
Formal Proofs for Mobile Robot Swarms

Lionel Rieg

ENS de Lyon, 23 Oct. 2019

Outline

Motivations

Overview of the Model

The Pactole Formalism

Case Study: Gathering

Pactole in Practice

Inspiration: Swarms of Mobile Robots

Ï Swarms?

Ï Lots of (small) identical robots

Ï Where?
Ï Entertainment
Ï Rescue
Ï Exploration
Ï . . .

Ï Opportunities?
Ï Cooperative behavior (swarm intelligence)
Ï Resilience

Ï Main challenge?
Ï Understand what happens!

Inspiration: Swarms of Mobile Robots

Inspiration: Swarms of Mobile Robots

Inspiration: Swarms of Mobile Robots

Ï Swarms?
Ï Lots of (small) identical robots

Ï Where?
Ï Entertainment
Ï Rescue
Ï Exploration
Ï . . .

Ï Opportunities?
Ï Cooperative behavior (swarm intelligence)
Ï Resilience

Ï Main challenge?
Ï Understand what happens!

Inspiration: Swarms of Mobile Robots

Ï Swarms?
Ï Lots of (small) identical robots

Ï Where?

Ï Entertainment
Ï Rescue
Ï Exploration
Ï . . .

Ï Opportunities?
Ï Cooperative behavior (swarm intelligence)
Ï Resilience

Ï Main challenge?
Ï Understand what happens!

Inspiration: Swarms of Mobile Robots

Inspiration: Swarms of Mobile Robots

Inspiration: Swarms of Mobile Robots

Ï Swarms?
Ï Lots of (small) identical robots

Ï Where?
Ï Entertainment
Ï Rescue
Ï Exploration
Ï . . .

Ï Opportunities?
Ï Cooperative behavior (swarm intelligence)
Ï Resilience

Ï Main challenge?
Ï Understand what happens!

Inspiration: Swarms of Mobile Robots

Ï Swarms?
Ï Lots of (small) identical robots

Ï Where?
Ï Entertainment
Ï Rescue
Ï Exploration
Ï . . .

Ï Opportunities?
Ï Cooperative behavior (swarm intelligence)
Ï Resilience

Ï Main challenge?
Ï Understand what happens!

Inspiration: Swarms of Mobile Robots

Ï Swarms?
Ï Lots of (small) identical robots

Ï Where?
Ï Entertainment
Ï Rescue
Ï Exploration
Ï . . .

Ï Opportunities?
Ï Cooperative behavior (swarm intelligence)
Ï Resilience

Ï Main challenge?
Ï Understand what happens!

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

A

E AE
A

E

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

Round 1 Round 2 Round 3 Round 4 Round 1 Round 2 Round 3 Round 4

· · ·

· · ·

· · ·

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

B
Ï Subtle differences in models very error-prone
Ï Careful of mismatch spec/proof!
Ï Lots of proof cases geometry

⇒ Formal methods can help

Which model? (process algebra, TLA, . . .)
Which tool? (model checking, proof assistant, . . .)

We need a suitable framework What are the requirements?

Why Formal Methods for Mobile Robots Swarms?

Many mobile robots network models:
Ï Space discrete/continuous, bounded/unbounded, topology, . . .

Ï Sensors multiplicity, range, accuracy, orientation, . . .

Ï Faults none, crash, Byzantine, . . .

Ï Execution synchronous/asynchronous, fairness, interruption, . . .

B
Ï Subtle differences in models very error-prone
Ï Careful of mismatch spec/proof!
Ï Lots of proof cases geometry

⇒ Formal methods can help

Which model? (process algebra, TLA, . . .)
Which tool? (model checking, proof assistant, . . .)

We need a suitable framework What are the requirements?

Outline

Motivations

Overview of the Model

The Pactole Formalism

Case Study: Gathering

Pactole in Practice

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)
Ï Anonymous
Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points

Ï With Byzantine faults (or crash)
Ï Anonymous
Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)

Ï Anonymous
Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)
Ï Anonymous

Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)
Ï Anonymous
Ï No direct communication

Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)
Ï Anonymous
Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)
Ï Anonymous
Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?

