
Theoretical Computer Science 709 (2018) 80–97
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Randomized k-set agreement
in crash-prone and Byzantine asynchronous systems ✩

Achour Mostéfaoui a, Hamouma Moumen b, Michel Raynal c,d,∗
a LINA, Université de Nantes, 44322 Nantes, France
b University of Batna, Algeria
c Institut Universitaire de France, France
d IRISA, Université de Rennes, 35042 Rennes, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2016
Received in revised form 17 March 2017
Accepted 23 March 2017
Available online 25 March 2017

Keywords:
Asynchronous system
Broadcast abstraction
Byzantine process
Coin
Crash failure
Distributed algorithm
k-Set agreement
Message-passing system
Randomized algorithm
Signature-free algorithm

k-Set agreement is a central problem of fault-tolerant distributed computing. Consider-
ing a set of n processes, where up to t may commit failures, let us assume that each
process proposes a value. The problem consists in defining an algorithm such that each
non-faulty process decides a value, at most k different values are decided, and the decided
values satisfy some context-depending validity condition. Algorithms solving k-set agree-
ment in synchronous message-passing systems have been proposed for different failure
models (mainly process crashes, and process Byzantine failures). Differently, k-set agree-
ment cannot be solved in failure-prone asynchronous message-passing systems when t ≥ k.
To circumvent this impossibility an asynchronous system must be enriched with additional
computational power.
Assuming t ≥ k, this paper presents two distributed algorithms that solve k-set agreement
in asynchronous message-passing systems where up to t processes may commit crash fail-
ures (first algorithm) or more severe Byzantine failures (second algorithm). To circumvent
k-set agreement impossibility, this article considers that the underlying system is enriched
with the computability power provided by randomization. Interestingly, the algorithm that
copes with Byzantine failures is signature-free, and ensures that no value proposed only by
Byzantine processes can be decided by a non-faulty process. Both algorithms share basic
design principles.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Distributed agreement in the presence of process failures. The world is distributed and more and more applications are
now distributed. Moreover, when considering the core of non-trivial distributed applications, it appears that the computing
entities (processes) have to agree in one way or another, for example to take a common decision, execute specific actions,
or validate some commitment. Said another way, agreement problems lie at the core of distributed computing.

The most famous distributed agreement problem is the consensus problem. Let us consider a set of processes, where
some of them may commit failures. Assuming each process proposes a value, the consensus problem is defined by the

✩ Parts of the work presented in this paper appeared in the ACM conferences SPAA 2001 and ICDCN 2016 [24,27].

* Corresponding author.
E-mail address: raynal@irisa.fr (M. Raynal).
http://dx.doi.org/10.1016/j.tcs.2017.03.018
0304-3975/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2017.03.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:raynal@irisa.fr
http://dx.doi.org/10.1016/j.tcs.2017.03.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.03.018&domain=pdf

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 81
following properties: each non-faulty process must decide a value (termination), such that the same value is decided by the
non-faulty processes (agreement), and this value satisfies some validity condition, which depends on the proposed values
and the considered failure model [13,29].

The k-set agreement problem is a natural weakening of consensus [10]. It allows the non-faulty processes to decide
different values, as long as no more than k values are decided (the problem parameter k can be seen as the coordination
degree imposed to processes). Hence, consensus is 1-set agreement. Let us notice that k-set agreement can be easily solved
in crash-prone systems where k (the maximal number of different values that can be decided) is greater than t (the maximal
number of processes that may be faulty). The k-set agreement problem has applications, e.g., to compute a common subset
of wavelengths (each process proposes a wavelength and at most k of them are selected), or to duplicate k state machines
where at most one is required to progress forever [16,35].

Crash and Byzantine failures. A process crash failure occurs when a process stops prematurely. After it crashed, a process
never recovers; moreover it behaves correctly (i.e., according to its code) before crashing. A crash failure can be seen as a
benign failure, as a crashed process did not pollute the computation before crashing (e.g., by disseminating fake values).

The situation is different with Byzantine failures. This failure type has been introduced in the context of synchronous
distributed systems [21,29,33], and then investigated in the context of asynchronous distributed systems [2,22,34]. A process
has a Byzantine behavior when it arbitrarily deviates from its intended behavior. We then say that it “commits a Byzantine
failure” (otherwise we say the process is non-faulty or correct). This bad behavior can be intentional (malicious) or simply
the result of a transient fault that altered the local state of a process, thereby modifying its behavior in an unpredictable
way. Let us notice that, from a failure hierarchy point of view, process crashes (unexpected halting) constitute a strict
subset of Byzantine failures. As asynchronous message-passing systems are more and more pervasive, the assumption “no
process has a bad behavior” is no longer sensible. Hence, agreement in asynchronous Byzantine message-passing systems is
becoming a more and more important issue of fault-tolerance.

An impossibility result and how to cope with it. Let us consider a system made up of n processes, where up to t may be
faulty. Whatever the value of k (with respect to t), k-set agreement can always be solved if the system is synchronous [33].
The situation is different in asynchronous systems where k-set agreement is impossible to solve in the process crash failure
model when k ≤ t [5,19,37]. As Byzantine failures are more severe than crash failures, this impossibility remains true in
asynchronous Byzantine systems.

It follows from this impossibility that, when k ≤ t , either the space of values that can be proposed must be restricted [14,
25], or the underlying asynchronous distributed system must be enriched with additional computational power for k-set
agreement to be solved. Such an additional computational power can be provided with partial synchrony assumptions
(e.g., [11,39] which consider k = 1), minimal synchrony assumptions (e.g., [6] which considers k = 1 and Byzantine failures),
appropriate failure detectors (e.g., [9,26] which consider k = 1 and crash failures, and [15] which considers k = 1 and
Byzantine failures), or randomization (e.g., [3] which considers k = 1 and crash failures, [31] which considers k = 1 and
Byzantine failures, [8] which considers k ≤ t and crash failures in read/write shared memory systems, and [27] which
considers k ≤ t and crash failures in message-passing systems).

Intrusion-tolerant agreement with respect to Byzantine processes. The validity property associated with a distributed
agreement problem relates its outputs to its inputs. As no process creates fake values in a crash-prone system, the k-set
agreement validity property is easy to state, namely, a decided value must be a value proposed by a process. In a system
where processes may commit Byzantine failures, there is no way to direct a Byzantine process to decide some specific value.
Consequently the k-set agreement validity property can only be on the values decided by the correct processes. Moreover,
the notion of a “value proposed by a faulty process” is dubious.

A classical validity property for Byzantine consensus (see, e.g., [22]) states that, if all the non-faulty processes propose
the same value, they must decide it. Hence, as soon as two non-faulty processes propose different values, any value can
be decided by the correct processes, even a value “proposed” by a Byzantine process. (Let us observe that a Byzantine
process can appear as proposing different values to different correct processes.) More generally, and as noticed and deeply
investigated in [30], it follows that the solvability of Byzantine k-set agreement is sensitive to the particular validity property
that is considered.

This paper considers the following validity property (introduced in [28] where it is called intrusion-tolerance): no value
proposed only by Byzantine processes can be decided by a non-faulty process. One way to be able to design a k-set al-
gorithm providing this property, consists in allowing a non-faulty process to decide a default value ⊥, except (to prevent
triviality) when the non-faulty processes propose the same value. (The ⊥ decision at some non-faulty processes can occur
for example in the adversary scenario where the non-faulty processes propose different values, while the Byzantine pro-
cesses propose the same value.) Another way to design a k-set algorithm providing intrusion-tolerance consists in adding
a constraint on the total number of different values that can be proposed by the non-faulty processes. Let m ≥ 2 be this
number. It is shown in [18] that, in an n-process system where up to t processes may commit Byzantine failures, such a
constraint is n − t > mt (i.e., there is a value proposed by at least (t + 1) non-faulty processes).

Content of the paper. This paper is on k-set agreement in n-process asynchronous message-passing systems, where k ≤ t . It
presents two algorithms. The first is a k-set agreement algorithm for asynchronous message-passing systems where up to

82 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
t < n/2 processes may commit crash failures. This algorithm, which is relatively simple, is based on the reliable broadcast
abstraction and randomization (local random coins with several sides). For the reasons explained in Section 3, this algorithm
assumes also t < n − k� n

k+1 �.
The second algorithm (which constitutes the main part of the paper) is a signature-free intrusion-tolerant k-set agree-

ment algorithm for asynchronous message-passing systems where up to t < n/3 processes may commit Byzantine failures.
When focusing on k-set agreement in the context of Byzantine failures, the paper has two main contributions.

• The first is a pair of all-to-all communication abstractions. The first one, called MV-broadcast (where MV stands for
“Multivalued Validated”), allows the non-faulty processes to exchange values in such a way that all the non-faulty
processes eventually obtain the same set of values, and none of these values is from Byzantine processes only. The
second one, called SMV-broadcast (where S stands for “Synchronized”) is built on top the first one, and is such that,
if a non-faulty process obtains a set with a single value, the set obtained by any other non-faulty process contains
this value. The important point is that these communication abstractions allow the processes to exchange values while
eliminating the values sent only by Byzantine processes. They generalize to the “multivalue” case the communication
abstractions introduced in [23], where the set of values that the processes exchange is limited to two values.
Independently from their use in this paper, these all-to-all communication abstractions are interesting on their own,
and could be used to solve other problems.

• The second is the k-set agreement algorithm for asynchronous message-passing systems where processes may commit
Byzantine failures. This algorithm, which is round-based, is built in a very modular way. It relies on the previous
SMV-broadcast abstraction, and on the additional computational power supplied by local multi-sided random coins. As
far as we know, this is the first randomized k-set agreement algorithm for asynchronous Byzantine message-passing
systems. The fact that this algorithm is also signature-free has a strong consequence: the “Byzantine adversary” is not
required to be computationally bounded.
This algorithm assumes t < n/(m + 1), where m is the number of different values that can be proposed. As shown
in [18,28], this is a necessary and sufficient condition when one wants that a correct process always decides a value
proposed by at least one correct process.

