
An Environment for Specifying and
Model Checking Mobile Ring Robot

Algorithms

Ha Thi Thu Doan1(B) , Adrián Riesco2 , and Kazuhiro Ogata1

1 Japan Advanced Institute of Science and Technology, Ishikawa, Japan
{doanha,ogata}@jaist.ac.jp

2 Universidad Complutense de Madrid, Madrid, Spain
ariesco@fdi.ucm.es

Abstract. An environment for specifying and model checking mobile
robot algorithms on rings (or mobile ring robot algorithms) is proposed.
We have developed the Maude Ring Specification Enviaude RSE), a
specification environment that explicitly supports ring-shaped networks.
Maude RSE is implemented on top of Maude, a rewriting logic-based
specification language. The underlying key behind the tool is pattern
matching between ring patterns and ring instances, called “ring pattern
matching.” Because rings are not commonly available data structures
in any existing specification language, we encode ring patterns as sets of
sequence patterns and simulate ring pattern matching by pattern match-
ing between sets of sequence patterns and sequence instances, which is
proven correct and transparent to Maude RSE users. The advantages of
Maude RSE are demonstrated by case studies analyzing exploration and
gathering algorithms.

Keywords: Distributed mobile robot system · Ring discrete model ·
Specification environment · Formal verification · Model checking

1 Introduction

The past two decades, theoretical computer science has seen the rapid growth
and development of distributed computing by mobile entities. Recent develop-
ments focus on models and algorithms for autonomous mobile robots that self-
organize and cooperate in order to achieve global goals. Autonomous mobile
robots have been proposed for several important applications, such as rescue
activities in disaster areas and outer space activities. The seminal model pro-
poses a distributed system of k robots that have low capacities: they are identical

This research was partially supported by JSPS KAKENHI Grant Number JP19H04082,
Comunidad de Madrid project BLOQUES-CM (S2018/TCS-4339) co-funded by
EIE Funds of the European Union, and MINECO project TRACES (TIN2015-67522-
C3-3-R).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 111–126, 2019.
https://doi.org/10.1007/978-3-030-34992-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_10&domain=pdf
http://orcid.org/0000-0001-7524-4497
http://orcid.org/0000-0002-9716-4612
https://doi.org/10.1007/978-3-030-34992-9_10


112 H. T. T. Doan et al.

(they are indistinguishable and all execute the same algorithm), oblivious (they
have no memory of their past actions), and disoriented (they share no common
orientation). Moreover, the robots do not communicate by sending or receiving
messages, but have the ability to sense their environment and see the relative
positions of the other robots.

Various models and algorithms [20,25] have been proposed to solve particu-
lar problems for autonomous mobile robots. This paper focuses on ring discrete
models [4,5,10], in which robots perform their activities in a ring-shaped net-
work. What and how problems can be solved by a group of autonomous mobile
robots on ring-shaped networks is an important topic in the area, as shown by
the large number of algorithms that have been proposed: e.g. the papers [4,12–
14,18,27] propose algorithms for ring exploration, robot gathering on rings is
solved in [5,9,11,24,26,30], and some other problems are solved in [10,19]. It
is possible to make virtual rings over arbitrary-shaped network topologies and
then mobile ring robot algorithms can be essentially applied to such topologies.
Therefore, mobile ring robot algorithms are generic and worth investigating.

In the literature, the correctness of such algorithms relies on handmade math-
ematical proofs, which are error-prone. The untrustfulness of handmade mathe-
matical proofs has been pointed out in [1,3,15,16]. Formal, automatic techniques
could help us increase the confidence of the existing algorithms/proofs, as shown
in [1,3,8,15,16]. For discrete models, model-checking has been proven useful to
find errors in the proposed algorithms [3,15,16]. However, ring discrete models
are not well supported by any existing specification language, such as DVE [2],
SPIN [22], and Maude [7]. This is because of the particular symmetries owned
by rings. Consequently, the specifiers, such as Berard et al. in [3] and Doan et
al. in [15,16], need to specify rings by adapting other defined structures, such
as sequences. It, therefore, makes the specification task tedious as well as time-
consuming, while the specifications obtained are complicated and lengthy.

Context. Because rings cannot be directly supported by any existing spec-
ification language, we defined rings as associative sequences that satisfy two
properties: rotative and reversible. We used Maude [7] as specification language
because it allows us to use associative sequences. Now, the Maude Ring Speci-
fication Environment (Maude RSE), which explicitly supports ring-shaped net-
works, has been implemented on top of Maude. One key behind the tool is
pattern matching between ring patterns and ring instances, called “ring pat-
tern matching.” Because of the above-mentioned reason, however, we encode
ring patterns as sets of sequence patterns and simulate ring pattern matching
by standard pattern matching between sets of sequence patterns and sequence
instances, which is proven correct and transparent to Maude RSE users.