Ï Same (deterministic) program everywhere

Robot Model [Suzuki, Yamashita 99]

Ï Points
Ï With Byzantine faults (or crash)
Ï Anonymous
Ï No direct communication
Ï No common frame/direction
 local coordinates

Ï Limited/unlimited vision? multiplicity?
Ï Same (deterministic) program everywhere

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Example: Gathering

Ï Setting: R2, no Byzantine
Ï Objective: Have all robots reach in finite time the same

location (unknown ahead of time) and then stay there

Execution Models (1) [Suzuki, Yamashita 99]

3 phases for each robot:
1. Look: observe its surrounding

Ï Indirect communication
Ï Depends on sensor capabilities

2. Compute: choose what to do
Ï Choose an objective
Ï Depends on observation, program

3. Move: do it (or try to)
Ï Try to reach your target
Ï Depends on the environment

and repeat

Execution Models (1) [Suzuki, Yamashita 99]

3 phases for each robot:
1. Look: observe its surrounding

Ï Indirect communication
Ï Depends on sensor capabilities

2. Compute: choose what to do
Ï Choose an objective
Ï Depends on observation, program

3. Move: do it (or try to)
Ï Try to reach your target
Ï Depends on the environment

and repeat

Execution Models (2): Scheduling [Suzuki, Yamashita 99]

Scheduling of robots is

Either ASYNC: full interleaving

Ï Most general/realistic but hardest

or Same phase for all active robots

Ï Time split into rounds
Ï FSYNC: all robots are activated each round
Ï SSYNC: only a subset is activated
 Fairness assumptions on the scheduling (demon)

Execution Models (2): Scheduling [Suzuki, Yamashita 99]

Scheduling of robots is
Either ASYNC: full interleaving

Ï Most general/realistic but hardest

or Same phase for all active robots

Ï Time split into rounds
Ï FSYNC: all robots are activated each round
Ï SSYNC: only a subset is activated
 Fairness assumptions on the scheduling (demon)

· · ·
· · ·

· · ·

Execution Models (2): Scheduling [Suzuki, Yamashita 99]

Scheduling of robots is
Either ASYNC: full interleaving

Ï Most general/realistic but hardest

or Same phase for all active robots
Ï Time split into rounds

Ï FSYNC: all robots are activated each round
Ï SSYNC: only a subset is activated
 Fairness assumptions on the scheduling (demon)

Round 1 Round 2 Round 3 Round 4 Round 5

Execution Models (2): Scheduling [Suzuki, Yamashita 99]

Scheduling of robots is
Either ASYNC: full interleaving

Ï Most general/realistic but hardest

or Same phase for all active robots
Ï Time split into rounds
Ï FSYNC: all robots are activated each round

Ï SSYNC: only a subset is activated
 Fairness assumptions on the scheduling (demon)

Round 1 Round 2 Round 3 Round 4 Round 5

Execution Models (2): Scheduling [Suzuki, Yamashita 99]

Scheduling of robots is
Either ASYNC: full interleaving

Ï Most general/realistic but hardest

or Same phase for all active robots
Ï Time split into rounds
Ï FSYNC: all robots are activated each round
Ï SSYNC: only a subset is activated
 Fairness assumptions on the scheduling (demon)

Round 1 Round 2 Round 3 Round 4 Round 5

The Rest of the Vocabulary

Ï Robogram: robot program

Ï Demon/scheduler: environment (adversary part)
a sequence of demonic actions (one for each round)

Ï Configuration: the states of all robots
(includes locations and ids)
 full snapshot of the system

Ï Observation: information available to robograms
(depends on sensors, no identifers)
 degraded form of configuration

Ï Execution: a sequence of configurations
(usually given by the robogram and the demon)

Outline

Motivations

Overview of the Model

The Pactole Formalism

Case Study: Gathering

Pactole in Practice

Coq: a Proof Assistant

Definition (Proof Assistant (Wikipedia))

In computer science and mathematical logic, a proof assistant or
interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration.
This involves some sort of interactive proof editor, or other
interface, with which a human can guide the search for proofs, the
details of which are stored in, and some steps provided by, a
computer.

The Coq proof assistant:
Ï 4-color theorem, Feit-Thomson theorem, CompCert compiler
Ï Functional programming language
Ï Proof = program Curry-Howard

Ï Build programs/proofs with tactics (reasoning steps)
Ï . . . or just program them!

