall child with minimum α-value. See,
for example, in Configuration (II) of Figure 1, k = 2 and a.α = 4 mean that Witness(a),
here c, is 4− k = 2 hops below a. In Configuration (I), remark that there are two possible
witnesses for c (c.α = 4): g and h, both are c.α− k = 2 hops below c.

Note that, if p.α = k, then p.α− k = 0, that is, p = q = Witness(p) and p belongs to
Dom.
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Figure 1: Two examples of 2-clustering computed by C(2). We only draw the spanning tree,
other edges are omitted. The root of each tree is the rightmost node. α-values are
given inside the nodes. Bold circles represent clusterheads. Identifiers are given
next to the nodes. headC-values are given in brackets. Arrows represent parC
pointers. We colored the different k-clusters.

6.4.2. Constructing the k-Clustering. The second phase of C(k) partitions the nodes
into distinct k-clusters, each of which contains one clusterhead. Each k-cluster is actually
built as a k-cluster spanning tree, a tree containing all the nodes of that k-cluster. Each
k-cluster spanning tree is a subgraph of T rooted at the clusterhead, possibly with the
directions of some edges reversed. Furthermore, the height of the k-cluster spanning tree is
at most k.

Each node p of Dom designates itself as clusterhead by setting p.parC and p.headC to
⊥ and Id(p), respectively (see the second and third actions in Algorithm 1).

Other nodes q designate their parent in the k-cluster, q.parC, using second action as
follows: (1) if q is short, then q.parC should be its parent in the tree T ; (2) if q is tall, then
q selects q.parC as its tall child in the tree of minimum α value; as explained before we use
channel order to break ties (see MinCMinATall(q) and min<C which selects the minimum
channel in a set).

Finally, identifiers of clusterheads are propagated in the headC variables top-down in
the k-clusters using the third action (see macro HeadC).

6.4.3. Examples. Two examples of 2-clustering computed by C(2) are given in Figure 1.
In Subfigure 1.(I), the root is a short process, consequently it belongs to Dom. In Subfigure
1.(II), the root is a tall process, consequently it does not belong to Dom.

7. Termination of C(k)

The goal of this section is to build a certified proof of the termination property of C(k).
Namely, we show that C(k) converges, as far as Assumecl is satisfied.

Algorithm C(k) is made of three actions which are locally prioritized at each node (see
the guard of every action). The first action (which computes α) has priority over the second
and last actions. The second action (which computes parC) can only be enabled when the
first action is disabled, but has priority over the last one. This latter action can be enabled
only if the two others are disabled. We use the method given in Section 4.5 to show the
termination of C(k): it consists in proving the termination of the three actions separately
(using results from Section 4.4). Then, we use the lexicographic order result from Section 4.5
to conclude.
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First, we assume sym_net and a root node r. For the definition of safe configura-
tion, we instantiate safe as every configuration in which read-only Par-variables satisfy:
(span_tree r Par). This assumption on the existence of the spanning tree T rooted at r
is mandatory, since, as we will see below, the local potentials we use in proofs are based
on the tree T . Note that it is easy to prove that safe is stable, since it only depends on
read-only variables.

7.1. α_SafeStep. For the first action, we build safe steps, called α_SafeStep, by instan-
tiating the predicate QTrans (see Section 4.1) as follows: for any two safe configurations
(sg sg’: safeEnv), an α_SafeStep occurs between sg and sg’ if (Step sg’ sg) holds and if
the following condition is satisfied:

QTransα sg ’ sg := ∃(p: Node), α_enabled sg p ∧ has_moved sg’ sg p

where α_enabled is exactly the guard of the first action and (has_moved sg’ sg p) means
that p has executed its local program during the step (this is done by checking that the
state of node p in safe configuration sg’ is the same as the result of run on sg and p). We
manage to have Boolean versions of the above predicates; this is made possible due to the
fact that all nodes in the network are stored in the list all_nodes. When (α_enabled sg p),
we say that node p is α-enabled in the safe configuration sg and when (has_moved sg sg’ p)

holds additionally, we say that p has α-moved from sg to sg’.
In an α_SafeStep, we require that at least a node executes its first action; note that this

gives no guarantee on other nodes, which may or may not execute an action. We use then
the method explained in Section 4.4 to prove the safe inclusion of α_SafeStep:

Theorem α_safe_inclusion:

∀(sg1 sg2: safeEnv), α_SafeStep sg2 sg1 → (Potα sg2) ≺ (Potα sg1).