Contributions. Maude RSE itself and its theoretical foundations are the main
achievements. Our research illustrates the power of rewriting logic in that Maude
RSE can be implemented by extending Maude, more precisely Full Maude. That
is, we do not need to implement such formal tools from scratch but we can do so
by extending Maude and/or new formal tools on top of Maude. The case studies
conducted in Maude RSE demonstrate that, because Maude RSE supports ring



An Specification Environment for Mobile Ring Robot Algorithms 113

structures, mobile ring robot algorithm specifications in Maude RSE are more
concise and compact than those in Maude, while the time overhead incurred
by handling rings is almost irrelevant. From a theoretical point of view, we
prove that ring pattern matching can be simulated by pattern matching between
sets of sequence patterns and sequence instances. Therefore, Maude RSE will
benefit researchers in both the formal methods community and the distributed
computing community.

Outline. Section 2 overviews mobile robots on ring architectures and the prob-
lems of specifying mobile ring robot algorithms. Section 3 introduces Maude RSE
and outlines the theory of ring-pattern matching. It, then, presents how to spec-
ify mobile ring robot algorithms in Maude RSE. Section 4 evaluates Maude RSE.
Finally, Sect. 5 concludes the paper. The source code of the tool and three case
studies, the detailed descriptions of the ring pattern match theory, and more
information in Sect. 3 are available at [29].

2 Problems

In this paper, we restrict our attention to discrete models, and more specifically
to the ring topology. About timing assumption, we consider the more general
asynchronous model ASYNC. In addition, we take into account multiplicities,
which make much harder to formalize mobile robot algorithms. Multiplicities
appear in robot algorithms when more than one robot is allowed in one node; in
the following, we will call multiplicities to these nodes.

Robots follow a three-phase behavior: Look, Compute, and Move. During
its Look phase a robot takes a snapshot of other robots’ positions. The col-
lected information is used in the Compute phase during which the robot decides
whether to move or stay idle. There may be lag between the Compute phase and
the subsequent Move phase and then some other movements by other robots may
be done in-between. A move that has been decided by a robot in a Compute
phase but has not yet been conducted by the robot in the subsequent Compute
phase is called a pending move. In the Move phase, the robot may move to
one of the two adjacent nodes, as computed in the previous phase. Rings are
anonymous, that is, there are neither node nor edge labeled.

Anonymous rings have rotative and reversible characteristics, which cannot
be directly handled by any existing specification language. Let us illustrate these
problems with a simple example. Assume that we specify the ring (the system
state on a ring) shown in Fig. 1(a), in which robots are disoriented. Such a
system state can be expressed as a sequence q0 q1 . . . qj−1 qj of intervals, where
an interval qi is the number of consecutive empty nodes between two non-empty
nodes, in a view starting from any robot and traversing the ring in one arbitrary
direction. System state representations are called configurations.

The system state as shown in Fig. 1(a) could be expressed as 2 1 0 3 1
in the (clockwise) view starting from the one at the bottom. Because it is a
ring, the state could be also expressed, starting from other robots, as 1 0 3 1
2, 0 3 1 2 1, 3 1 2 1 0, and 1 2 1 0 3. Since robots are disoriented, the state



114 H. T. T. Doan et al.

Fig. 1. (a) A system with two adjacent robots and (b) The system after the movement.

could be expressed as 1 3 0 1 2, 2 1 3 0 1, 1 2 1 3 0, 0 1 2 1 3, and 3 0 1
2 1 by reversing (i.e., considering counterclockwise) these sequences. All these
configurations should be considered the same. Generally, given a sequence q0

q1 . . . qj−1 qj , the state it expresses is equivalent, in a ring, to all sequences
obtained by rotating it — q0 q1 . . . qj−1 qj , q1 . . . qj−1 qj q0, . . ., qj q0, q1 . . .
qj−1 — and by reversing them — qj qj−1 . . . q1 q0, qj−1 . . . q1 q0 qj , . . ., q0 qj
qj−1 . . . q1. Unfortunately, it is impossible to directly specify this in any existing
specification language. Actually, all the expressions above are considered totally
different from any existing specification language point of view, so specifiers
are required to implement their own strategies to handle them. Consequently,
specifiers need to specify rings by adapting other defined structures, such as
sequences. For instance, in [16], Doan et al. use associative operators in Maude.

To illustrate the idea used in [16], let us show how to specify a mobile ring
robot algorithm in Maude. Given a ring on which there are two robots located
at two adjacent nodes, respectively (such two robots are called adjacent robots),
we want to put them together (i.e., create a multiplicity) by moving one of them
to the node at which the other is located, where there is a non-empty node closer
to the node at which the former is located than to the other node. For example,
in Fig. 1(a) (where we define nodes with respect to the bottom node, with an
arrow) we have two adjacent robots on the top, the one on the left (the fifth,
clockwise, from the bottom) is separated from the rest of nodes by one empty
node, while the one on the right is separated by three empty nodes. Hence, we
would move the one on the left to the node at which the other one is located, as
shown Fig. 1(b), where the black node indicates a multiplicity. Assuming we use
-1 to denote multiplicities, we can use a rewrite rule to specify this transition.
The source state would use (i) 0 to indicate that two robots are adjacent, (ii)
variables I1 and I2 to denote the intervals next to the adjacent robots, and (iii)
a variable S to denote the remaining sequences. Assuming I2 is larger than I1,
we will increment the smaller interval (I1) and replace 0 (robots are adjacent)
by -1 (two robots are in the same node):
crl 0 I2 S I1 => -1 I2 S (I1 + 1) if I2 > I1.