Pactole: a Coq Framework for Mobile Robots

Very Parametric (but still useful):
Ï Space
Ï State of Robots (memory, battery level, etc.)
Ï Sensors
Ï Environment (adversary)
Ï How states are updated during the move phase

Main Ingredients:
Ï Robogram

observation → location

Ï Demon (scheduler)
Ï Round
Ï Execution

Stream.t configuration

Ï Properties and Proofs

Pactole: a Coq Framework for Mobile Robots

Very Parametric (but still useful):
Ï Space
Ï State of Robots (memory, battery level, etc.)
Ï Sensors
Ï Environment (adversary)
Ï How states are updated during the move phase

Main Ingredients:
Ï Robogram

observation → location

Ï Demon (scheduler)
Ï Round
Ï Execution

Stream.t configuration

Ï Properties and Proofs

Defining Robograms

A robogram is simply a function:

Definition robogram := observation → location .

Ï We can use all the expressiveness of Coq to define robograms.
Ï They can be extracted to OCaml/Haskell.
Ï We should only use geometric shapes that are invariant by

change of frame of reference.

+ a technical detail: compatibility with equivalence (Proper)

Example (Convergence in R2)

(∗ observation = set of inhabited location ∗)
Definition convergeR2_pgm (obs : observation) : R2 :=
barycenter (elements s).

Defining Robograms

A robogram is simply a function:

Definition robogram := observation → location .

Ï We can use all the expressiveness of Coq to define robograms.
Ï They can be extracted to OCaml/Haskell.
Ï We should only use geometric shapes that are invariant by

change of frame of reference.

+ a technical detail: compatibility with equivalence (Proper)

Example (Convergence in R2)

(∗ observation = set of inhabited location ∗)
Definition convergeR2_pgm (obs : observation) : R2 :=
barycenter (elements s).

Defining Robograms

A robogram is simply a function:

Definition robogram := observation → location .

Ï We can use all the expressiveness of Coq to define robograms.
Ï They can be extracted to OCaml/Haskell.
Ï We should only use geometric shapes that are invariant by

change of frame of reference.

+ a technical detail: compatibility with equivalence (Proper)

Example (Convergence in R2)

(∗ observation = set of inhabited location ∗)
Definition convergeR2_pgm (obs : observation) : R2 :=
barycenter (elements s).

Pactole: a Coq Framework for Mobile Robots

Very Parametric (but still useful):
Ï Space
Ï State of Robots (memory, battery level, etc.)
Ï Sensors
Ï Environment (adversary)
Ï How states are updated during the move phase

Main Ingredients:
Ï Robogram observation → location
Ï Demon (scheduler)
Ï Round
Ï Execution

Stream.t configuration

Ï Properties and Proofs

Description of a Round

What happens in a round for a robot?

1. If it is not activated, some update happens ASYNC only
2. If it is activated and Byzantine, the demon gives its new state
3. If it is activated and not Byzantine (i.e. Good),

a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?

1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Description of a Round

What happens in a round for a robot?
1. If it is not activated, some update happens ASYNC only

2. If it is activated and Byzantine, the demon gives its new state
3. If it is activated and not Byzantine (i.e. Good),

a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?

1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Description of a Round

What happens in a round for a robot?
1. If it is not activated, some update happens ASYNC only

2. If it is activated and Byzantine, the demon gives its new state
3. If it is activated and not Byzantine (i.e. Good),

a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only

3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Description of a Round

What happens in a round for a robot?
1. If it is not activated, some update happens ASYNC only
2. If it is activated and Byzantine, the demon gives its new state

3. If it is activated and not Byzantine (i.e. Good),
a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only

3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Description of a Round

What happens in a round for a robot?
1. If it is not activated, some update happens ASYNC only
2. If it is activated and Byzantine, the demon gives its new state

3. If it is activated and not Byzantine (i.e. Good),
a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only
3. Update Byzantine robots as it wishes

4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Description of a Round

What happens in a round for a robot?
1. If it is not activated, some update happens ASYNC only
2. If it is activated and Byzantine, the demon gives its new state
3. If it is activated and not Byzantine (i.e. Good),

a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only
3. Update Byzantine robots as it wishes

4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Description of a Round

What happens in a round for a robot?
1. If it is not activated, some update happens ASYNC only
2. If it is activated and Byzantine, the demon gives its new state
3. If it is activated and not Byzantine (i.e. Good),

a. Look: get information from its surrounding
b. Compute its destination
c. Move to the destination

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots ASYNC only
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

Demonic action

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

+ compatibility properties (Proper)