Roadmap. The paper is composed of two parts. The first part (Sections 2 and 3) addresses crash failures. Section 2 presents
the crash failure model, the reliable broadcast abstraction, the notion of a local random coin, and a definition of k-set agree-
ment suited to this model. Assuming t < n/2, Section 3 presents a k-set agreement algorithm suited to this asynchronous
model.

The second part (Sections 4, 5, and 6) addresses Byzantine failures. Section 4 presents the Byzantine failure model, the
no-duplicity broadcast abstraction, and a definition of intrusion-tolerant k-set agreement suited to this model. Section 5
introduces two new all-to-all communication abstractions (MV-broadcast and SMV-broadcast), which are at the core of the
Byzantine-tolerant k-set agreement algorithm presented in Section 6. Finally, Section 7 concludes the paper.

Remark on the reading of this paper. The variables with the same meaning in both k-set agreement algorithms (the one
suited to crash failures and the one suited to Byzantine failures) have been given the same names. Nevertheless, to facilitate
the understanding of each algorithm independently from the other, some discussions are “repeated” in the presentation of
each algorithm (e.g., the presentation of the constants W and R).

2. Asynchronous model with crashes failures, and definitions

2.1. Computation model

Asynchronous processes. The system is made up of a finite set � of n > 1 asynchronous sequential processes, namely
� = {p1, . . . , pn}. “Asynchronous” means that each process proceeds at its own pace, which may vary arbitrarily with time,
and remains always unknown to the other processes.

Communication network. The processes communicate by exchanging messages through an asynchronous reliable point-
to-point network. “Asynchronous” means that a message is eventually received by its destination process, i.e., there is no
bound on message transfer delays. “Reliable” means that the network does not loss, duplicate, modify, or create messages.
“Point-to-point” means that there is a bi-directional communication channel between each pair of processes. Hence, when
a process receives a message, it can identify its sender.

A process pi sends a message to a process p j by invoking the primitive operation send tag(m) to p j , where tag is the
type of the message and m its content. To simplify the presentation, it is assumed that a process can send messages to
itself. A process receives a message by executing the primitive “receive()”.

The operation broadcast tag(m) is a macro-operation which stands for “for each j ∈ {1, . . . , n} send tag(m) to p j end
for”. This operation is usually called unreliable broadcast (if the sender crashes while executing the for loop, it is possible
that only an arbitrary subset of correct processes receives the message).

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 83
Failure model. Up to t processes may crash during an execution. As already indicated in the Introduction, before a pro-
cess (possibly) crashes, it executes its code as defined by its local algorithm, and no crashed process recovers. A crash is
consequently a definitive halting.

Given an execution, a process that crashes is said to be faulty in this execution, otherwise it is correct or non-faulty.
Hence, before a process crashes, no one knows if it is correct or faulty.

Random multi-sided local coin. Each process pi is endowed with an operation denoted random(). Each invocation of this
operation takes a non-empty set X as input parameter and returns a value of X with probability 1/|X |. As we will see in
Section 3, equipping each process with such a local random coin provides an additional computational power that allows
k-set agreement to be solved. (For the interested reader, a discussion on local coins vs global coins in Byzantine Agreement
is presented in [20].)

Notation. This computation model is denoted CAMPn,t[∅] (CAMP stands for “Crash-prone Asynchronous Message Pass-
ing”). In the following, this model is both restricted with a constraint on t and enriched with random multi-sided local
coins, which provide the processes with additional computational power. More precisely, CAMPn,t[t < n/α] (where α is
a positive integer) denotes the model CAMPn,t[∅] where the maximal number of faulty processes is smaller than n/α.
CAMPn,t[t < n/α, LRC] denotes the model CAMPn,t[t < n/α] where each process is enriched with a local multi-sided
random coin. Let us notice that, as LRC belongs to the model, it is given for free in CAMPn,t[t < n/α, LRC].
Time complexity. When computing the time complexity, we ignore local computation time, and consider the longest se-
quence of causally related messages m1, m2, . . . , mz (i.e., for any x ∈ [2..z], the reception of mx−1 is a requirement for the
sending of mx). The size of such a longest sequence defines the time complexity.

2.2. Reliable broadcast abstraction

This reliable broadcast communication abstraction (in short R-Broadcast) provides the processes with two operations,
denoted R_broadcast() and R_deliver(). When a process invokes R_broadcast tag(m), we say that it “r-broadcasts” the mes-
sage whose type is tag and value is m. Similarly, when a process returns from the invocation of R_deliver() we say that it
“r-delivers” a message. Reliable broadcast is defined by the following properties [7,17].

• R-Validity. If a process r-delivers tag(m) from a process p j , p j invoked R_broadcast tag(m).
• R-Integrity. A process r-delivers at most once a message tag(m) from a sender pi .
• R-Termination. If a correct process r-broadcasts a message tag(m), or a correct process r-delivers the message tag(m),

then all correct processes r-deliver the message tag(m).

Validity relies the outputs to the inputs (no spurious messages). Assuming no process r-broadcasts several times the same
message (which can be easily implemented by associating a new sequence number with each message r-broadcast by a
process), Integrity states there is no duplication. Finally, Termination states the conditions under which a message must
be r-delivered by all correct processes, namely, either when its sender is correct, or when at least one correct process
r-delivered it.

It is easy to see that, all correct processes r-deliver the same set of messages M , and this set contains all the messages
they r-broadcast. Moreover, a faulty process r-delivers a subset of M , but two faulty processes can r-deliver (before crashing)
two sets of messages M1 and M2 such that none of M1 and M2 contains the other set.

Implementations of R-Broadcast can be easily designed in CAMPn,t[∅]. A very simple (but inefficient) one is the follow-
ing. When, at the implementation level, a process receives for the first time a copy of the message tag(m), it first forwards it
to all the other processes, and only then r-delivers it. According to the underlying topology and the way message identifiers
are built, more efficient implementations can be designed (e.g., [32,36]).

2.3. k-Set agreement

The k-agreement problem was introduced in [10] in the context of the model CAMPn,t[∅]. It consists in implementing
an operation denoted proposek() satisfying the properties stated below. This operation takes an input parameter, and returns
a value. When a process invokes proposek(v), we say that it “proposes value v”. When a process returns from proposek()

with the value w , we say that it “decides w”. It is assumed that at least the correct processes invoke proposek(). The
properties defining k-set agreement are the following.

• C-KS-Validity. It a process decides v , there is a process that proposed v .
• C-KS-Agreement. At most k different values are decided.
• C-KS-Termination. Any correct process decides a value.

As before, Validity relies the outputs to the inputs. Agreement defines a coordination constraint on the processes. Termi-
nation states that at least the processes that do not crash decide.

84 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
operation proposek(vi) is
(1) vali ← [⊥, . . . ,⊥]; ri ← 0; esti ← vi ; R_broadcast val(vi);
(2) while true do ri ← ri + 1; % round ri = r %
// ————- phase 1 of round ri : From up to n values to up to k values plus possibly ⊥ ———-
(3) broadcast phase1(ri , esti);
(4) wait (phase1(ri ,−) received from R = k� n

k+1 � + 1 processes);
(5) if (∃v | W = � n

k+1 � + 1 phase1(ri , v) messages have been received)
(6) then ph2_esti ← v else ph2_esti ← ⊥ end if;
// ————- phase 2 of round ri : Try to decide on one of at most k values —————————
(7) broadcast phase2(ri , ph2_esti);
(8) wait (phase2(ri , ph2_est) received from maj = � n

2 � + 1 processes);
(9) let ph2_reci = { ph2_est such that phase2(ri , ph2_est) has been received };
(10) case ph2_reci = {⊥} then esti ← vali [random([1..n])]
(11) ⊥ /∈ ph2_reci then let v be any value ∈ ph2_reci ; R_broadcast dec(ri , v)

(12) ph2_reci = {⊥, v, . . .} then esti ← any non-⊥ value ∈ ph2_reci

(13) end case
(14) end while.

(15) when val(v) is r-delivered from p j do vali [j] ← v .

(16) when dec(r, v) is r-delivered from p j do return(v).

Fig. 1. Solving k-set agreement in CAMPn,t [t < min(n/2,n − k� n
k+1 �), LRC] (Algorithm 1).

3. Crash model: a randomized k-set agreement algorithm

This section presents an algorithm which solves the k-set agreement problem in the system model CAMPn,t[t <

min(n/2, n − k� n
k+1 �), LRC]. Algorithm 1 is a round-based algorithm, which means that the processes execute a sequence of

asynchronous rounds.1

As we are interested in a randomized algorithm to solve k-set agreement, the Termination property is weakened as
follows [3,31]: any correct process decides with probability 1. In the context of round-based algorithms, this property can
be re-stated as follows, where pi is any correct process:

C-KS-P-Termination: limr→+∞
(
Probability [pi decides by round r]) = 1.

3.1. Description of the algorithm

Each process pi starts Algorithm 1 by invoking proposek(vi), where vi is the value it proposes. It decides a value when
it executes the statement return(v); v is then the value it decides. Moreover, when it executes return(), a process terminates
its participation to the algorithm. ⊥ denotes a default value that no process can propose. It is used during each round to
restrict the set of proposed values to a set of at most k values.

Algorithm 1 is described in Fig. 1. Each process manages a local variable esti , which represents the current estimate of
its decision value. Initially, esti is set to vi (the value proposed by pi). Process pi manages also a local array vali[1..n],
initialized to [⊥, ..., ⊥].

Dissemination of the proposed values. When, it starts, a process pi first r-broadcasts the value it proposes (line 1). When,
it r-delivers the value proposed by p j , pi saves it in vali[j] (line 16). Let us notice that, due to the Validity and Termination
properties of R-broadcast, the arrays val[1..n] of the correct processes eventually (a) contain at least the values proposed by
each correct process, and (b) become equal.

A sequence of asynchronous rounds. The processes execute a sequence of asynchronous rounds to converge to a set of at
most k values. Each round is made up of two communication phases (hence it costs two communication steps). The aim
of the first phase (lines 3–6) is to force each process to adopt either a value from a set of at most k different values, or
the default value ⊥. The aim of the second phase (lines 7–13) is to allow processes to decide non-⊥ values that have been
previously adopted, while ensuring that (if processes decide during distinct rounds) no more than k different values will
eventually be decided (i.e., the Agreement property is not violated).