In the particular case depicted in Fig. 1(a) the state could be expressed, clockwise
and starting from the fifth node clockwise from the bottom, as 0 3 1 2 1. This



An Specification Environment for Mobile Ring Robot Algorithms 115

configuration matches (the left-hand side of) the rule1 by substituting I2 with 3,
I1 with 1, and S with 1 2. The state is rewritten to −1 3 1 2 2, which expresses
the configuration in Fig. 1(b).

However, the state shown in Fig. 1(a) could be also expressed, clockwise from
the top, as 3 1 2 1 0. In this case, there is no substitution such that the sequence
can match the rule. For this reason we need another rule to handle it:

crl I2 S I1 0 => -1 I2 S (I1 + 1) if I2 > I1.

The configuration 3 1 2 1 0 matches this rule by substituting I2 with 3, I1 with
1, and S with 1 2.

Splitting Problem. The state in Fig. 1(a) could be also expressed, clockwise
from the bottom, as 2 1 0 3 1, but it is impossible to apply any of the rules above
to this configuration. The rest of the sequence is split into two sub-sequences at
both sides of the whole sequence. Thus, it is necessary to split the variable S into
two variables S1 and S2 that denote the remaining sequences at the left side and
the right side, respectively.

crl S2 I1 0 I2 S1 => -1 I2 S1 S2 (I1 + 1) if I2 > I1.

In our theoretical framework we need to formally define and work on splitting
and joining (which puts together two sub-sequences that substitute two sequence
variables obtained from the splitting before) functions that deal with these cases.

Reversing Problem. Let us take a look at the state in Fig. 1(a), which could
be expressed, counter-clockwise from the fifth node (clockwise) from the bottom,
as 1 2 1 3 0. We need the following rule for this case:

crl I1 S I2 0 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

When the configuration matches the rule, what substitutes S is 2 1. We need to
reverse 2 1, the sequence that substitutes S because otherwise what is obtained
by applying the rule to the configuration is −1 3 2 1 2, which is different from −1
3 1 2 2. The function rev reverses a sequence, e.g rev(2 1) is 1 2. The configuration
1 2 1 3 0 matches this rule by substituting I2 with 3, I1 with 1, and S with 2 1.
The state is rewritten to −1 3 1 2 2, the configuration in Fig. 1(b).

Hence, we need to have all the rules by rotating and reversing the left-hand
side of the first rule to handle all possible sequences. We need 10 rules to specify
the above-mentioned transition. Note that we name the rules RL1 to RL10.

crl[RL1] 0 I2 S I1 => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL2] I2 S I1 0 => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL3] S I1 0 I2 => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL4] I1 0 I2 S => -1 I2 S (I1 + 1) if I2 > I1.

crl[RL5] S2 I1 0 I2 S1 => -1 I2 S1 S2 (I1 + 1) if I2 > I1.

1 In the actual specification, we need an operator enclosing the sequence, such as { } to
avoid rewriting sub-sequences. However, to make the explanation as close as possible
to mathematical description, we omit it here.



116 H. T. T. Doan et al.

crl[RL6] I1 S I2 0 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL7] 0 I1 S I2 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL8] I2 0 I1 S => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL9] S I2 0 I1 => -1 I2 rev(S) (I1 + 1) if I2 > I1.

crl[RL10] S1 I2 0 I1 S2 => -1 I2 rev(S1) rev(S2) (I1 + 1) if I2 > I1.

This makes the specification complicated and lengthy and specifiers exhausted.
If a ring is not faithfully specified, the formal verification of a mobile ring robot
algorithm may overlook cases.

3 Maude Ring Specification Environment (Maude RSE)

One possible way to solve these problems is to develop a specification environ-
ment in which rings are explicitly supported. It is reasonable, and saves time
and effort, if the environment is built on top of an existing specification system.
For this reason, Maude Ring Specification Environment (Maude RSE) is imple-
mented on top of Maude, a rewriting logic-based programming and specifica-
tion language, taking advantage of its meta-programming features. This section
outlines a theory of pattern matching on rings (“ring-pattern matching”) that
guarantees that our way of dealing with ring-pattern matching makes sense and
briefly describes how Maude RSE is built, its architecture, and how to define a
ring topology in it.

3.1 Ring Pattern Match Theory

Sequences. Let sequence patterns be in the form ES1 ES2 . . . ESn , where
each ESi is an element, an element variable, or a sequence variable. We suppose
that the juxtaposition operator used as the constructor in sequence patterns is
associative and the empty sequence, denoted ε, is its identity. Sequence instances
are sequence patterns that do not contain variables. Let SP and Seq be the sets
of sequence patterns and sequence instances, respectively. Let Elt be the set of
(concrete) elements, EV be the set of element variables, and SV be the set of
sequence variables.