Demonic action

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

(∗∗ Select which robots are activated ∗)
activate : ident → bool;
(∗∗ Update the state of inactive robots ∗)
choose_inactive : configuration → ident → info ;
(∗∗ Update the state of (activated) byzantine robots ∗)
relocate_byz : configuration → B → info ;
(∗∗ Local referential for (activated) good robots in the compute phase ∗)
change_frame : configuration → G → bijection location ;
(∗∗ Update the state of (activated) good robots in the move phase ∗)
choose_update : configuration → G → location → info ;

+ compatibility properties (Proper)

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then

else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒

end
else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒
(∗ change the frame of reference ∗)
let frame_choice := da.(change_frame) config g in
let new_frame := frame_choice_bijection frame_choice in
let local_config := map_config (lift new_frame (...)) config in
let local_state := local_config (Good g) in

end
else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒
(∗ change the frame of reference ∗)
let frame_choice := da.(change_frame) config g in
let new_frame := frame_choice_bijection frame_choice in
let local_config := map_config (lift new_frame (...)) config in
let local_state := local_config (Good g) in
(∗ compute the observation ∗)
let obs := obs_from_config local_config local_state in

end
else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒
(∗ change the frame of reference ∗)
let frame_choice := da.(change_frame) config g in
let new_frame := frame_choice_bijection frame_choice in
let local_config := map_config (lift new_frame (...)) config in
let local_state := local_config (Good g) in
(∗ compute the observation ∗)
let obs := obs_from_config local_config local_state in
(∗ apply r on observation ∗)
let decision := r obs in

end
else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒
(∗ change the frame of reference ∗)
let frame_choice := da.(change_frame) config g in
let new_frame := frame_choice_bijection frame_choice in
let local_config := map_config (lift new_frame (...)) config in
let local_state := local_config (Good g) in
(∗ compute the observation ∗)
let obs := obs_from_config local_config local_state in
(∗ apply r on observation ∗)
let decision := r obs in
(∗ the demon chooses how to perform the state update ∗)
let choice := da.(choose_update) local_config g decision in

end
else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒
(∗ change the frame of reference ∗)
let frame_choice := da.(change_frame) config g in
let new_frame := frame_choice_bijection frame_choice in
let local_config := map_config (lift new_frame (...)) config in
let local_state := local_config (Good g) in
(∗ compute the observation ∗)
let obs := obs_from_config local_config local_state in
(∗ apply r on observation ∗)
let decision := r obs in
(∗ the demon chooses how to perform the state update ∗)
let choice := da.(choose_update) local_config g decision in
(∗ the actual update of the robot state is performed by the update function ∗)
let new_local_state := update local_config g frame_choice decision choice in

end
else inactive config id (da.(choose_inactive) config id).

The Core of Pactole: the Round Function

Definition round (r : robogram) (da : demonic_action) (config : configuration)
: configuration :=
fun id ⇒ (∗ for a given robot, we compute the new state ∗)

if da.(activate) id (∗ first see whether the robot is activated ∗)
then
match id with
| Byz b ⇒ da.(relocate_byz) config b (∗ byzantine robots ∗)
| Good g ⇒
(∗ change the frame of reference ∗)
let frame_choice := da.(change_frame) config g in
let new_frame := frame_choice_bijection frame_choice in
let local_config := map_config (lift new_frame (...)) config in
let local_state := local_config (Good g) in
(∗ compute the observation ∗)
let obs := obs_from_config local_config local_state in
(∗ apply r on observation ∗)
let decision := r obs in
(∗ the demon chooses how to perform the state update ∗)
let choice := da.(choose_update) local_config g decision in
(∗ the actual update of the robot state is performed by the update function ∗)
let new_local_state := update local_config g frame_choice decision choice in
(∗ return to the global frame of reference ∗)
lift (new_frame −1) (...) new_local_state

end
else inactive config id (da.(choose_inactive) config id).

How to Constrain the Demon to Follow the Model?

(∗∗ Update the state of good robots in the move phase ∗)
choose_update : configuration → G → location → info

This is too powerful: the demon could do anything!

Instead, the demon just give orders as abstract datatypes.
Then an update function performs the update.
(∗∗ Updates for active and inactive robots ∗)
update : configuration → G → location → Tactive → info;
inactive : configuration → ident → Tinactive → info;

Example

When active, the demon chooses half/full move: Tactive := bool
Nothing happens when inactive: Tinactive := unit

update := fun _ _ target choice ⇒
if choice then target ratio_1 else target (1 /r 2);

inactive := fun config id _ ⇒ config id ;

How to Constrain the Demon to Follow the Model?

(∗∗ Update the state of good robots in the move phase ∗)
choose_update : configuration → G → location → Tactive

This is too powerful: the demon could do anything!