Let us notice that, differently from the R-broadcast used at lines 1 and 11, the broadcast operation used at lines 3 and 7
is the unreliable macro-operation multi-send defined in Section 2.1.

1 Differently from round-based synchronous algorithms where the progress from a round to the next one is a built-in property provided by the model,
in an asynchronous system it is to the processes to implement the progress of a round to the next one.

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 85
First phase of a round r. The processes first exchange their current estimate values (lines 3–4). Let us note that, as far the
round r is concerned, a message phase1(r, v) can be interpreted as a vote for the value v . Accordingly, a process pi adopts
a value if has received enough votes for it, say W votes. If, among the values it has received, none has enough votes to be
adopted, pi adopts the default value ⊥. The adopted value is kept in ph2_esti (line 6).

The aim is to have at most k different values adopted by the processes at the end of the first phase. In order to attain
this goal, we must have (k + 1)W > n (as there are only n processes, k + 1 values cannot each obtain W votes). This means
that W = �n+1

k+1 � = � n
k+1 � + 1.

Let us now examine how many messages phase1(r, v) a process has to wait for (at line 4) before adopting a value
(line 6) in order to have a chance to adopt a value initially proposed by a process (i.e., a value different from ⊥). Let R
be this number. Considering the case where pi adopts a non-⊥ value, let us examine the worst situation: pi can receive
(W − 1) votes for (k − 1) different values, and only then receive W votes for the value v it adopts. Hence, R = (W − 1)(k −
1) + W = (W − 1)k + 1. Moreover, in order that no process blocks at line 4, we must have R ≤ n − t which is equivalent to
t < n − k� n

k+1 �.
Hence, at the end of the first phase, the set of the local variables ph2_esti contains at most k values, plus possibly ⊥. The

aim of the second phase is to allow each process to decide one of these non-⊥ values in such a way that the Agreement
property be not violated even if processes decide during different rounds.

Second phase of a round r. During the second phase, the processes exchange the values they have previously adopted.
A process pi waits for messages phase2() from a majority of processes (lines 7–8). As shown at line 9, ph2_reci is the set
of values received by pi . Let us notice that if v (�= ⊥) belongs to ph2_reci , then v was the estimate of at least W processes
at the beginning of the current round. There are three cases determined by the content of ph2_reci .

• If ⊥ /∈ ph2_reci , pi can decide any value v of this set (line 11). It then r-broadcasts the message dec(v). If pi does not
crash, this message will be r-delivered at all the non-crashed processes, which (if they do not have yet decided) will
decide v at line 15.

• If ph2_reci contains both ⊥ and non-⊥ values, pi updates its estimate esti to any non-⊥ value of ph2_reci , and proceeds
to the next round.

• If ph2_reci contains only the default value ⊥, pi updates its current estimates esti to a randomly chosen value (line 10),
and then proceeds to the next round. Actually, pi selects randomly a process identity (say x) and sets esti to vali[x].
Let us note that vali[x] is equal to the value proposed by px or ⊥. The randomness of the choices guarantees that
eventually there are rounds during which pi selects non-⊥ entries of its array vali[1..n].

It is important to observe that, as soon as a process returned from the R-broadcast of line 11, all correct processes will
eventually return a value. Said, differently, no deadlock is possible as soon as a process has executed line 11.

Deterministic behavior. Let us point out a nice feature of Algorithm 1. When processes collectively propose at most k values,
or said differently when the cardinal of the set of all proposed values is at most k, the algorithm terminates deterministically
at the first round without executing the random statement line 10. Indeed, in such a situation, there exists at least one value
that satisfies the predicate of line 5 and all the processes that do not crash execute line 11 as no process keeps the default
value ⊥.

3.2. Proof of the algorithm

As announced previously, the proof assumes t < n/2 and t < n − k� n
k+1 �.

Lemma 1. If no process decides during a round r′ ≤ r, all correct processes will start round r + 1.

Proof. The proof is by contradiction. Let r be the first round during which a correct process pi blocks forever. It does it in
a wait() statement at line 4 or 8.

Due to the assumption, all the correct processes start round r, and consequently send a message phase1(r, −). As there
are at least (n − t) correct processes, and n − t ≥ R , it follows that pi receives at least R messages phase1(r, −), and pi
cannot block forever at line 4. Moreover, it follows that each correct process sends a message phase2(r, −) at line 7.

As ∀k > 0 : (n −k� n
k+1 �) ≤ n

2 , and R = k� n
k+1 � + 1, it follows that n − (R − 1) ≤ n

2 , from which R > n
2 follows. Hence, every

correct process pi receives a message phase2(r, −) from a majority of processes. It follows that it cannot block forever at
line 8. �
Lemma 2. Let E ST [r] be the set of the estimate values of the processes that start round r. If ⊥ /∈ E ST [r] and |E ST [r]| ≤ k, any process
that starts round r decides during this round, unless it crashes.

Proof. As by assumption there are no more than k different estimates values (all different from ⊥) at the beginning of r, the
messages phase1(r, −) carry at most k different values. As R = (W − 1)k + 1, it follows that any process pi (that executes

86 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
line 5 during r) selects one of these values (say v) to update ph2_esti at line 6. Said in another way, no local variable
ph2_est is set to ⊥. It follows that ∀i: ⊥ /∈ ph2_reci . Consequently, any process pi can only execute line 11 and decide. �
Lemma 3. Let P H2_E ST [r] be the set including the values of all the ph2_esti local variables at the end of the first phase of r (i.e., just
after line 6). P H2_E ST [r] contains at most k values, plus possibly the default value ⊥.

Proof. Let us assume that P H2_E ST [r] contains (k + 1) non-⊥ values. If a value belongs to this set (hence, is the value of
a local variable ph2_esti), it has been received (by some pi) from at least W processes (see line 5). Moreover, each process
sends only one message phase1() per round, which carries a single value (line 3). It follows that (k + 1)W processes have
sent messages phase1(). As (k + 1)W > n, this is impossible. �
Lemma 4. A decided value is a proposed value.

Proof. The proof follows from the observation that a decided value is an estimate different from ⊥, and it follows from the
code that any estimate variable esti can only contain a proposed value or ⊥. �
Lemma 5. Every correct process eventually decides with probability 1.

Proof. Let us remark that, if a process decides (executes return() at line 16), all correct processes decide. This follows from
the Termination property of the R-broadcast abstraction used to disseminate decided values (lines 11 and 16).

The proof is by contradiction. Let us assume that no process decides. There is a time τ after which:

(H1) There are only correct processes executing the algorithm, and
(H2) the arrays val[1..n] of the correct processes are equal.

This is a direct consequence of the fact that these arrays are filled in with values that are disseminated with the R-broadcast
abstraction. If both pi and p j are correct, then if the value vk is r-delivered by pi , it is also r-delivered by p j . Hence after τ ,
vali[k] = vk implies val j[k] = vk .

Let us first note that, as no process decides, no correct process blocks forever in a round (Lemma 1). Moreover, no
process executes line 11. Hence, at every round r after τ , a process executes line 10 or line 12. We consider three cases.

• Case 1: All the processes that execute r, execute line 12.
So, all the processes set their estimates to a non-⊥ value. Due to Lemma 3, there are no more than k different estimate
values. Hence, all the processes that start the round (r + 1) do it with at most k different estimates, no one being equal
to ⊥. Due to Lemma 2, they decide.

• Case 2: During r at least one process (but not all) executes line 12.
In this case, due to Lemma 3, each process pi that executes line 12 sets its local variable esti to a non-⊥ value taken
from a set (namely, P H2_E ST [r]) that includes at most k non-⊥ values. The other processes execute the line 10. There
is a probability (> 0) such that each of these processes sets its estimate variable to a non-⊥ value ∈ P H2_E ST [r].

• Case 3: During round r no process executes line 12.
In this case, all the processes execute line 10. There is a probability (> 0) that they get no more than k different
estimate values (all different from ⊥).

In Case 1, the termination is obtained. Let us consider Case 2 and Case 3. During any round after τ , there is a probability
p > 0 that there are at most k estimate values, each different from ⊥. Hence, there is a probability P (α) = p + p(1 − p) +
p(1 − p)2 + · · · + p(1 − p)α−1 = 1 − (1 − p)α that, after at most α rounds, the processes have no more than k estimate
values, each different from ⊥. As limα→∞ P (α) = 1, it follows that, with probability 1, all processes will start a round with
no more than k estimate values, each different from ⊥. Then, according to Lemma 2, they will decide. �
Lemma 6. No more than k different values are decided.

Proof. When a process decides at line 16 due to a message dec(r, v), we say that it decides at round r. This is because the
value v was computed at round r by some process.

Let r be the first round during which processes decide. They decide because some processes issued an R-broadcast at
line 11. Due to Lemma 3, the set P H2_E ST [r] contains at most k non-⊥ values. Moreover, it follows from line 11, that a
process that decides can only decide one of those at most k non-⊥ values.

Let us now consider a process p j that proceeds to round (r +1). We claim (proof below) that its estimate est j is updated
to a value of the set P H2_E ST [r] before it proceeds to the round (r + 1). From this claim we conclude that, after round r,
a value /∈ P H2_E ST [r] cannot be the value of a local variable est j . Hence, any future value r-broadcast at line 11 (and
consequently, potentially decided) can be one of the at most k non-⊥ values of P H2_E ST [r].

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 87
Proof of the claim. Let pi be a process that issues R_broadcast dec(ri, v) at line 11 of round r (ri = r). This means that
pi computed v at this line. Hence, ⊥ /∈ ph2_reci . Moreover, the set ph2_reci contains only values coming from the local
variables ph2_est of a majority of processes (line 9). Let p j be a process that progresses to round (r + 1). As p j has also
received estimate values from a majority of processes (line 9), we have ph2_reci ∩ ph2_rec j �= ∅. Hence, ph2_rec j �= {⊥}.
It follows that p j has not executed line 10 before progressing to the round (r + 1). It has necessarily executed line 12.
Consequently it updated est j to one of the at most k different non-⊥ values of P H2_E ST [r]. End of the proof of the
claim. �
Theorem 1. Algorithm 1 solves the k-set agreement problem in CAMPn,t[t < min(n/2, n − k� n

k+1 �), LRC].