Definition 1 (Sequence pattern match). Pattern match between sp ∈ SP
& seq ∈ Seq is to find all substitutions σ such that σ(sp) = seq. Let sp =?= seq
be the set of all such substitutions.

Definition 2 (Split sequence patterns). For sp ∈ SP, split(sp) is a
sequence pattern such that each sequence variable S in sp is replaced with
sv(S, 0) sv(S, 1). Then, the inductive definition of split is split(ε) = ε, split(e) =
e for e ∈ Elt, split(E) = E for E ∈ EV, split(S) = sv(S, 0) sv(S, 1) for S ∈ SV
and split(SP1 SP2) = split(SP1) split(SP2) for SP1, SP2 ∈ SP.

Definition 3 (Joining split sequence variables). For sp ∈ SP and seq ∈
Seq, let σ be in (split(sp) =?= seq). join(σ) is the substitution σ′ such that
for each sequence variable S in sp σ′(S) = σ(sv(S, 0)) σ(sv(S, 1)) and for any



An Specification Environment for Mobile Ring Robot Algorithms 117

other variables X σ′(X) = σ(X). The domain of join can be naturally extended
to the set of substitutions such that join(split(sp) =?= seq) is {join(σ) |σ ∈
(split(sp) =?= seq)}.

Rings

Definition 4 (Rings). For sp ∈ SP, [sp] is called a ring pattern and satisfies
(1) the rotative law ([sp] = [rtt(sp)]) and (2) the reversible law ([sp] = [rev(sp)]).
When sp is a sequence seq ∈ Seq, [seq] is called a ring. rtt(sp) rotates sp
rightward; rev(sp) reverses sp.

Definition 5 (Ring pattern match). For sp ∈ SP and seq ∈ Seq, pattern
match between [sp] and [seq] is to find all substitutions σ such that [σ(sp)] =
[seq]. Let [sp] =?= [seq] be the set of all such substitutions.

Definition 6 (Sequences rotated and/or reversed). For sp ∈ SP, [[sp]]
is the set of sequences inductively defined as follows: (1) sp ∈ [[sp]] and (2) if
sp′ ∈ [[sp]], then rtt(sp′) ∈ [[sp]] and rev(sp′) ∈ [[sp]].

The intuitive idea is that [sp] is an implicit notation indicating that sp
behaves as a ring while [[sp]] is a explicit notation that lists all possible combi-
nations after applying rotation and reverse to sp. In this way, given a particular
sequence seq it is possible to use standard pattern matching between the elements
in [[sp]] and seq, so ([[sp]] =?= seq) = {σ | σ = (sp′ =?= seq), for sp′ ∈ [[sp]]}.
The following theorem shows that it is possible to use [[sp]] as an effective imple-
mentation of [sp] (see Ring pattern match theory in [29] for details):

Fig. 2. Architecture of Maude RSE.

Theorem 1. For any sequence pattern sp ∈ SP and any sequence seq ∈ Seq,
join([[split(sp)]] =?= seq) = ([sp] =?= [seq]).



118 H. T. T. Doan et al.

3.2 Extending Maude with Ring Attributes

It has been demonstrated in [16,17,21,28] that Maude allows programmers to
specify distributed algorithms/systems more succinctly than others program-
ming languages. In particular, we extend Full-Maude [7], which is an extension
of Maude written in Maude itself that provides extra features to extend Maude.
The specification environment is built as depicted in Fig. 2. A specification in
Maude RSE is considered as a user specification, which may contain specifica-
tions of a ring topology that would not be supported by the standard Maude
engine. The main player in the system is Transformer that takes a user specifica-
tion and transforms it into an ordinary Maude specification. Technically, a user
specification is represented as a term at the meta-level. Transformer, then, ana-
lyzes and modifies it by adding extra equations/rules that handle rings. Pattern
matching is a key functionality in Maude. Because pattern matching between
ring patterns and ring instances is not supported by Maude and any other exist-
ing specification languages, we need to simulate it. There are two possible ways
to simulate ring pattern matching. For a sequence pattern SP and a sequence
instance SI, (1) we generate all sequence instances that denote the ring instance
denoted by SI and model check each sequence instance with SP, and (2) we gener-
ate all sequence patterns that denote the ring pattern denoted by SP and model
check SI with each ring pattern. We have adopted (2) because Maude automat-
ically matches one sequence instance with many sequence patterns, while (1)
would force us to manually handle a collection of sequence instances. It is non-
trivial, however, to decide whether a matching between a ring pattern and a ring
instance can be simulated by pattern matching between a collection of sequence
patterns and a sequence instance. We have formally proved that the former can
be simulated by the latter, see Sect. 3.1. The main idea is that given a user ring
specification as a ring pattern, Maude RSE generates all corresponding sequence
patterns to deal with the “ring” characteristic. Intuitively, given a ring pattern
[ES1 . . .ESi . . .ESn], Transformer generates as the left-hand side of a rule: n
rotative patterns [ES1 . . .ESi . . .ESn], . . . , [ESi . . .ESn ES1], . . . , [ESn ES1

. . .ESi] and n reversible patterns [ES1 ESn . . .ESi], . . . , [ESi . . .ES1 . . .ESn],

. . . , [ESn . . .ESi . . .ES1]. When ESi (i = 1, 2, . . . , n) is a variable, it is split
and jointed afterwards. We can basically use the right-hand side of the given rule
as the right-hand side for the other 2n− 1 patterns generated as the left-hand
side. We, however, need to reverse sequences that substitute sequence variables
occurring in the right-hand side for the n reversible patterns. For example, in the
problem in Sect. 2, users only need to specify the first rule RL1 while all other
rules are automatically generated by Transformer by 1. Splitting: All sequence
variables are splitted. e.g. variable S is splitted into S1 and S2.

crl 0 I2 S1 S2 I1 => -1 I2 S1 S2 (I1 + 1) if I2 > I1.