In other words, when an α_SafeStep occurs, the global potential Potα decreases. Potα is
built from α, as the list of local potentials, α_pot, at every node. In the following, we explain
how we compute this α-potential, α_pot, at each node.

7.1.1. α-Potential. We define the depth of a node as one plus the distance from the root r to
the node in the tree T . For a given safe configuration sg and a node p, (depth sg p) returns
1 (natural number, type nat) if p is the root r and, otherwise, (1 + (depth sg q)) where
q the parent of p in the tree T ; the definition relies on structural induction on (WF_par p).
We define the α-potential of a node p in a safe configuration sg, (α_pot sg p), as 0 if p is
not α-enabled in sg and (depth sg p), otherwise.

7.1.2. Local Criterion for α_SafeSteps. Let sg1 and sg2 be two safe configurations where
(α_safeStep sg2 sg1) holds. Consider a node p whose α-potential has increased during
the step, i.e., (α_pot sg1 p) <P (α_pot sg2 p). This means, by definition of α_pot, that
p is disabled in sg1 (its potential is 0) and becomes enabled in sg2 (its potential becomes
(depth sg2 p)> 0).

To show the local criterion, we exhibit a down-path in the tree T from p to some leaf,
which contains a witness node that is α-enabled in sg1 and α-disabled in next configuration
sg2. We prove the result in two steps. First, we exhibit a child of node p, child, which
necessarily executes the first action of its algorithm during the step. This is proven by
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induction on the neighbors of p using the fact that run only depends on the states of the
children of p in the tree T . Next, we prove the following lemma:

Lemma moving_node_has_disabled_desc: ∀(child: Node),

alpha (( getEnv sg1) child) 6= alpha (( getEnv sg2) child) →
∃(desc: Node),

(∃(path: list Node), directed_tree_path child path desc) ∧
α_enabled sg1 desc ∧ ¬ α_enabled sg2 desc

where directed_tree_path checks that path is actually a path from child to desc in the
directed spanning tree T . The lemma states that when the node child α-moves, it is
down-linked in T to a node which was α-enabled and becomes α-disabled, during the step.
Hence, the lemma provides the witness node required to prove the local criterion.

The lemma is proven by induction on (WF_child child), i.e., on the down-paths from
child in T . Consider a node in such a path which is enabled in sg1 and that α-moves during
the step from sg1 to sg2. We have two cases.

• Either it becomes disabled in sg2: this is the base case of the induction, taking desc as
child and path empty.
• Or it is still enabled in sg2: for this case, we prove that any node that executed the first

action of the algorithm in sg1 but is still α-enabled in sg2 has a child in T which has
also α-moved (the proof is based on induction on the children of the node). This result
provides the induction step of the proof.

7.1.3. Global Criterion for α_SafeSteps. The global criterion requires to find a witness
node whose α-potential differs between sg1 and sg2. We show that there exists a node
p with α-potential (depth sg1 p) in sg1 (such a potential is necessarily greater than 0),
and α-potential 0 in sg2. Namely, p is α-enabled in sg1, but α-disabled in sg2. The proof
uses the fact that at least one node, say q, has α-moved during the step (see definition of
QTransα). Then, we use Lemma moving_node_has_disabled_desc again to exhibit a witness
node p (on a given down-path of T from q) which is α-enabled in sg1, but α-disabled in sg2.

7.1.4. Conclusion for α_SafeSteps. Local and global criteria being proven, we directly
obtain Theorem α_safe_inclusion from Section 4.4. For safe steps involving the second
action (predicate parC_SafeStep) and the third action (predicate headC_SafeStep), we use
exactly the same method, see in the next sections.

7.2. parC_SafeStep. For the second action, we build safe steps, called parC_SafeStep, by
instantiating the predicate QTrans as follows: for any two safe configurations sg and sg’,

QTransparC sg ’ sg := ¬QTransα sg ’ sg ∧
∃(p: Node), parC _enabled sg p ∧ has_moved sg’ sg p

where parC_enabled is exactly the guard of the second action. As before, QTransparC is
proven decidable and when (parC_enabled sg p), we say that node p is parC-enabled in the
safe configuration sg. In a parC_SafeStep, we require that no node executes its first action
(nodes can be α-enabled, but do not move) and at least a node executes its second action
(other nodes can execute or not their third action). We then show the theorem
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Theorem parC _safe_inclusion: ∀(sg1 sg2: safeEnv),

parC _SafeStep sg2 sg1 → (PotparC sg2) ≺ (PotparC sg1)

using exactly the same method as for α.
During any parC_SafeStep between safe configurations sg1 and sg2, no node executes

its first action, as expressed in QTransparC . Hence, all the values of α stay unchanged. As a
consequence, for every node p, the macro ParC(p) from Algorithm 1 (which only depends
on the values of α) has the same result when evaluated at both safe configurations sg1 and
sg2. This ensures that