Proof. The proof follows from Lemma 4 (Validity), Lemma 5 (P-Termination), and Lemma 6 (Agreement). �
4. Asynchronous model with Byzantine failures, and definitions

4.1. Computation model

From CAMPn,t to Byzantine failures. The computation model is the asynchronous message passing model presented in
Section 2 enriched with local random coins (LRC). It differs only in the nature of process failures.

Failure model. Up to t processes may exhibit a Byzantine behavior [21,29]. A process that exhibits a Byzantine behavior is
called faulty. Otherwise, it is correct or non-faulty. A Byzantine process is a process that behaves arbitrarily: it may crash, fail
to send or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary state transitions, etc. As a
simple example, a Byzantine process, which is assumed to send a message m to all the processes, can send a message m1 to
some processes, a different message m2 to another subset of processes, and no message at all to the other processes. More
generally, a Byzantine process has an unlimited computational power, and Byzantine processes can collude to “pollute” the
computation. Let us notice that, as each pair of processes is connected by a channel, no Byzantine process can impersonate
another process, but Byzantine processes are not prevented from influencing the delivery order of messages sent to correct
processes.

Discarding messages from Byzantine processes. If, according to its algorithm, a process p j is assumed to send a single
message tag() to a process pi , then pi processes only the first message tag(v) it receives from p j . This means that, if p j
is Byzantine and sends several messages tag(v), tag(v ′) where v ′ �= v , etc., all of them except the first one are discarded
by their receivers. (Let us observe that this does not prevent multiple copies of the first message tag() to be received and
processed by their receiver.)

Notation. This computation model is denoted BAMPn,t[∅] (BAMP stands for “Byzantine Asynchronous Message Passing”).
As for CAMPn,t[∅], this basic model is both restricted with a constraint on t and enriched with local coins. It is conse-
quently denoted BAMPn,t[t < n/α, LRC], where α ≥ 1.

4.2. The no-duplicity broadcast abstraction

The following broadcast abstraction will be a basic component used in the all-to-all SMV-broadcast abstraction presented
in Section 5 (which is the communication abstraction on which is built the Byzantine-tolerant k-set algorithm presented in
Section 6).

Definition of the ND-broadcast communication abstraction. This abstraction was introduced by S. Toueg in [39]. It is de-
fined by two operations denoted ND_broadcast() and ND_deliver(), which allow the processes to eliminate one bad behavior
of Byzantine processes. More precisely, a Byzantine process is prevented from sending different messages to different correct
processes, while it is assumed to send the very same message to all of them.

As previously, when a process invokes ND_broadcast tag() we say that it ”ND-broadcasts” a message, and when it
invokes ND_deliver() we say that it ”ND-delivers” a message. Considering an instance of ND-broadcast where the operation
ND_broadcast tag() is invoked by a process pi , this communication abstraction is defined by the following properties.

• ND-Validity. If a non-faulty process ND-delivers a message from pi , then, if it is non-faulty, pi ND-broadcast this mes-
sage.

• ND-No-duplicity. No two non-faulty processes ND-deliver distinct messages from pi .
• ND-Termination. If the sender pi is non-faulty, all the non-faulty processes eventually ND-deliver its message.

Let us observe that, if the sender pi is faulty, it is possible that some non-faulty processes ND-deliver a message from
pi while others do not ND-deliver a message from pi . As already indicated, the no-duplicity property prevents non-faulty
processes from ND-delivering different messages from a faulty sender.

88 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
operation ND_broadcast msg(vi) is
(1) broadcast nd_ init(i, vi).

when nd_init(j, v) is delivered do
(2) if

(
first reception of nd_init(j,−)

)
then broadcast nd_echo(j, v) end if.

when nd_echo(j, v) is delivered do
(3) if

(
nd_echo(j, v) received from (n − t) different processes and msg(j, v) not yet ND_delivered

)

(4) then ND_deliver msg(j, v)

(5) end if.

Fig. 2. Implementing ND-broadcast in BAMPn,t [t < n/3] (Algorithm 2) [39].

An algorithm implementing ND-broadcast. It is shown in [39] that t < n/3 is a necessary requirement to implement
ND-broadcast in a Byzantine asynchronous message-passing system. Algorithm 2 (from [39]) implements ND-broadcast in
BAMPn,tn,t[t < n/3].

When a process pi wants to ND-broadcast a message whose content is vi , it broadcasts the message nd_init(i, vi)

(line 1). When a process receives a message nd_init(j, −) for the first time, it broadcasts a message nd_echo(j, v) where
v is the data content of the nd_init() message (line 2). If the message nd_init(j, v) received is not the first message
nd_init(j, −), p j is Byzantine and the message is discarded. Finally, when pi has received the same message nd_echo(j, v)

from (n − t) different processes, it locally ND-delivers msg(j, v) (lines 3–4).
The algorithm considers an instance of ND-broadcast, i.e., a correct process invokes at most once ND-broadcast. Adding

a sequence number to each message allows any process to ND-broadcast a sequence of messages.

Theorem 2. Algorithm 2 implements ND-broadcast in the system model BAMPn,t[t < n/3].

Proof. (The proof is from [39]. It is given for completeness.) To prove the ND-termination property, let us consider a non-
faulty process pi that ND-broadcasts the message msg(vi). As pi is non-faulty, the message nd_init(i, vi) is received by
all the non-faulty processes, which are at least (n − t), and every non-faulty process broadcasts nd_echo(i, vi) (line 2).
Hence, each non-faulty process receives the message nd_echo(i, vi). from (n − t) different processes. It follows that every
non-faulty process eventually ND-delivers the message msg(i, vi) (lines 3–4).

To prove the ND-no-duplicity property, let us assume by contradiction that two non-faulty processes pi and p j ND-
deliver different messages m1 and m2 from some process pk (i.e., m1 = msg(k, v) and m2 = msg(k, w), with v �= w). It
follows from the predicate of line 3, that pi received echo(k, v) from a set of (n − t) distinct processes, and p j received
echo(k, w) from a set of (n − t) distinct processes. As n > 3t , it follows that the intersection of these two sets contains
a non-faulty process. But, as it is non-faulty, this process sent the same message nd_echo() to pi and p j (line 2). Hence,
m1 = m2, which contradicts the initial assumption.

To prove the ND-validity property, we show that, if Byzantine processes forge and broadcast a message nd_echo(i, w)

such that pi is correct and has never invoked ND_broadcast msg(w), then no correct process can ND-deliver msg(i, w). Let
us observe that at most t processes can broadcast the message nd_echo(i, w). As t < n − t , it follows that the predicate
of line 3 can never be satisfied at a correct process. Hence, if pi is correct, no correct process can ND-deliver from pi a
message that has not been ND-broadcast by pi . �

It is easy to see that this implementation uses two consecutive communication steps and O (n2) underlying messages
(n − 1 in the first communication step, and n(n − 1) in the second one). Moreover, there are two types of protocol messages,
and the size of the control information added to a message is log2 n (sender identity).

4.3. k-Set agreement

Definition. The intrusion-tolerant Byzantine (ITB) k-set agreement was informally presented in the introduction. When con-
sidering round-based randomized k-set agreement algorithms (namely, the system model BAMPn,t[LRC]) these properties
are the following.

• B-KS-Validity. If a correct process decides v , then v was proposed by a correct process.
• B-KS-Agreement. The set of values decided by the correct processes contains at most k values.
• B-KS-P-Termination. limr→+∞

(
Probability [pi decides by round r]) = 1.

Additional constraint. As stated in the Introduction, we assume k ≤ t . Moreover, we have also seen that, in order for
a correct process to decide neither a value proposed only by Byzantine processes, nor a predefined default value, it is
assumed that, whatever the domain of the values that can be proposed by the correct processes, in any execution, at most
m different values are proposed by correct processes, where m depends on n and t , namely, n > t(m + 1). As shown in [18],
this condition is necessary.

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 89
let witness(v) = number of different processes from which mv_val(v) was received.

operation MV_broadcast msg(vi) is
(1) broadcast mv_val(vi); return().

when mv_val(v) is received
(2) if (witness(v) ≥ t + 1) ∧ (mv_val(v) not yet broadcast)
(3) then broadcast mv_val(v) % a process echoes a value only once %
(4) end if;
(5) if (witness(v) ≥ n − t) ∧ (v /∈ mv_validi)
(6) then mv_validi ← mv_validi ∪ {v} % local delivery of a value %
(7) end if.

Fig. 3. Implementing MV-broadcast in BAMPn,t [t < n/(m + 1)] (Algorithm 3).

Hence, assuming the non-triviality conditions k ≤ t , and the fact that, in any execution, at most m different values
are proposed by the correct processes, the system model considered here to solve the ITB k-set agreement problem is
BAMPn,t[t < n/(m + 1), LRC].

5. Two multivalued validated broadcast abstractions

This section presents the all-to-all communication abstractions MV-broadcast and SMV-broadcast. “All-to-all” mean that
it is assumed that all the non-faulty processes invoke the corresponding broadcast operation. As indicated in the introduc-
tion, these abstractions extend to the “multivalue” case the BV-broadcast and SBV-broadcast communication abstractions
introduced in [23], which consider binary values only.

5.1. Multivalued validated all-to-all broadcast

Definition of MV-broadcast. This communication abstraction provides the processes with a single operation denoted
MV_broadcast(). When a process invokes MV_broadcast tag(m), we say that it “MV-broadcasts the message typed tag and
carrying the value m”. The invocation of MV_broadcast tag(m) does not block the invoking process. The aim of MV-broadcast
is to eliminate the values (if any) that have been broadcast only by Byzantine processes.

In each instance of the MV-broadcast abstraction, each correct process pi MV-broadcasts a value and eventually obtains
a set of values. To store these values, MV-broadcast provides each process pi with a read-only local variable denoted
mv_valuesi . This set variable, initialized to ∅, increases asynchronously when new values are received. Each instance of
MV-broadcast is defined by the four following properties.