2. Rotating and 3. Joining: All elements in the sequence of the left-hand side
are rotated. After that, some pairs of sequence variables that are splitted from
one sequence variable and appeared in the splitted order are joined. We get the
rules RL2 to RL5. 4. Reversing: All sequences on the left-hand sides are reversed



An Specification Environment for Mobile Ring Robot Algorithms 119

(rules RL6 to RL10). As the result, we get all 10 rules. Users do not need to deal
with the “ring” characteristic, which is handled transparently by Maude RSE.

In fact, Transformer needs to handle more complicated user specification
rules/equations, all of them guarateed correct by Theorem 1. Because the result
of the transformation is a standard Maude specification, we can guarantee that
all Maude facilities, such as the LTL model checker, can be directly used.

3.3 Syntax Declaration

We consider two kinds of rings: oriented rings in which the orientation of the
ring (clockwise and anti-clockwise order) is taken into account, and disoriented
rings in which there is no orientation. In Maude, types are called sorts. A sort
denotes the set of elements of the same type. For example, the sort Nat denotes
the set of natural numbers. A sort is a subsort of another sort if and only if the
set denoted by the former is a subset of the one denoted by the latter, and the
latter is called a supersort of the former. Keywords sort and subsort are used
to declare sort and subsort relation, respectively. Elements of a given sort are
built by constructors, with keyword op, together with the keyword ctor, given
the arity and the coarity. Moreover, operators can have equational axioms, such
as associativity (assoc) and identity (id:).

We first consider disoriented rings, implemented by the ring attribute. In
particular, rings are constructed as a sequence of elements with this attribute.
Let us assume Elem and Seq the sorts for elements and sequences, respectively.
The configurations of a system as rings could be defined as:

subsort Elem < Seq.

op emp : -> Seq [ctor].

op __ : Seq Seq -> Seq [ctor assoc id: emp].

op [_] : Seq -> Config [ring ctor].

An operator without any argument is called a constant, such as emp, which
stands for the empty sequence. Underscores are placeholders where arguments
are placed. Similarly, id: emp indicates that operator emp is the identity element
of the juxtaposition (empty syntax) operator __. Seq is a supersort of Elem, which
means that each Elem is treated as the singleton sequence only consisting of this
element. The operator __ is used to construct sequences of elements: for s1
and s2 of sort Seq, s1 s2 has sort Seq. The structure __ is presented just as an
example; it could be replaced by any other structure that depends on the user’s
preferences, such as _,_ and _|_. Likewise, the structure [_] is an optional
preference. A configuration is defined as a ring structure that is specified based
on a sequence of elements. Because a ring is disoriented, the mirror image of a
ring represents the same state as the original state. When we use intervals as
ring elements, we could use Int for Elem, where Int is the sort for integers. The
system shown in Fig. 1(a) is expressed using this syntax as [0 3 1 2 1], [3 1 2 1
0], [1 2 1 0 3], [1 2 1 3 0], and so on.



120 H. T. T. Doan et al.

For oriented rings, Maude RSE provides the r-ring attribute that could be
considered as a sub-class attribute of the ring attribute. The oriented ring and
its mirror image do not necessarily represent the same state.

3.4 Applications

We have specified and model checked three algorithms for exploration with stop,
exploration, and gathering. The two last algorithms have been also specified in
standard Maude. We compare our new specifications with existing ones (see
Sect. 4). Due to page limitation, this section only presents how to formalize and
specify the algorithm for exploration with stop in Maude RSE.

Robots Exploration with Stop on Ring Under ASYNC. The ASYNC
(or asynchronous) model is considered. Each robot can distinguish whether a
node is empty, occupied by one robot, or occupied by more than one robot. The
problem of exploring with stop requires that, regardless of the initial placement
of the robots, each node must be visited by at least one robot and the robots
must be in a configuration in which they all remain idle.

Exploration Algorithm [18]. The algorithm works following a sequence of
three distinct phases: Set-Up, Tower-Creation, (towers are the equivalent notion
to multiplicities in our notation) and Exploration. The Set-Up phase transforms
any initial configuration into one that is in a predetermined set of configurations
(called no-towers-final) with special properties. After that, the Tower-Creation
phase and then the Exploration phase are executed. Finally, all nodes are visited
and no robot will make any further moves.