(1) a node which executes its second action during the parC_SafeStep from sg1 to sg2 is no
longer parC-enabled in sg2;

(2) a parC-disabled node in sg1 remains parC-disabled in sg2.

From those observations, we define the parC-potential of a node p in safe configuration
sg, (parC_pot sg p), as 1 if p is parC-enabled in sg and 0, otherwise. Now, criteria from
Section 4.4 are straightforward. Indeed, we have

• the local criterion, since the parC-potential of a node cannot increase (i.e. switch from 0
to 1, see (2) above);
• the global criterion, since, due to QTransparC , there exists a node which executes its second

action: from (1) above, its parC-potential differs between sg1 and sg2 since it switches
from 1 to 0.

7.3. headC_SafeStep. For the third action, we build safe steps, called headC_SafeStep, by
instantiating the predicate QTrans as follows: for any two safe configurations sg and sg’,

QTransheadC sg ’ sg := ¬QTransα sg ’ sg ∧ ¬QTransparC
As before, QTransheadC is proven decidable. We also denote by headC_enabled the guard of
the third action and when (headC_enabled sg p), we say that node p is headC-enabled in
the safe configuration sg. In a headC_SafeStep between safe configurations, we require that
no node executes its first or second action (nodes can be α-enabled or parC-enabled, but do
not move in that case); furthermore, as enforced by the predicate Step, at least one node
executes: therefore it executes its third action. We then show the theorem:

Theorem headC _safe_inclusion: ∀(sg1 sg2: safeEnv),

headC _SafeStep sg2 sg1 → (PotheadC sg2) ≺ (PotheadC sg1)

using exactly the same method as for α.

7.3.1. parC-path. The fact that third actions terminate is due to the fact that headC
values are computed along the paths made of parC pointers. We call those paths parC-paths
and we define them using the relation pcl_rel sg, where sg is a safe configuration: two
nodes p and q are related via (pcl_rel sg) (pcl_rel sg q p) when p is α-disabled and
parC-disabled in sg, and when its parC-pointer points to q in sg. A parC-path between
two nodes P and Q, if exists, is then the list of nodes, from P to Q, built using the transitive
closure of (pcl_rel sg).

We show that the relation (pcl_rel sg) is well-founded, for any safe configuration
sg. First, we observe from the algorithm that when two nodes p and q are related, i.e.
(pcl_rel sg q p), either p is short and q is its parent in T , or p is tall and q is a child
of p in T . Then, we split the proof into two parts. For tall nodes, we prove that for any
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two related nodes p and q, such that (pcl_rel sg q p), we have: q is tall whenever p is.
Hence, for a given node p, we can prove (Acc (pcl_rel sg) p) directly from induction on
(WF_child p). For short nodes, a short node can be linked using (pcl_rel sg) to a short
(like m in Configuration (I) of Figure 1) or a tall node (like i in Configuration (I) of Figure 1).
To prove (Acc (pcl_rel sg) p) for a given node p, we proceed again by induction, following
the parC-path of p, on (WF_par p). But it may occur that the path reaches a tall node, in
which case, we use the previous result for tall nodes to be able to conclude the induction
case.

From the well-foundedness of (pcl_rel sg) for any safe configuration sg, we can induc-
tively define (dist_hd sg p) as the length of the parC-path of p in sg. Since parC-pointers
are constant in any headC_SafeStep, dist_hd has the same value in any two safe configura-
tions sg1 and sg2 as far as they are linked by a headC_SafeStep, i.e., (headC_SafeStep sg2

sg1) holds. From this result, we can show that

(1) If a node p is headC-enabled in sg1, executes, and remains headC-enabled in sg2,
then this means that p has a successor in its parC-path and this successor is also
headC-enabled in sg1 and executes during the step.