• MV-Termination. The invocation of MV_broadcast() by a correct process terminates.
• MV-Justification. If pi is a correct process and v ∈ mv_validi , v has been MV-broadcast by a correct process.
• MV-Uniformity. If pi is a correct process and v ∈ mv_validi , eventually v ∈ mv_valid j at every correct process p j .
• MV-Obligation. Eventually the set mv_validi of each correct process pi is not empty.

The following properties are immediate consequences of the previous definition.

• MV-Equality. The sets mv_validi of the correct processes are eventually non-empty and equal.
• MV-Integrity. The set mv_validi of a correct process pi never contains a value MV-broadcast only by Byzantine pro-

cesses.

On the feasibility condition n > (m + 1)t . Let m be the number of different values MV-broadcast by correct processes. It
follows from the previous specification that, even when the (at most) t Byzantine processes propose the same value w ,
which is not proposed by correct processes, w cannot belong to the set mv_validi of a correct process pi . This can be
ensured if and only if there is a value MV-broadcast by at least (t + 1) correct processes. This feasibility condition is
captured by the predicate n − t > mt (see [18] for a proof of this feasibility condition). Hence n > (m + 1)t is a feasibility
condition for MV-broadcast to cope with up to t Byzantine processes. Let us notice that, as m ≥ 2, n > (m + 1)t implies
n > 3t .

An MV-broadcast algorithm. Algorithm 3 describes a simple implementation of MV-broadcast, suited to the system model
BAMPn,t[t < n/(m + 1)]. This algorithm is based on a simple “echo” mechanism. Differently from previous echo-based
algorithms (e.g., [7,38]), the echo is used here with respect to each value that has been received (whatever the number
of processes that broadcast it), and not with respect to each pair composed of a value plus the identity of the process
that broadcast this value. Hence, a value entails at most one echo per process, whatever the number of processes that
MV-broadcast this value.

90 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
When a process pi invokes MV_broadcast msg(vi), it broadcasts mv_val(vi) to all the processes (line 1). Then, when a
process pi receives (from any process) a message mv_val(v), (if not yet done) it forwards this message to all the processes
(line 3) if it has received the same message from at least (t + 1) different processes (line 2). Moreover, if pi has received v
from at least (n − t) ≥ (2t + 1) different processes, the value v is added to mv_validi (lines 5–6). Let us notice that, except
in the case where |mv_validi | = m, no correct process pi can know if its set mv_validi has obtained its final value.

Theorem 3. Algorithm 3 implements MV-broadcast in the system model BAMPn,t[t < n/(m + 1)].

Proof. The proof of the MV-Termination property is trivial. If a correct process invokes MV_broadcast(), it eventually sends
a message to each process, and terminates.

Proof of the MV-Justification property. To show this property, we prove that a value MV-broadcast only by faulty pro-
cesses cannot be added to the set mv_validi of a correct process pi . Hence, let us assume that only faulty processes
MV-broadcast v . It follows that a correct process can receive the message mv_val(v) from at most t different processes.
Consequently the predicate of line 2 cannot be satisfied at a correct process. Moreover, as n − t > t , the predicate of line 5
cannot be satisfied either at a correct process, and the property follows.

Proof of the MV-Uniformity property. If a value v is added to the set mv_validi of a correct process pi (local delivery),
this process received mv_val(v) from at least (n − t) different processes (line 5), i.e., from at least (n − 2t) different correct
processes. As each of these correct processes sent this message to all the processes, it follows that the predicate of line 2
is eventually satisfied at each correct process, which consequently broadcasts mv_val(v) to all. As there are at least (n − t)
correct processes, the predicate of line 5 is then eventually satisfied at each correct process, and the MV-Uniformity property
follows.

Proof of the MV-Obligation property. It follows from the feasibility condition n > (m + 1)t , that there is a value v
MV-broadcast by at least (t + 1) correct processes. It then follows that these processes issue MV_broadcast msg(v), and
consequently all correct processes first deliver the message mv_val(v) and then broadcast at line 3 (if not previously done).
Hence, each correct process pi eventually delivers this message from (n − t) processes and adds v to its set mv_validi

(line 5–6), which proves the property. �
Cost of the algorithm. As at most m values are MV-broadcast by the correct processes, it follows from the text of the
algorithm that each correct process broadcasts each of these values at most once (at line 1 or line 3). Hence, if there are
c ∈ [n − t..n] correct processes, their broadcasts entail the sending of at most m c n messages mv_val(). Finally, whatever
the number of values that are MV-broadcast, the algorithm requires at most two communication steps.

5.2. Synchronized multivalued validated all-to-all broadcast

Definition of SMV-broadcast. This all-to-all communication abstraction provides the processes with a single operation de-
noted SMV_broadcast tag(). As indicated by its name, its aim is to synchronize processes so that, if a single value v is
delivered to a correct process, then v is delivered to all the correct processes.

In each instance of the SMV-broadcast abstraction, each correct process invokes SMV_broadcast tag(). Such an invocation
returns to the invoking process pi a set denoted viewi and called a local view. We say that a process contributes to a set
viewi if the value it SMV-broadcasts belongs to viewi . SMV-broadcast is defined by the following properties.

• SMV-Termination. The invocation of SMV_broadcast tag() by a correct process terminates.
• SMV-Obligation. The set viewi returned by a correct process pi is not empty.
• SMV-Justification. If pi is correct and v ∈ viewi , then a correct process SMV-broadcast v .
• SMV-Inclusion. If pi and p j are correct processes and viewi = {v}, then v ∈ view j .
• SMV-Contribution. If pi is correct, at least (n − t) processes contribute to its set viewi .
• SMV-No-duplicity. Let VIEW be the union of the sets viewi of the correct processes. A process contributes to at most

one value of VIEW .

The following property is an immediate consequence of the previous definition.

• SMV-Singleton. If pi and p j are correct, [(viewi = {v}) ∧ (view j = {w})] ⇒ (v = w).

Let v ∈ VIEW , pi a correct process, and p j a Byzantine process. It is possible that, while the value v was SMV-broadcast
by pi (hence pi contributed to VIEW), p j also appears as contributing to VIEW with the same value v . The SMV-No-duplicity
property states that if a value v proposed by a Byzantine process appears in VIEW then v was also proposed by a correct
process.

Communication abstractions similar to – but different from – SMV-broadcast are described in [4,12] (GradeCast), and [1]
(Binding Gather).

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 91
operation SMV_broadcast msg (vi) is
(1) MV_broadcast msg(esti);
(2) wait (mv_valuesi �= ∅);

% mv_valuesi has not necessarily its final value when the wait statement terminates %
(3) ND_broadcast nd_aux(w) where w ∈ mv_valuesi ;
(4) wait (∃ a set viewi such that (i) viewi ⊆ mv_valuesi , and

(ii) viewi is built with the values in the messages nd_aux() rec. from (n − t) distinct processes);
(5) return (viewi).

Fig. 4. Implementing SMV-broadcast in BAMPn,t [t < n/(m + 1)] (Algorithm 4).

An SMV-broadcast algorithm. Algorithm 4 implements the SMV-broadcast abstraction in the system model BAMPn,t[t <

n/(m + 1)]. A process pi first MV-broadcasts a message msg (vi) and waits until the associated set mv_valuesi is not empty
(lines 1–2). Let us remind that, when pi stops waiting, the set mv_valuesi has not necessarily obtained its final value. Then,
pi extracts a value w from mv_valuesi and ND-broadcasts it to all (line 3). Let us notice that, due to the ND-no-duplicity
property, no two correct processes can ND-deliver different values from the same Byzantine process.

Finally, pi waits until the predicate of line 4 is satisfied. This predicate, which defines the set viewi returned by the
invocation of SMV_broadcast msg (vi) issued by pi , has two aims.

• The first is to discard from viewi (the set returned by pi) a value broadcast only by Byzantine processes. As mv_valuesi
contains only values broadcast by correct processes, this property is obtained from the predicate viewi ⊆ mv_valuesi .

• The second aim is to ensure that, if the view viewi of a correct process pi contains a single value, then this value
eventually belongs to the view view j of any correct process p j .
To attain this goal, it is required that each value of viewi is a value received in one (or more) message nd_aux(),
and messages nd_aux() from at least (n − t) different processes (hence, from at least (n − 2t) correct processes, i.e.,
a majority of processes) contribute to viewi .2

Multiset version of SMV-broadcast. While a value belongs or does not belong to a set, a multiset (also called a bag) is a set
in which the same value can appear several times. As an example, while {a, b, c} and {a, b, b, c, c, c} are the same set, they
are different multisets.

It is easy to see that the “set” version of the SMV-broadcast (where viewi is a set) and Algorithm 4 can be easily
converted into a “multiset” version where viewi is a multiset. Both versions will be used in the randomized k-set agreement
presented in Section 6.

Theorem 4. Algorithm 4 implements SMV-broadcast in the system model BAMPn,t[t < n/(m + 1)].

Proof. Proof of the SMV-Termination property. Let us first observe that, due to the MV-Termination property and the MV-
Obligation property of the underlying MV-broadcast, no correct process blocks forever at line 2. As there are at least (n − t)
correct processes, and none of them blocks forever a line 2, it follows from the ND-Termination property that each correct
process returns from the ND-broadcast at line 3, and eventually ND-delivers values from at least the (n −t) correct processes.
Moreover, due to the MV-Justification property, these values have been SMV-broadcast by correct processes, and, due to the
MV-Uniformity property, the sets mv_validi of all correct processes are eventually equal. It then follows that the predicate
of line 4 becomes eventually satisfied at any correct process pi , and consequently the invocations of SMV_broadcast() of the
correct processes terminate.

Proof of the SMV-Obligation property. Any correct process pi eventually ND-delivers (n − t) messages nd_aux() sent by
correct processes. As (a) these messages carry values taken from the set mv_valuesx of correct processes, and (b) these
sets (b.1) are eventually equal at all correct processes, and (b.2) contain all values ND-broadcast at line 3 by the correct
processes, it follows (from the predicate of line 4) that the set viewi returned by a correct process is not empty.