Formal Specification of Exploration Algorithm. Let us suppose that there
are n nodes denoted u0 u1 . . . un−1 and each node may be occupied by more
than one robot. The multiplicity of robots located at node ui is denoted di: di
= 0, di = 1, and di = 2 indicate that there are no robots, there is exactly one
robot, and there are more than one robot, respectively.

State Expressions. So far the state of a system on a ring has been represented
as a sequence of elements, e.g, for the system in Fig. 1(a), elements are intervals.
For this system, each element is a node of the ring. Remember from Sect. 2
that robots move in two phases: first they decide where to move and then the
movement is performed; when the movement has been decided but not applied
yet it is called pending move. A pending move is represented as a snapshot of
the ring from the node the robot will move; to avoid ambiguities due to the
symmetries of the ring, the same snapshot is stored in the target node.

Once the pending move is completed a new movement can be computed, so
we have at most one pending move at a time (this is true because of the particular
structure of the algorithm given above, that first creates multiplicities and does
not move them afterwards); on the other hand, many target-pending moves can
be stored in each node, because robots from different nodes may want to move



An Specification Environment for Mobile Ring Robot Algorithms 121

Trans 1

(a) (b)

r

r

r

r
Trans 2

(d)(c)

Trans 3

Fig. 3. One possible transitions from the initial configuration: a dashed arrow repre-
sents a pending move and a black node represents a tower.

to the same node. because robots from different nodes may want to move to the
same node. In this way, executing a movement is as simple as finding two nodes,
one with the pending move and another one with the same pending move as a
target. Note that, in this stage, robots just know that they have to move, but
they cannot access other robots’ pending moves.

Hence, we denote a node as a tuple 〈di, pi, psi〉, where di denotes the mul-
tiplicity of the node, pi denotes a pending move, and psi denotes the set of
pending moves that will be done by other robots. pi is either one pending move
or nil meaning that there are no pending moves. Given this definition of node,
a snapshot (i.e., the pending move) for a robot at node ui is the sequence di
di+1 . . . di−1 of the multiplicities taken from that node. psi is either a set of
pending moves or emp, the empty set. The sort Pending denotes pending moves,
PendingSet pending move sets, and Node nodes. A configuration, of sort Config,
is expressed as a ring of nodes with the ring attribute:

subsort Node < Seq.

op <_,_,_> : Nat Pending PendingSet -> Node [ctor].

op emp : -> Seq [ctor].

op __ : Seq Seq -> Seq [ctor assoc id: emp].

op [_] : Seq -> Config [ctor ring].

The structure <_,_,_> is used to construct nodes. For d ∈ Nat, p ∈ Pend-
ing, ps ∈ PendingSet, we have 〈d, p, ps〉 ∈ Node. A configuration is defined as
a ring [_], which takes as argument a sequence of nodes. For example, let
v and v′ be the pending moves 1 0 1 0 1 0 1 0 0 0 and 1 0 1 0 1 0 0 0 1
0 for r and r′, respectively. Note that each snapshot is taken from the node
making the movement in clockwise order, although the anti-clockwise order
would be valid as well. The configuration of the system with two pending
moves as shown in Fig. 3(b) could be expressed from robot r′ clockwise as
[〈1, v′,emp〉〈0, nil, emp〉〈1, nil, emp〉〈0, nil, emp〉 〈1, nil, emp〉〈0, nil, emp〉〈0, nil,
emp〉〈0, nil, emp〉〈1, v, emp〉〈0, nil, (v; v′)〉]. We see that two nodes (standing for
r and r′, respectively) have pending moves in the second component of the tuple
while the target node has both pending moves in the third component.

State Transitions. When either (1) a robot takes the snapshot of the system
and then computes a move, or (2) a robot executes its pending move, the current
configuration of the system changes. Such changes, called (state) transitions, are



122 H. T. T. Doan et al.

specified by rewrite rules. For example, one possible transition path is as shown
in Fig. 3. The following rewrite rule describes the action when a robot performs
its pending move (note that variable P appears twice, once as pending move and
then as part of the set in the target node; it disappears once the rule is applied):

rl [S1 < 1, P, PS > < D, P’, (P; PS’) > S2] =>

[S1 < 0, nil, PS > < D + 1, P’, PS’ > S2].

where S1 and S2 are variables of sort Seq, P and P’ are variables of sort Pending,
PS and PS’ are variables of sort PendingSet, and D is a variable of sort Nat.

The configuration [S1 〈 1, P, PS 〉〈 D, P’, (P; PS’) 〉 S2] represents any
state such that the robot 〈 1, P, PL 〉 has a pending move P and the next
node is 〈 D, P’, (P; PL’) 〉 in which P is in the set of pending moves.
In addition to these two nodes, such a state may have some more nodes
that are expressed as S1 and S2. The term [〈1, v′, emp 〉〈0, nil, emp 〉〈1,
nil, emp〉〈 0, nil, emp 〉〈1, nil, emp〉〈0, nil, emp〉 〈0, nil, emp〉〈0, nil, emp〉〈1, v,
emp〉〈0, nil, (v; v′)〉] expresses the state of Fig. 3(b). The left-hand side of the
above rewrite rule matches this term by using the substitution S1 �→ 〈1, v′,
emp〉〈0, nil, emp〉〈1, nil, emp〉〈0, nil, emp〉〈1, nil, emp〉 〈0, nil, emp〉〈0, nil, emp〉
〈0, nil, emp〉, P �→ v, PS �→ emp, D �→ 0, P ′ �→ nil , PS′ �→ v′ and
S2 �→ emp, and the rewrite rule can be applied to the term, creating the
state [〈1, v′, emp〉〈0, nil, emp〉〈1, nil, emp〉 〈0, nil, emp〉〈1, nil, emp〉 〈0, nil, emp〉
〈0, nil, emp〉〈0, nil, emp〉〈0, nil, emp〉〈1, nil, v′ 〉], which corresponds to the state
in Fig. 3(c). Note that the size of the ring is not fixed.