(2) As the parC-path is finite, this proves (by a structural induction on (Acc (pcl_rel sg1)

p)) that p is necessarily linked in its parC-path to a node q, which is headC-enabled in
sg1, executes, and becomes headC-disabled in sg2; furthermore we have that

dist_hd sg1 q < dist_hd sg1 p

(3) Therefore, from (1) and (2), a node P, which is headC-enabled in sg1 and executes during
the step, is necessarily linked via its parC-path to a node Q such that Q is headC-enabled
in sg1, headC-disabled in sg2, and

dist_hd sg1 Q ≤ dist_hd sg1 P

This node can be P itself if P becomes headC-disabled in sg2, or a node which is further
along in the parC-path.

7.3.2. headC-Potential. We could have used dist_hd to build the headC-potential but
results from Section 4 assume decreasing potential, whereas this one would have been
increasing. Instead, we prove the existence of a natural number NN such that proposition

HNN := ∀(sg: safeEnv) (p: Node), NN > dist_hd sg p

is true. We use the tools about quantitative properties (see Section 5) to achieve the proof.
We set NN as (n+ 1), where n is the number of nodes in the network, using the list all_nodes

to show the existence of n. We prove HNN using the fact that in a parC-path, each node
occurs at most once; this comes from the well-foundedness of (pcl_rel sg) from which we
can infer that a parC-path contains no loop.

Finally, for a given safe configuration sg and a given node p, we pick its headC-potential
to be (NN - dist_hd sg p) if p is headC-enabled in sg and 0 otherwise.
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7.3.3. Global Criterion for headC_SafeSteps. The global criterion requires to exhibit a
node whose potential has changed from sg1 to sg2: we look for a node which is headC-
enabled in sg1 (potential is > 0) and headC-disabled in sg2 (potential is 0). From Step,
there exists a node p which executes during the step and QTransheadC guarantees that it uses
its third action. We directly use the result (3) above: there exists a node q in the parC-path
of p which is headC-enabled in sg1 and headC-disabled in sg2, hence its headC-potential
changes during the step.

7.3.4. Local Criterion for headC_SafeSteps. To show the local criterion, we consider
a node p whose headC-potential increases during the step. Specifically, a node which is
headC-disabled in sg1 and headC-enabled in sg2. We prove that this situation is possible
only if p has a successor p’ in its parC-path such that p’ headC-executes during the step.
Note that (dist_hd sg1 p) is greater than (dist_hd sg1 p’). We use the result (3) above,
which ensures the existence of a node q such that

• q is headC-enabled in sg1 and headC-disabled in sg2 (hence its headC-potential changes
during the step), and
• (dist_hd sg1 q ≤ dist_hd sg1 p’ = (dist_hd sg1 p) - 1). Hence,
(pot_hd sg2 p = NN - dist_hd sg1 p < pot_hd sg1 q = NN - dist_hd sg1 q).

7.4. Termination. We proved the safe inclusions for the three kinds of safe steps, so we
can apply the lexicographical order method with three dimensions. It requires to show
that assumptions about priorities, as encoded by the lexicographical order, conform to the
algorithm and to the definitions of α-steps, parC-steps, and headC-steps; this is translated
into the assumption Hdisjoint instantiated at two levels, namely, we need to verify that

Hdisjointcl := ∀(sg’ sg: safeEnv),

parC _SafeStep sg’ sg ∨ headC _SafeStep sg’ sg →
(Potα sg ’) ≈ (Potα sg)∧
headC _SafeStep sg’sg → (PotparC sg ’) ≈ (PotparC sg)

(when a parC-step or a headC-step occurs, no α-potential changes and when a headC-step
occurs, no parC-potential changes); the validity of the condition comes directly from the
values of QTransparC and QTransheadC .

From Hdisjointcl, α_safe_inclusion, parC_safe_inclusion and headC_safe_inclusion,
we apply Lemma union_lex_wf3 and obtain that

well_founded (α_SafeStep ∪ parC _SafeStep ∪ headC _SafeStep ).

Finally, we proved the equivalence between the relations SafeStep and (α_SafeStep ∪
parC_SafeStep ∪ headC_SafeStep): this directly comes from the values of the predicates
QTransα, QTransparC and QTransheadC . This ends the proof and concludes that (well_founded
SafeStep). Using Lemma Acc_Algo_Multiset, we obtain the desired property:

Theorem C(k)_termination: ∀(g: Env), Assumecl g → Acc Step g.
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8. Partial Correctness of C(k)

We develop a certified proof of the P_correctness property of C(k). Namely, we show the
partial correctness of C(k), as far as Assumecl is satisfied:

Theorem C(k)_at_terminal: ∀(g: Env), Assumecl g → terminal g → Pcl g.