Proof of the SMV-Justification property. This property follows directly from the fact that the predicate of line 4 discards
the values ND-broadcast only by Byzantine processes, and from the MV-Justification property, namely, the set mv_valuesi
of a correct process contains only values MV-broadcast by correct processes.

Proof of the SMV-Inclusion property. Let us consider a correct process pi and assume viewi = {v}. It follows from the
predicate of line 4 that pi has ND-delivered the same message nd_aux(v) from at least (n − t) different processes. As at
most t of them are Byzantine, it follows that pi ND-delivered this message from at least (n − 2t) different correct processes,
i.e., as n − 2t ≥ t + 1, from at least (t + 1) correct processes.

Let us consider any correct process p j . This process ND-delivered messages nd_aux() from at least (n − t) different
processes. As (n −t) +(t +1) > n, it follows that there is a correct process px that ND-broadcast the same message nd_aux(v)

to pi and p j . It follows that v ∈ view j , which concludes the proof of the lemma.

2 As an example, if viewi contains two different values v1 and v2, pi received the message nd_aux(v1) from n1 processes, the message nd_aux(v2)

from n2 processes, where n1 > 0, n2 > 0, and n1 + n2 ≥ n − t .

92 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
operation proposek(vi) is
(1) esti ← vi ; ri ← 0;
(2) repeat forever
(3) ri ← ri + 1;
// ———————————— phase 1 ———————————————————–
(4) viewi [ri ,1] ← SMV_broadcast phase[ri ,1](esti); % viewi [ri ,1] is a multiset %
(5) if (∃v appearing W times in viewi [ri ,1]) then aux ← v else aux ← ⊥ end if;
// ———————————— phase 2 ———————————————————–
(6) viewi [ri ,2] ← SMV_broadcast phase[ri ,2](aux); % viewi [ri ,2] is a set %
(7) case (⊥ /∈ viewi [ri ,2]) then let v be any value ∈ viewi [ri ,2];
(8) broadcast decide(v); return(v)

(9) (viewi [ri ,2] = {⊥, v, · · · }) then esti ← any value non-⊥ ∈ viewi [ri ,2]
(10) (viewi [ri ,2] = {⊥}) then esti ← random(mv_validi [1,1])
(11) end case
(12) end repeat.

Fig. 5. SMV-broadcast-based Byzantine k-set agreement in BAMPn,t [t < n/(m + 1), LRC] (Algorithm 5).

Proof of the SMV-Contribution property. This property follows trivially from the part (ii) of the waiting predicate of
line 4.

Proof of the SMV-No-duplicity property. This property is an immediate consequence of the ND-No-duplicity property of
the ND-broadcast issued at line 3. �
6. Byzantine model: a randomized k-set agreement algorithm

This section presents and proves correct an algorithm which solves the k-set agreement problem in BAMPn,t[t <

n/(m + 1), LRC]. This algorithm is built in a modular way on top of the SMV-broadcast communication abstraction [24].

6.1. Description of the algorithm

Local variables. To solve the ITB k-set agreement problem, Algorithm 5, which is round-based, relies on a very modular
construction. Each process pi manages two local variables whose scope is the whole execution: a local round number ri ,
and a local estimate of a decision value, denoted esti . It also manages three local variables whose scope is the current round
r: a multiset viewi[r, 1], an auxiliary variable aux, and a set viewi[r, 2].

Description of the algorithm. When pi invokes proposek(vi) it assigns vi to esti and initializes ri to 0 (line 1). Then pi

enters a loop that it will exit at line 8 by executing return(v), which returns the decided value v and stops its participation
in the algorithm.

Each round r executed by a process pi is made up of two phases. During the first phase of round r, each correct process
pi invokes SMV_broadcast(esti) (multiset version) and stores the multiset returned by this invocation in viewi[r, 1]. Let us
remind that this multiset contains only values SMV-broadcast by at least one correct process. The aim of this phase is to
build a global set, that we denote AUX[r] which contains at most (k + 1) values, at most k being contributed by correct
processes, and the other one being the default value ⊥.3 To this end, each correct process pi checks if there is a value
v that appears “enough” (say W) times in the multiset viewi[r, 1]. If there is such a value v , pi adopts it (assignment
aux ← v), otherwise it adopts the default value ⊥ (line 5).

To this end, the set AUX[r] is made up of the variables aux of all the correct processes. For AUX[r] to contain at most k
non-⊥ values, W has to be such that (k + 1)W > n (there are not enough processes for (k + 1) different values such that
each of them was contributed by W processes).4 Hence, W > n/(k + 1).5

When it starts the second phase of round r, each correct process pi invokes SMV_broadcast(aux) (set version) and stores
the set it obtains in viewi[r, 2]. Due to the properties of SMV-broadcast, viewi[r, 2] is a local approximation of AUX[r],
namely, we have viewi[r, 2] ⊆ AUX[r]. Then, the behavior of pi depends on the content of the set viewi[r, 2].

• If ⊥ /∈ viewi[r, 2], pi decides any value v in viewi[r, 2] (lines 7–8). The choice of the value v is non-deterministic.
• If viewi[r, 2] contains ⊥ and non-⊥ values, pi updates its current estimate esti to any non-⊥ value of viewi[r, 2] and

starts new round (line 9).

3 While the value of the set AUX[r] could be known by an external global observer, its value can never be explicitly known by a correct process. However,
a process can locally build an approximation of it during the second phase.

4 Let us remind that, due to the ND-broadcast used in the algorithm implementing SMV-broadcast, two correct processes cannot ND-deliver different
values from the same Byzantine process.

5 See the computation of W in Section 3.1.

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 93
• If viewi[r, 2] contains only ⊥, pi starts a new round, but updates previously its current estimate esti to a random value
(line 10). This random value is obtained from the set (denoted mv_validi[1, 1] in the algorithm) locally output by the
first MV-broadcast instance invoked by pi . The use of these sets allows the algorithm to benefit from the fact that these
sets are eventually equal at all correct processes (MV-Equality property). The B-KS-P-Termination relies on this property.

As shown in the proof, an important behavioral property of the algorithm lies in the fact that, at any round r, it is impos-
sible for two correct processes pi and p j to be such that (⊥ /∈ viewi[r, 2]) ∧ (viewi[r, 2] = {⊥}). These two predicates are
mutually exclusive.

On the value of W . (This discussion is similar to the one on the definition of W and R appearing in Section 3.1.) The value
W is used at line 5 for a safety reason, namely, no more than k non-⊥ values can belong to the set AUX[r]. As we have
seen, this is captured by the constraint W (k + 1) > n. It appears that W has also to be constrained for a liveness reason,
namely, when the correct processes start a new round r with at most k different estimates values, none of them must adopt
the value ⊥ at line 5 (otherwise, instead of deciding at line 7, they could loop forever).

This liveness constraint is as follows. Let us consider the size of the multiset viewi[r, 1] obtained at line 4. In the worst
case, when the correct processes start a new round r with at most k different estimates, viewi[r, 1] may contain (k − 1)

different values, each appearing (W − 1) times, and only one value that appears W times. Hence, viewi[r, 1] must contain
at least R = (W −1)(k −1) + W = (W −1)k +1 elements. As it follows from Algorithm 4 that |viewi[r, 1] ≥ n − t , we obtain
the liveness constraint n − t ≥ (W − 1)k + 1.

On message identities. The messages phase() SVM-broadcast at line 4 and line 6 are identified by a pair [r, x] where r is
a round number and x ∈ {1, 2} a phase number. Each of these messages gives rise to underlying messages nd_aux() (Algo-
rithm 3), mv_val() (Algorithm 2), and underlying sets witness() (Algorithm 2). Each of them inherits the pair identifying
the message phase() it originates from.

On the messages DECIDE(). Before a correct process decides a value v , it sends a message decide(v) to each other process
(line 8). Then, it stops its execution. This halting has not to prevent correct processes from terminating, which could occur
if they wait forever underlying messages nd_aux() or mv_val() from pi .

To this end, a message decide(v) has to be considered as representing an infinite set of messages. More precisely if,
while executing a round r, a process pi receives a message decide(v) from a process p j , it considers that it has received
from p j the following set of messages: {nd_aux[r′, 1](v), nd_aux[r′, 2](v), mv_val[r′, 1](v), mv_val[r′, 2](v)}r′≥r . It is easy
to see that the messages decide() simulate a correct message exchange that could be produced, after it has decided, by a
deciding but non-terminating process.

Another solution would consist in using a Reliable Broadcast abstraction that copes with Byzantine processes. In this case,
a process could decide a value v as soon as it has RB-delivered (t +1) messages decide(v). An algorithm implementing such
a reliable broadcast is presented in [7]. This algorithm requires O (n2) messages and assumes n < t/3, which is a necessary
requirement to implement one reliable broadcast in the presence of Byzantine processes.

6.2. Proof of the algorithm

The proof considers the system model BAMPn,t[t < n/(m + 1), LRC], the algorithmic safety and liveness constraints
on W , namely, W (k + 1) > n and n − t ≥ (W − 1)k + 1, and the non-triviality condition (k < m) ∧ (k ≤ t).

Preliminary remark 1. The proof considers the semantic of the messages decide() described previously. This is equivalent
to consider that, after it has decided, a correct process continues executing while skipping line 8.

Notation. Given a round r, let EST[r] be the set of estimate values of the correct processes when they start round r, and
AUX[r] be the set including the values of the auxi variables of the correct processes at the end of the first phase of round r
(i.e., just after line 5). Let us notice that AUX[r] can contain ⊥.

Preliminary remark 2. The proof of the MV-Obligation property requires that at most m different values are MV-broadcast.
Hence, this requirement extends to the invocations SMV_broadcastphase[r, x](), where x ∈ {1, 2}. By assumption, this re-
quirement is initially satisfied, namely, |EST[1]| ≤ m. We will see in the proof that (i) AUX[r] contains at most k values
proposed by correct processes plus possibly ⊥, (ii) viewi[r, 2] is a subset of AUX[r], and (iii) mv_validi[1, 1] contains only
values proposed by correct processes. From the previous observations we conclude that at most m different values are
SMV-broadcast at line 4 and line 6 of Algorithm 5.