Model Checking the Algorithm. We use the Maude LTL model checker to
verify that the algorithm enjoys desired properties. The authors in [18] give some
important theorems, such as Theorems 3.1 and 3.2, that must hold to guarantee
the correctness of the algorithm. For example, Theorem 3.1 states a property
that must be satisfied at the end of the Set-Up phase: any initial configuration
is transformed into a no-towers-final configuration. We have formally expressed
these theorems as LTL formulas [23]. For example, Theorem 3.1 then is expressed
as the LTL formula:

theorem3-1 = [] (endOf -> SetUp) /\ <> endOf.

where [] is the always operator and <> is the eventually operator. The proposi-
tion endOf holds if and only if the Set-Up phase has finished and the proposition
SetUp holds if and only if the state does not have any towers and all robots are
located adjacent to each other in one or two groups.

As the result of the model checking, no counterexamples are found for the
LTL formula. This makes us more confident on the correctness of the algorithm.

4 Evaluation

We compare the sizes and performance of specifications in plain Maude [15,16]
and in Maude RSE and report on the overheads (which is almost nothing) intro-
duced by Maude RSE for model checking. We consider two algorithms solving



An Specification Environment for Mobile Ring Robot Algorithms 123

two main problems on ring: the perpetual exploration algorithm, which was
defined in [4] and specified in [15], and the gathering algorithm, designed in [9]
and specified in [16]. Note that Maude RSE successfully reproduces the model
checking experiments reported in [15,16], finding the counterexamples demon-
strating that the algorithms do not enjoy some properties.

4.1 A Perpetual Exploration Algorithm [4]

In [15], the ring is represented as the set of all non-empty nodes. The ring fea-
tures, namely rotation and reversibility, are dealt with by using associative and
commutative sets. However, the commutative attribute makes it impossible to
keep the order in the ring. Specifiers, thus, are forced to use complex constraints
to specify the algorithms because the order of elements might change. For this
reason, several functions are defined to handle these constrains.

By using Maude RSE, we do not need to handle ring characteristics and we
do not need to use commutativity as the attribute of the constructor used to
construct configurations. Our specification gets rid of all these extra functions.
In total, we reduce over 50% of the code.

(2&5) (3&11) (5&8) (5&12) (8&19) (8&39) (9&16) (9&21)

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

0.171 0.270 0.546
0.927

1.999

4.116
4.823

7.130

0.163 0.240
0.723

1.247

2.181

3.929

4.912

6.812

System

Se
co
nd

Time taken by the ordinary Maude
Time taken by Maude RSE

Fig. 4. Maude RSE preserves the performance of the ordinary Maude environment.

4.2 A Gathering Algorithm [9]

In [16], the authors use 44 rules to specify the system and 53 equations to handle
some constraints about configurations. Many of these rules and equations are
defined to handle rings. In Maude RSE, the specification requires 17 rules and
18 equations, that is, we obtain a code reduction of more than 60%.



124 H. T. T. Doan et al.

Performance Analysis. We conducted model checking experiments for the
gathering algorithm to compare the performances. 8 different systems in terms
of the number of robots and the size of the ring, e.g. System 1 with 2 robots and
5 nodes denoted as (2&5), are taken. Experiments were conducted on a 4 GHz
Intel Core i7 processor with 32 GB of RAM. The results are shown in Fig. 4.
Based on these experiments, we can conclude that Maude RSE preserves the
performance of the ordinary Maude environment; no extra time consuming.

5 Conclusion

Because mobile robot systems are a new form of distributed system, the existing
specification methods (and tools) do not support these systems appropriately. In
this case, a new language or an extension of an existing language is needed. This
paper introduces an extension of Maude to mobile ring robot algorithms: Maude
RSE. Maude RSE makes it possible to specify ring structures, which need to
be used to specify mobile ring robot algorithms. As extensions of ring topology,
recent research on rings consider dynamic rings where edges may appear and
disappear unpredictably [6]. Furthermore, more kinds of robots, such as myopic
luminous robots [31] are proposed to work on rings. As future work, we try to
tackle other kinds of robots on rings, such as myopic luminous robots. We then
consider extending Maude RSE in the following directions: (1) to support other
features on ring, such that rings are dynamic, and (2) to support other topologies
by making virtual rings over them.