This goal is divided into three subgoals. First, we prove the partial correctness of the first
actions; this is achieved by proving that once the algorithm has converged, the α-values
allow to define a k-hop dominating set. Second, we prove, that after termination, the strong
k-clustering specification holds (i.e., each node knows the identifier of its clusterhead and
the channel corresponding to its parent link in its k-cluster tree). Third, we show that any
terminal configuration contains at most bn−1

k+1c+ 1 k-clusters.

8.1. Proof for a k-hop Dominating Set.

8.1.1. Values of α are in range {0, ..., 2k}. As a preliminary result, the value of α at a
node p is in range {0, ..., 2k} after p participates in any step and also when the system is in
a terminal configuration. The proof shows that the value returned by macro Alpha(p) is in
range {0, ..., 2k}: this is proven using a case analysis on MaxAShort(p)+MinATall(p) > 2k−2
and the fact that, by definition, −1 ≤ MaxAShort(p) ≤ k−1 and k ≤ MinATall(p) ≤ 2k+1.

8.1.2. Proof for Dom. We prove that the set Dom, made of all the nodes p such that
kDominator(p) holds, is a k-hop dominating set in any terminal configuration, namely we
need to check the existence of a path in G between any node p and any node kdom of Dom,
such that this path is of length at most k. To be usable by the rest of the proof, we show
a bit more. Actually, once the α-values allow to define a k-hop dominating set, they also
exhibit routing paths between each node and one of its witnesses in Dom by choosing one
of the possible path: this choice is made using the ordering on channels and the min<C

operator. Therefore, in this part, we prove that any such possible routing path has length
at most k.

Tree Paths. To achieve this property, the algorithm builds tree paths of particular shape:
those paths use edges of T in both directions. Precisely, these edges are defined using
relation (is_kDom_edge g), in a given configuration g, which depends on α-values: for any
short node s, we select the edge from p to s, where p is the parent of s in T (Par), i.e.,
(is_kDom_edge g p s) holds; while for any tall node t which is not in Dom, we select every
edge from c to t, where c is a child of t in T such that (α (g c) = α (g t) -1), i.e.,
(is_kDom_edge g c t) holds. The relation (is_kDom_edge g) defines a subgraph of G called
the kdom-graph of g. (Remark that all directed edges in graphs of Figure 1 appear in their
associated kdom-graph, yet in opposite sense.)

The rest of the analysis is conducted assuming a terminal configuration (g: Env)

which contains a rooted spanning tree built upon a bidirectional graph, namely such that
(Assumecl g) and (terminal g) hold. We aim at proving the following result:

OK_dom g p :=

(∃(kdom: Node), (kDominator g kdom) ∧
∃(path: list Node), is_kDom_path g path kdom p)

∧
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∀(kdom: Node) (path: list Node),

is_kDom_path g path kdom p → (length path) ≤ k.

Theorem kDom_correctness: ∀(p: Node), OK_dom g p.

where is_kDom_path checks that its parameter path is a path in the kdom-graph of con-
figuration g between kdom and p. The proof of (OK_dom g p) for any node p is split into
two cases, depending on whether p is tall or short. Actually, we prove by straightforward
induction on i that, for any node p and any natural i, such that (α (g p) = k + i) (resp.
(α (g p) = k - i)), the property (OK_dom g p) holds – where the length of path is at most
i.

Proof for Tall Nodes. For case (i = 0), p satisfies kDominator (p) and any path from p

to p in the kdom-graph of g has length 0. For case (i = j + 1), as (α (g p) = k + i) is
positive, we can prove using a case analysis on MaxAShort(p) + MinATall(p) ≤ 2k− 2, that
there exists a child q of p with (α (g q) = k + j) on which we can apply the induction
hypothesis. This exhibits a path in the kdom-graph of g from some k-hop dominator kdom to
q. Since p is the parent of q in T (i.e., q is a child of p), we obtain a path from kdom to p at
g.

Looking at the second part of the result, we have to prove that any path in the kdom-
graph of g has length at most i. Then, either path is empty and its length is 0, or we
can decompose it into a kdom-path path’ followed by some node q and then p, such that
there is a kdom-edge between q and p. Using the definition of kdom_edge, we obtain that
(α (g q) = α (g p) - 1 = k + j): hence we apply again the induction hypothesis to q and
obtain that path’ has length at most j; hence path has length at most (j + 1).