Lemma 7. If a correct process decides a value, this value was proposed by a correct process.

94 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
Proof. Let us consider the first round r = 1. It follows from the MV-Justification property of the SMV-broadcast invocation
at line 4 that the multiset viewi[1, 1] of any correct process pi contains only values SMV-broadcast by correct processes.
The same is true for the set viewi[1, 2] which, in addition, can also contain the default value ⊥. It follows that, if a
correct process decides at lines 7–8, it decides a value proposed by a correct process. If a correct process progresses to the
next round, it executes line 9 or line 10 (for line 10, this follows from the MV-Justification property of the MV-broadcast
generated by the invocation SMV_broadcast phase[1, 1](esti)). In both cases, its new estimate value is a value proposed by
a correct process. Hence the estimate values of the processes that start the second round are values proposed by correct
processes. Applying this reasoning to the sequence of rounds, it follows that no correct process can decide a value not
proposed by a correct process. �
Lemma 8. AUX[r] contains at most k non-⊥ values, plus possibly the default value ⊥.

Proof. Let us assume that AUX[r] contains (k + 1) non-⊥ values. If a value belongs to this set, it is the value of the local
variable auxi of a correct process pi , which appears at least W times in the multiset viewi[r, 1] (line 5). Moreover, due
to SMV-No-duplicity property, a process (correct or Byzantine) contributes to at most one of these values. It follows from
these observations that, if AUX[r] contains (k + 1) non-⊥ values, (k + 1)W distinct processes have contributed to AUX[r],
i.e., have SMV-broadcast phase[r, 1]() messages. As (k + 1)W > n, this is impossible. �
Lemma 9. If |EST[r]| ≤ k, any correct process that starts round r decides during r a value of EST[r].

Proof. As by assumption the correct processes have at most k different estimate values at the beginning of round r, it fol-
lows from the SMV-Contribution property of the SMV-broadcast of line 4 that at least (n − t) different processes contributed
to the multiset viewi[r, 1]. As n − t ≥ (W − 1)k + 1 (algorithmic liveness), it follows that the multiset viewi [r, 1] of any
correct process pi contains at least W copies of a value of EST[r]. Hence, auxi ∈ EST[r] at each correct process. Consequently
AUX[r] ⊆ EST[r]. It then follows that the predicate of line 7 is satisfied at any correct process pi , which decides accordingly
a value of viewi[r, 2] ⊆ AUX[r] ⊆ EST[r], which concludes the proof of the lemma. �
Lemma 10. Let pi and p j be two correct processes. At any round r, the predicates ⊥ /∈ viewi[r, 2] and view j[r, 2] = {⊥} are mutually
exclusive.

Proof. Let us assume by contradiction that pi is a correct process such that the predicate ⊥ /∈ viewi[r, 2] is satisfied (line 7),
and p j a correct process such that the predicate view j[r, 2] = {⊥} is satisfied (line 10).

Due to the SMV-Contribution property of the SMV-broadcast issued by pi and p j at line 6, it follows that viewi[r, 2]
contains values contributed by at least (n −t) processes, and similarly for the set view j[r, 2] of p j . As n > 3t , the intersection
of any two sets of (n − t) processes contains at least (t + 1) processes, i.e., one correct process. It then follows that there
is a correct process that contributed to both viewi[r, 2] and view j[r, 2], from which we conclude that either viewi[r, 2]
contains ⊥, or view j[r, 2] contains a non-⊥ estimate value. �
Lemma 11. No more than k different values are decided by the correct processes.

Proof. Let r be the first round during which correct processes decide. They decide at line 8. Due to Lemma 8, the set AUX[r]
contains at most k non-⊥ values. Moreover, due to the SMV-broadcast issued by the correct processes at line 6 that we
have viewi[r, 2] ⊆ AUX[r] at each correct process pi . Hence, due to line 7, a process that decides during round r can only
decide a value of AUX[r].

Let us now consider a correct process p j that proceeds to round (r + 1). Let pi be a process that decides at round r.
It follows from Lemma 10 that the predicates ⊥ /∈ viewi[r, 2] and view j[r, 2] = {⊥} are mutually exclusive. Consequently,
p j executes line 9 before progressing to the next round. Hence, p j updated est j to a non-⊥ value of view j[r, 2] ⊆ AUX[r]
before progressing to the next round. It follows that the estimates of the correct processes progressing to the next round
are non-⊥ values of AUX[r]. Hence, EST[r + 1] ⊆ AUX[r] \ {⊥}. It then follows from Lemma 9 that at most k values are
decided. �
Lemma 12. No correct process blocks forever in a round.

Proof. The proof is by contradiction. Let r be the first round at which a correct process pi blocks forever. It can block at
line 4 or line 6. Let us first consider line 4. As no correct process blocked forever at a round r′ < r, all correct processes
start round r and invoke SMV_broadcast phase[r, 1](−). It then follows from the SMV-termination property that pi returns
from its invocation. The same reasoning applies to line 6, which concludes the proof of the lemma. �
Lemma 13. If a correct process decides during a round r, any other correct process that does not decide by round r, decides during the
round (r + 1).

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 95
Proof. The proof is by contradiction. Let us suppose that a correct process pi decides v at round r (line 8) and a correct
process p j , which does not decide by round r. Due to Lemma 12, p j proceeds to round (r + 1). Due to Lemma 10 and the
fact that pi decides at round r, it follows that view j[r, 2] �= {⊥}. Hence, p j executes line 9, and assigns a non-⊥ of AUX[r]
to est j . As AUX[r] contains at most k non-⊥ values (Lemma 8), we have EST[r + 1] ⊆ AUX[r], i.e., the round (r + 1) starts
with at most k non-⊥ values. Due to the Lemma 9, p j decides in the round r + 1. A contradiction. �
Lemma 14. Let VALID[1, 1] be the final (common) value of the sets mv_validi[1, 1] of the correct processes. ∀r we have AUX[r] ⊆
VALID[1, 1].

Proof. The proof follows from the observation that the values, proposed by a correct process, which are not in VALID[1, 1]
can appear neither in viewi[r, 1] nor in viewi[r, 2]. Hence, they cannot appear either in a set AUX[r], and AUX[r] ⊆
VALID[1, 1] follows. �
Lemma 15. All correct processes decide with probability 1.

Proof. Due to Lemma 13, if a correct process decides, all correct processes decide. Hence, let us assume by contradiction
that no correct process decides.

Due to the MV-Equality property of the MV-broadcast generated by the invocations of SMV_broadcast phase[1, 1]()
issued by the correct processes, there is a finite time τ after which the sets mv_validi[1, 1] of the correct processes remain
forever non-empty and equal.

As no correct process blocks forever in a round (Lemma 12), all correct processes progress from round to round forever.
Moreover, as the decision predicate of line 7 is never satisfied at a correct process, it follows that, after τ , any correct
process executes line 9 or line 10. Let us consider a round r entered by all correct processes after time τ . There are three
cases.

• Case 1: At round r, all the correct processes execute line 9. So, each correct process sets its estimate to a non-⊥ value
of AUX[r]. Due to Lemma 8, there are then at most k different estimate (non-⊥) values in AUX[r]. Hence, all the correct
processes start the round (r + 1), and EST[r + 1] contains at most k different estimate values (none being ⊥). It then
follows from Lemma 9 that all correct processes decide.

• Case 2: During r at least one process (but not all) executes line 9. In this case, due to Lemma 8, each correct process pi
that executes line 9 sets its current estimate esti to a non-⊥ value taken from the set AUX[r], which contains at most
k non-⊥ values. The other processes execute line 10. This means that each of these processes pi sets its estimate value
esti to a value ∈ mv_validi[r, 1] = VALID[1, 1]. As AUX[r] ⊆ VALID[1, 1] (Lemma 14), there is a probability prob1 > 0 that
they obtain values from AUX[r].

• Case 3: During r no process executes line 9. In this case, all the processes execute line 10. There is a probability
prob2 > 0 that they obtain at most k different estimate values.

In Case 1, all correct processes decide. Let us consider Case 2 and Case 3. During any round after τ , there is a probability
p = min(prob1, prob2) that the correct processes have at most k different estimate values. Hence, there is a probability
P (α) = p + p(1 − p) + p(1 − p)2 + ... + p(1 − p)α−1 = 1 − (1 − p)α that, after at most α rounds, the processes have no more
than k estimate values. As limα→∞ P (α) = 1, it follows that, with probability 1, all correct processes will start a round with
no more than k estimate values. Then, according to Lemma 9, they will decide. �
Theorem 5. Algorithm 5 solves the randomized Byzantine k-set agreement problem in the system model BAMPn,t[t < n/(m +
1), LRC].

Proof. B-KS-Validity follows from Lemma 7. B-KS-Agreement follows from Lemma 11. B-KS-P-Termination follows from
Lemma 15. �
7. Conclusion

This paper was on k-set agreement in two types of asynchronous message-passing, the ones where processes may
commit crash failures, and the ones where they may commit Byzantine failures. As k-set agreement cannot be solved in
these basic system models without additional computational power, the paper considered the computational power provided
by local multi-sided random coins.

The first randomized algorithm that has been presented solves k-set agreement in the presence of up to t < n/2 crash
failures. It also assumes t < n − k� n

k+1 �. The second one solves k-set agreement in the presence of up to t < n/(m + 1)

Byzantine processes, where m is an upper bound on the number of values that can be proposed by the correct pro-
cesses. The design of both algorithms is modular. The modular construction of the Byzantine-tolerant algorithm rests on
(i) a broadcast abstraction which guarantees that two non-faulty processes cannot receive distinct messages from the same

96 A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97
(possibly Byzantine) sender, and (ii) the stacking of two all-to-all communication abstractions which generalize the “bi-
nary” communication abstractions introduced in [23] to the multivalue domain. Two interesting features of this algorithm
lie in (a) the validity condition it ensures, namely, no value proposed only by Byzantine processes can be decided by
non-faulty processes, and (b) its signature-freedom, which does not limit the computational power of the Byzantine adver-
sary.