References

1. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering
without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit,
F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49259-9 2

2. Barnat, J., Brim, L., Češka, M., Ročkai, P.: Divine: parallel distributed model
checker. In: Parallel and Distributed Methods in Verification and High Performance
Computational Systems Biology. IEEE (2010)

3. Bérard, B., Lafourcade, P., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y.,
Tixeuil, S.: Formal verification of mobile robot protocols. Distrib. Comput. 29(6),
459–487 (2016)

4. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring
exploration without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15763-9 29

5. Bonnet, F., Potop-Butucaru, M., Tixeuil, S.: Asynchronous gathering in rings with
4 robots. In: Mitton, N., Loscri, V., Mouradian, A. (eds.) ADHOC-NOW 2016.
LNCS, vol. 9724, pp. 311–324. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40509-4 22

6. Bournat, M., Dubois, S., Petit, F.: Computability of perpetual exploration in highly
dynamic rings. In: IEEE 37th International Conference on Distributed Computing
Systems, pp. 794–804 (2017)

https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-319-49259-9_2
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-642-15763-9_29
https://doi.org/10.1007/978-3-319-40509-4_22
https://doi.org/10.1007/978-3-319-40509-4_22


An Specification Environment for Mobile Ring Robot Algorithms 125

7. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

8. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Certified universal gathering in R
2

for oblivious mobile robots. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS,
vol. 9888, pp. 187–200. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53426-7 14

9. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27, 255–285 (2014)

10. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on
rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4),
1055–1096 (2015)

11. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclu-
sive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48
(2017)

12. Datta, A.K., Lamani, A., Larmore, L.L., Petit, F.: Enabling ring exploration with
myopic oblivious robots. In: IEEE International Parallel and Distributed Process-
ing Symposium Workshop, Hyderabad, pp. 490–499 (2015)

13. Devismes, S.: Optimal exploration of small rings. In: Proceedings of the Third
International Workshop on Reliability, Availability, and Security, pp. 91–96 (2010)

14. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-
synchronous oblivious robots. Theor. Comput. Sci. 498, 10–27 (2013). https://doi.
org/10.1016/j.tcs.2013.05.031

15. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of a mobile robots per-
petual exploration algorithm. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.)
SOFL+MSVL 2016. LNCS, vol. 10189, pp. 201–219. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57708-1 12

16. Doan, H.T.T., Bonnet, F., Ogata, K.: Model checking of robot gathering. In: Pro-
ceedings of The 21th Conference on Principles of Distributed Systems, pp. 12:1–
12:16 (2017)

17. Doan, H.T.T., Bonnet, F., Ogata, K.: Specifying a distributed snapshot algorithm
as a meta-program and model checking it at meta-level. In: Proceedings of The 37th
IEEE International Conference on Distributed Computing Systems, pp. 1586–1596
(2017)

18. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communi-
cating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3),
562–583 (2013)

19. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mobile
agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol.
2976, pp. 599–608. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24698-5 62

20. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool Publishers (2012)

21. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s megastore in
real-time maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra,
and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54624-2 25

22. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston (2004)

23. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, Cambridge (2004)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1007/978-3-662-53426-7_14
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1016/j.tcs.2013.05.031
https://doi.org/10.1007/978-3-319-57708-1_12
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-540-24698-5_62
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-642-54624-2_25


126 H. T. T. Doan et al.

24. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algo-
rithm with local weak multiplicity in rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 9

25. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. Distrib. Comput. 28(2), 147–154 (2015)

26. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1), 27–39 (2008)

27. Lamani, A., Potop-Butucaru, M.G., Tixeuil, S.: Optimal deterministic ring explo-
ration with oblivious asynchronous robots. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 183–196. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13284-1 15

28. Liu, S., Ölveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis of
the walter transactional data store. In: Rusu, V. (ed.) WRLA 2018. LNCS, vol.
11152, pp. 136–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99840-4 8. https://sites.google.com/ site/siliunobi/walter

29. Our Maude source files. https://goo.gl/6AnwHE
30. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile

robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11764-5 17

31. Ooshita, F., Tixeuil, S.: Ring exploration with myopic luminous robots. In: Izumi,
T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 301–316. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 20

https://doi.org/10.1007/978-3-642-13284-1_9
https://doi.org/10.1007/978-3-642-13284-1_15
https://doi.org/10.1007/978-3-319-99840-4_8
https://doi.org/10.1007/978-3-319-99840-4_8
https://sites.google.com/ site/siliunobi/walter
https://goo.gl/6AnwHE
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-319-11764-5_17
https://doi.org/10.1007/978-3-030-03232-6_20

	An Environment for Specifying and Model Checking Mobile Ring Robot Algorithms
	1 Introduction
	2 Problems
	3 Maude Ring Specification Environment (Maude RSE)
	3.1 Ring Pattern Match Theory
	3.2 Extending Maude with Ring Attributes
	3.3 Syntax Declaration
	3.4 Applications

	4 Evaluation
	4.1 A Perpetual Exploration Algorithm ch10DISC2010
	4.2 A Gathering Algorithm ch10CORULCMM

	5 Conclusion
	References