Proof for Short Nodes. The case (i = 0) is already proven by the above result for tall
nodes. We now look at case (i = j + 1). When p is the root of T , then kDominator (p)

holds and any path in the kdom-graph of g whose terminal extremity is p is empty. We now
assume that p is non-root.

For the first part of the property (looking for a witness kdom ∈ Dom and a path from
kdom to p), we pick the parent q of p in T . We can show that (α (g p) ≤ α (g q) + 1)

and that (is_kDom_edge g q p). If q is also short, the induction hypothesis applies directly,
otherwise (q is tall), the above property (OK_dom g q) holds. In both cases, this provides a
witness node kdom in Dom and a path from kdom to q in the kdom-graph of g; we add to path

the kdom-edge from q to p to build a path from kdom to p in kdom-graph.
For the second part of the property, we consider a kdom-path path from some node to p.

Either this path is empty, in which case, the property trivially holds, or we can decompose it
into a sub-path path’ and an edge from some node q to p in kdom-graph. From the definition
of kdom_edge, q is the parent of p in T . If q is short, we apply the induction hypothesis to
obtain that the length of path’ is at most j. Otherwise q is tall and we have two cases:

• If MaxAShort (q) + MinATall (q) > 2 k - 2, then we have

(α (g q) = MaxAShort (q) + 1 ≤ k).

The fact that q is tall implies (α (g q) = k). Hence, the path’ has length 1.
• Otherwise, since q is tall, from the result (OK_dom g q) above, path’ has length at most
(α (g q) - k). Now, since p is a short child of q in T , we have that

(α (g p) ≤ MaxAShort (q)).
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We also have (α (g q) = MinATall (q) + 1). Combining all, we obtain that

(α (g q) - k ≤ k - MaxAShort (q) - 1 ≤ j).

Hence, path’ has a length at most j and path at most (j + 1).

8.2. Proof for k-Clustering. We explain here the proofs of the parts kCluster_strong

and partition_OK of the specification Pcl. We instantiate

• clusterHeadID as headC,
• clusterParent is set to parC and
• (kCluster g h p) is defined by (eqId Id(h) (clusterHeadID (g p))) for any configuration
(g: Env) and nodes h p: Node).

For the rest of the analysis, we fix a configuration (g: Env) such that (Assumecl g) and
(terminal g) hold. As a preliminary remark, we prove that every node in a cluster path
declares the same clusterhead in g:

Lemma same_hd: ∀(b e: Node) (path: list Node),

cluster_path g b path e → eqId (headC (g b)) (headC (g e)).

The proof is an easy induction on the list path using the expression of macro ParC. This
lemma ensures that the predicates (cluster_path g) and (agreed_cluster_path g) are
equivalent (see Section 6.2).

8.2.1. Relation is_cluster_parent. We first study the relation (is_cluster_parent g).
We show that it is included into the kdom-edges of the kdom-graph:

inclusion (is_cluster_parent g) (is_kDom_edge g)

The proof is a (quite long) case analysis based on the fact that g is terminal and on the
macros Alpha and ParC. We also show that this relation is well-founded:

well_founded (is_cluster_parent g)

Actually, we proved it during the termination proof (see the part about headC_SafeSteps in
Section 7.3). Precisely, we showed that (pcl_rel g’) is well-founded for any configuration
g’. Now, since g is terminal, (is_cluster_parent g) is included in (pcl_rel g), and we
obtain the well-foundedness.

8.2.2. kDominator and clusterHead. We manage to prove the equivalence between (kDom-
inator g) and (clusterHead g):

∀(p: Node), kDominator g p ↔ clusterHead g p.

First, we transform this goal into

∀(p: Node), eqoptionA eqC (parC (g p)) ⊥ ↔ clusterHead g p.

since we can prove that (kDominator g p ↔ eqoptionA eqC (parC (g p)) ⊥). Indeed, this
latter result is based on the fact the (parC (g p)) is equal to ParC(p) in the terminal
configuration g; the proof uses a case analysis which treats the case when p is short easily.
For the case when p is a non-root tall node, it requires to prove that MinCMinATall actually
returns a tall child of p which is a quite tricky intermediate result, based on the definition of
MinCMinATall .
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Back to the goal above, the direct part of the equivalence comes directly from the fact
that (parC (g p)) is ⊥, using the expression of ParC and the fact that g is terminal. Now,
we focus on the reverse part of the equivalence and we assume that Id(p) and (headC (g p))

are equal.
As (is_cluster_parent g) is a well-founded and decidable relation, and as there exists

a finite number of nodes in the network, for any node p, we can build the maximal cluster
path called (path: list Node) from p: it reaches some node called (h: Node) which has no
cluster parent pointer; hence path and h satisfy:

cluster_path h path p ∧ ∀(x: Node), ¬cluster_parent x h.