Acknowledgments

We want to thank the reviewers for their constructive comments, which help us improve the presentation. Both authors
were partially supported by the Franco–German DFG-ANR Project 40300781 DISCMAT ANR 14-CEA35-0010-001 (2017–2020)
devoted to connections between mathematics and distributed computing, and the French ANR project DESCARTES ANR
16-CEA40-0023-03 (2017–2020) devoted to distributed software engineering.

References

[1] I. Abraham, M. Aguilera, D. Malkhi, Fast asynchronous consensus with optimal resilience, in: Proc. 24th Int’l Symposium on Distributed Computing
(DISC’10), in: Lecture Notes in Comput. Sci., vol. 6343, Springer, 2010, pp. 4–19.

[2] H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edition, Wiley–Interscience, 2004, 414 pp.
[3] M. Ben-Or, Another advantage of free choice: completely asynchronous agreement protocols, in: Proc. 2nd Annual ACM Symposium on Principles of

Distributed Computing (PODC’83), ACM Press, 1983, pp. 27–30.
[4] M. Ben-Or, D. Dolev, E.N. Hoch, Brief announcement: simple gradecast based algorithms, in: Proc. 24th Int’l Symposium on Distributed Computing

(DISC’10), in: Lecture Notes in Comput. Sci., vol. 6343, Springer, 2010, pp. 194–197.
[5] E. Borowsky, E. Gafni, Generalized FLP impossibility results for t-resilient asynchronous computations, in: Proc. 25th ACM Symposium on Theory of

Computing (STOC’93), ACM Press, 1993, pp. 91–100.
[6] Z. Bouzid, A. Mostéfaoui, M. Raynal, Minimal synchrony for Byzantine consensus, in: Proc. 34th ACM Symposium on Principles of Distributed Computing

(PODC’15), ACM Press, 2015, pp. 461–470.
[7] G. Bracha, Asynchronous Byzantine agreement protocols, Inform. and Comput. 75 (2) (1987) 130–143.
[8] Hillel K. Censor, Multi-sided shared coins and randomized set agreement, in: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architec-

tures (SPAA’10), ACM Press, 2010, pp. 60–68.
[9] T. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, J. ACM 43 (2) (1996) 225–267.

[10] S. Chaudhuri, More choices allow more faults: set consensus problems in totally asynchronous systems, Inform. and Comput. 105 (1) (1993) 132–158.
[11] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial synchrony, J. ACM 35 (2) (1988) 288–323.
[12] P. Feldman, S. Micali, Optimal algorithms for Byzantine agreement, in: Proc. 20th ACM Symposium on Theory of Computing (STOC’88), ACM Press,

1988, pp. 148–161.
[13] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.
[14] R. Friedman, A. Mostéfaoui, S. Rajsbaum, M. Raynal, Distributed agreement problems and their connection with error-correcting codes, IEEE Trans.

Comput. 56 (7) (2007) 865–875.
[15] R. Friedman, A. Mostéfaoui, M. Raynal, Simple and efficient oracle-based consensus protocols for asynchronous Byzantine systems, IEEE Trans. Depend-

able Secure Comput. 2 (1) (2005) 46–56.
[16] E. Gafni, R. Guerraoui, Generalizing universality, in: Proc. 22nd Int’l Conference on Concurrency Theory (CONCUR’11), in: Lecture Notes in Comput. Sci.,

vol. 6901, Springer, 2011, pp. 17–27.
[17] V. Hadzilacos, S. Toueg, Reliable broadcast and related problems, in: Distributed Systems, ACM Press, 1993, pp. 97–145.
[18] M.P. Herlihy, D. Kozlov, S. Rajsbaum, Distributed Computing Through Combinatorial Topology, Morgan Kaufmann/Elsevier, ISBN 9780124045781, 2014,

336 pp.
[19] M. Herlihy, N. Shavit, The topological structure of asynchronous computability, J. ACM 46 (6) (1999) 858–923.
[20] V. King, J. Saia, Byzantine agreement in expected polynomial time, J. ACM 63 (2) (2016) 14.
[21] L. Lamport, R. Shostack, M. Pease, The Byzantine generals problem, ACM Trans. Program. Lang. Syst. 4 (3) (1982) 382–401.
[22] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Pub., San Francisco, CA, 1996, ISBN 1-55860-384-4, 872 pp.
[23] A. Mostéfaoui, H. Moumen, M. Raynal, Signature-free asynchronous binary Byzantine consensus with t < n/3, O (n2) messages, and O (1) expected

time, J. ACM 62 (4) (2015) 31.
[24] A. Mostéfaoui, H. Moumen, M. Raynal, Modular randomized Byzantine k-set agreement in asynchronous message-passing systems, in: Proc. 17th Int’l

Conference on Distributed Computing and Networking (ICDCN’16), ACM Press, 2016, 10 pp.
[25] A. Mostéfaoui, S. Rajsbaum, M. Raynal, Conditions on input vectors for consensus solvability in asynchronous distributed systems, J. ACM 50 (6) (2003)

922–954.
[26] A. Mostéfaoui, M. Raynal, Solving consensus using Chandra–Toueg’s unreliable failure detectors: a generic quorum-based approach, in: Proc. 13th Int’l.

Symposium on Distributed Computing (DISC’99), in: Lecture Notes in Comput. Sci., vol. 1693, Springer, 1999, pp. 49–63.
[27] A. Mostéfaoui, M. Raynal, Randomized k-set agreement, in: Proc. 13th ACM Symposium on Parallel Algorithms and Architectures (SPAA’01), ACM Press,

2001, pp. 291–297.
[28] A. Mostéfaoui, M. Raynal, Intrusion-tolerant broadcast and agreement abstractions in the presence of Byzantine processes, IEEE Trans. Parallel Distrib.

Syst. 27 (4) (2016) 1085–1098.
[29] M. Pease, R. Shostak, L. Lamport, Reaching agreement in the presence of faults, J. ACM 27 (1980) 228–234.
[30] R. de Prisco, D. Malkhi, M.K. Reiter, On k-set consensus problems in asynchronous systems, IEEE Trans. Parallel Distrib. Syst. 12 (1) (2001) 7–21.
[31] M. Rabin, Randomized Byzantine generals, in: Proc. 24th IEEE Symposium on Foundations of Computer Science (FOCS’83), IEEE Computer Society Press,

1983, pp. 116–124.
[32] M. Raynal, Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems, Morgan & Claypool, ISBN 978-1-60845-

293-4, 2010, 251 pp.
[33] M. Raynal, Fault-Tolerant Agreement in Synchronous Message-Passing Systems, Morgan & Claypool, ISBN 978-1-60845-525-6, 2010, 165 pp.
[34] M. Raynal, Concurrent Programming: Algorithms, Principles and Foundations, Springer, ISBN 978-3-642-32026-2, 2013, 515 pp.
[35] M. Raynal, J. Stainer, G. Taubenfeld, Distributed universality, Algorithmica 76 (2) (2016) 502–535.
[36] L. Rodrigues, P. Verìssimo, Topology-aware algorithms for large scale communication, in: Advances in Distributed Systems, in: Lecture Notes in Comput.

Sci., vol. 1752, Springer, 2000, pp. 1217–1256.

http://refhub.elsevier.com/S0304-3975(17)30231-1/bib41414D3130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib41414D3130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib41573034s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib423833s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib423833s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4244483130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4244483130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib42473933s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib42473933s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib424D523135s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib424D523135s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib423837s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib433130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib433130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib43543936s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib433933s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib444C533838s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464D3838s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464D3838s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464C503835s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464D52523037s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464D52523037s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464D5230352D62s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib464D5230352D62s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib47473131s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib47473131s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib48543933s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib484B523134s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib484B523134s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib48533939s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4B533136s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4C53503832s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4C3936s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D4D523135s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D4D523135s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D4D523136s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D4D523136s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D52523033s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D52523033s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D523939s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D523939s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D523031s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D523031s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D523130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib4D523130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib50534C3830s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib504D523031s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib523833s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib523833s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib523130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib523130s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib5231302D32s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib523133s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib5253543134s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib52563030s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib52563030s1

A. Mostéfaoui et al. / Theoretical Computer Science 709 (2018) 80–97 97
[37] M. Saks, F. Zaharoglou, Wait-free k-set agreement is impossible: the topology of public knowledge, SIAM J. Comput. 29 (5) (2000) 1449–1483.
[38] T.K. Srikanth, S. Toueg, Simulating authenticated broadcasts to derive simple fault-tolerant algorithms, Distrib. Comput. 2 (1987) 80–94.
[39] S. Toueg, Randomized Byzantine agreement, in: Proc. 3rd Annual ACM Symposium on Principles of Distributed Computing (PODC’84), ACM Press, 1984,

pp. 163–178.

http://refhub.elsevier.com/S0304-3975(17)30231-1/bib535A3030s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib53543837s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib543834s1
http://refhub.elsevier.com/S0304-3975(17)30231-1/bib543834s1

	Randomized k-set agreement in crash-prone and Byzantine asynchronous systems
	1 Introduction
	2 Asynchronous model with crashes failures, and deﬁnitions
	2.1 Computation model
	2.2 Reliable broadcast abstraction
	2.3 k-Set agreement

	3 Crash model: a randomized k-set agreement algorithm
	3.1 Description of the algorithm
	3.2 Proof of the algorithm

	4 Asynchronous model with Byzantine failures, and deﬁnitions
	4.1 Computation model
	4.2 The no-duplicity broadcast abstraction
	4.3 k-Set agreement

	5 Two multivalued validated broadcast abstractions
	5.1 Multivalued validated all-to-all broadcast
	5.2 Synchronized multivalued validated all-to-all broadcast

	6 Byzantine model: a randomized k-set agreement algorithm
	6.1 Description of the algorithm
	6.2 Proof of the algorithm

	7 Conclusion
	Acknowledgments
	References