When path is empty, proof is done, since p and h are the same node with no cluster
parent pointer. Otherwise path is not empty: we show that this case is not possible since
it yields a contradiction. Indeed, nodes in a non-empty cluster path are all different (we
prove that path contains no loop since (is_cluster_parent g) is a well-founded relation over
a finite set), hence have all different identifiers (since uniqueId is assumed). This ensures
that Id(h) and Id(p) are different. From Lemma same_hd, we obtain that (headC (g h))

and (headC (g p)) are equal and since (parC (g h)) is ⊥, the expression of ParC ensures
that (headC (g h)) is Id(h). Those three equations yield a contradiction with the fact that
Id(p) and (headC (g p)) are equal, as assumed at the beginning of the proof.

8.2.3. Proof of kCluster_strong. The first line of kCluster_strong (see page 19, for the
definition) is exactly given by the instantiation of kCluster. For the second line, assuming
(kCluster g b e), for any two nodes b and e, we define a function that builds the maximal
cluster path path from e to b and we prove that b is a clusterhead in g: (clusterHead g b).
As (cluster_path g) is included into (kdom_path g), we are able to use the theorem which
asserts that (OK_dom g e) and prove that any cluster path has length at most k.

8.2.4. Proof of partition_OK. (see page 18 for the definition) Let p be a node. As before,
we can build the maximal cluster path, called path from p to its clusterhead h. From Lemma
same_hd, p declares h as its clusterhead and so does h. Hence, (kCluster g h p) holds. Now
to prove uniqueness of clusterheads, we assume (kCluster g h p) and (kCluster g h’ p)

and the goal is to prove that nodes h and h’ are equal. This goal is transformed into
(eqId Id(h) Id(h’)) using the uniqueness assumption uniqueId. As the assumptions on
kCluster both expands into (eqId Id(b) (headC (g n))) and (eqId Id(b’)(headC (g n)))

we are done by transitivity.

8.3. Proof for counting. In this section, we formally prove the property count_OK which
states that (n− 1) ≥ (k + 1)(|CH| − 1) where CH has been defined as the set of clusterheads.
Intuitively, this means that all but one element of CH have been chosen as clusterheads
by at least k + 1 distinct nodes each. Actually, we prove that Dom has this property:
(n − 1) ≥ (k + 1)(|Dom| − 1) and then use the equivalence between clusterHead and
kDominator to conclude.

The proof outline is the following. First, we assume a terminal configuration (g: Env),
(terminal g), such that (Assumecl g) holds. The existence of the natural number n (number
of nodes) is given using the results in Section 5.6 about the number of elements in the
list all_nodes. Similarly, the existence of the natural number |Dom| (number of nodes
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in Dom) is given using the above results applied to list all_nodes and predicate function
(fun p: Node => (kDominator (g p) = true)).

We define as regular head each node h such that α equals k in g

RegHead h := (α (g h) = k)

and the set of regular heads as RegHeads := { h: Node | RegHead h }. Note that by defini-
tion, RegHeads is included in Dom. Again, we prove the existence of the natural number
rh which represents the number of nodes in RegHeads using list all_nodes and predicate
RegHead.

We also define a regular node as a node which declares a regular head as clusterhead.
In practice, regular nodes are tall or have a tall ancestor in T . In case the root is a short
clusterhead, they cannot be in its cluster. We define predicate HasTallAncestor as an
inductive predicate which selects any node which has a tall ancestor in T (i.e. such that
there is a directed path in T from p to the root r that contains a node with α at least
k). The set of regular nodes is defined by: RegNodes := { p: Node | HasTallAncestor p }.
Again, we prove the existence of the natural number rn which is the number of nodes in
RegNodes. Now, we prove the following theorem:

Theorem simple_counting: rn ≥ (k + 1)rh.

Using results from the library on cardinality of sets and lists, this theorem is reduced to

Card Smaller (Mk+1 × RegHeads) RegNodes.

This latter proposition is proven by constructing a relation Rcount from pairs of natural
numbers i ∈ {0, ..., k} and regular heads to regular nodes, such that: for a regular head h, some
i ∈ {0, ..., k} and a regular node pi, (Rcount (i, h) pi) holds if and only if (α (g pi) = i)

and pi designates h as clusterhead (i.e., there is a maximal path from pi to h in the kdom-
graph of g). We show that Rcount is actually an injection of domain (Mk+1 × RegHeads).
Indeed, for any pair (i, h), there is a node pi such that (α (g pi) = i) which designates h

as clusterhead; the proof is carried out by induction on values of i. Intuitively, this implies
that there is a path of length k + 1 in the kdom-graph of g linking p0 to h. We then group
each regular head with the regular nodes that designate it as clusterhead: each contains at
least k + 1 regular nodes, i.e, rn ≥ (k + 1)rh.

Now, we have two cases. If the root is tall, with (α (g r) ≥ k), every node in Dom is
a regular head, i.e. is in RegHeads and every node is regular, in RegNodes. Otherwise, the
root is short and every clusterhead is a regular head except the root and at least one node is
not regular, namely the root. These two cases yield the following lemma:

Lemma split_counting_cases:

|Dom| = rh ∧ n = rn ∨ |Dom| = 1 + rh ∧ n ≥ 1 + rn.

The proof of the lemma first uses the results on cardinalities, in particular disjoint union
between the singleton containing the root and the set of regular nodes (resp. regular heads))
and then the above case analysis. The main theorem that proves count_OK is then just a
case analysis from this lemma.

9. Conclusion

We proposed a general framework to build certified proofs of self-stabilizing algorithms. To
achieve our goals, we developed general tools about potential functions, which are commonly
used in termination proofs of self-stabilizing algorithms. We also proposed a library dealing
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with cardinality of sets. We apply our framework to prove that an existing algorithm is
silent self-stabilizing for its specification and we show a quantitative property on the output
of this case study.

In future work, we expect to certify more complex self-stabilizing algorithms. Such
algorithms are usually designed by composing more basic blocks. In this line of thought,
we envision to certify general theorems related to classic composition techniques such as
collateral or fair compositions.

Finally, we expect to use our experience on quantitative properties to tackle the certifi-
cation of time complexity of stabilizing algorithms, aka. the stabilization time.
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[11] Pierre Castéran, Vincent Filou, and Mohamed Mosbah. Certifying distributed algorithms by embedding
local computation systems in the coq proof assistant. In Symbolic Computation in Software Science
(SCSS’09), 2009.

[12] Meixian Chen and Jean-François Monin. Formal Verification of Netlog Protocols. In Tiziana Margaria,
Zongyan Qiu, and Hongli Yang, editors, Sixth International Symposium on Theoretical Aspects of
Software Engineering, TASE 2012, 4-6 July 2012, Beijing, China, pages 43–50. IEEE, 2012.

[13] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang. A self-stabilizing algorithm for constructing
spanning trees. Inf. Process. Lett., 39(3):147–151, 1991.



A FRAMEWORK FOR CERTIFIED SELF-STABILIZATION 33

[14] Pierre Corbineau, Mathilde Duclos, and Yassine Lakhnech. Certified security proofs of cryptographic
protocols in the computational model: An application to intrusion resilience. In Jean-Pierre Jouannaud
and Zhong Shao, editors, Certified Programs and Proofs - First International Conference, CPP 2011,
Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of Lecture Notes in Computer Science,
pages 378–393. Springer, 2011.

[15] Pierre Courtieu. Proving self-stabilization with a proof assistant. In 16th International Parallel and
Distributed Processing Symposium (IPDPS 2002), 15-19 April 2002, Fort Lauderdale, FL, USA, CD-
ROM/Abstracts Proceedings. IEEE Computer Society, 2002.
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[17] Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Certified universal gathering in R2

for oblivious mobile robots. In Cyril Gavoille and David Ilcinkas, editors, Distributed Computing - 30th
International Symposium, DISC 2016, Paris, France, September 27-29, 2016. Proceedings, volume 9888
of Lecture Notes in Computer Science, pages 187–200. Springer, 2016.

[18] Jean-Michel Couvreur, Nissim Francez, and Mohamed G. Gouda. Asynchronous unison (extended
abstract). In Proceedings of the 12th International Conference on Distributed Computing Systems,
Yokohama, Japan, June 9-12, 1992, pages 486–493. IEEE Computer Society, 1992.
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