Instead, the demon just give orders as abstract datatypes.
Then an update function performs the update.
(∗∗ Updates for active and inactive robots ∗)
update : configuration → G → location → Tactive → info;
inactive : configuration → ident → Tinactive → info;

Example

When active, the demon chooses half/full move: Tactive := bool
Nothing happens when inactive: Tinactive := unit

update := fun _ _ target choice ⇒
if choice then target ratio_1 else target (1 /r 2);

inactive := fun config id _ ⇒ config id ;

How to Constrain the Demon to Follow the Model?

(∗∗ Update the state of good robots in the move phase ∗)
choose_update : configuration → G → location → Tactive

This is too powerful: the demon could do anything!

Instead, the demon just give orders as abstract datatypes.
Then an update function performs the update.
(∗∗ Updates for active and inactive robots ∗)
update : configuration → G → location → Tactive → info;
inactive : configuration → ident → Tinactive → info;

Example

When active, the demon chooses half/full move: Tactive := bool
Nothing happens when inactive: Tinactive := unit

update := fun _ _ target choice ⇒
if choice then target ratio_1 else target (1 /r 2);

inactive := fun config id _ ⇒ config id ;

Demonic action

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

(∗∗ Select which robots are activated ∗)
activate : ident → bool;
(∗∗ Update the state of inactive robots ∗)
choose_inactive : configuration → ident → info ;
(∗∗ Update the state of (activated) byzantine robots ∗)
relocate_byz : configuration → B → info ;
(∗∗ Local referential for (activated) good robots in the compute phase ∗)
change_frame : configuration → G → bijection location ;
(∗∗ Update the state of (activated) good robots in the move phase ∗)
choose_update : configuration → G → location → info ;

+ compatibility properties (Proper)

Demonic action

Demonic action: what does the demon decide in each round?
1. Pick which robots are activated
2. Decide how to update inactive robots
3. Update Byzantine robots as it wishes
4. Select the new frame of reference for non-Byzantine robots
5. Decide how to update them depending on their destination

(∗∗ Select which robots are activated ∗)
activate : ident → bool;
(∗∗ Update the state of inactive robots ∗)
choose_inactive : configuration → ident → Tinactive;
(∗∗ Update the state of (activated) byzantine robots ∗)
relocate_byz : configuration → B → info ;
(∗∗ Local referential for (activated) good robots in the compute phase ∗)
change_frame : configuration → G → Tframe;
(∗∗ Update the state of (activated) good robots in the move phase ∗)
choose_update : configuration → G → location → Tactive;

+ compatibility properties (Proper)

Generalizing the Robogram

We can use the same trick for the robogram!

Change robogam : observation → location

to robogam : observation → Trobot

This way, we can model:
Ï curved trajectories
Ï direction of movement
Ï changes of orientation/color/memory
Ï ...

Don’t forget to also change

choose_update : configuration → G → Trobot →Tactive;
update : configuration → G → Trobot →Tactive → info;

Generalizing the Robogram

We can use the same trick for the robogram!

Change robogam : observation → location

to robogam : observation → Trobot

This way, we can model:
Ï curved trajectories
Ï direction of movement
Ï changes of orientation/color/memory
Ï ...

Don’t forget to also change

choose_update : configuration → G → Trobot →Tactive;
update : configuration → G → Trobot →Tactive → info;

Pactole: a Coq Framework for Mobile Robots

Very Parametric (but still useful):
Ï Space
Ï State of Robots (memory, battery level, etc.)
Ï Sensors
Ï Environment (adversary)
Ï How states are updated during the move phase

Main Ingredients:
Ï Robogram observation → Trobot
Ï Demon (scheduler)
Ï Round
Ï Execution

Stream.t configuration

Ï Properties and Proofs

Execution

Execution = infinite sequence of configurations
 a stream of configurations

Definition execution := Stream.t configuration .

How to build streams?
Ï Coinductive type
Ï Constructors

Definition Stream.cons : A → Stream.t A → Stream.t A.
Definition Stream.constant : A → Stream.t A.
Definition Stream. alternate : A → A → Stream.t A.

Execution

Execution = infinite sequence of configurations
 a stream of configurations

Definition execution := Stream.t configuration .

How to build streams?

Ï Coinductive type
Ï Constructors

Definition Stream.cons : A → Stream.t A → Stream.t A.
Definition Stream.constant : A → Stream.t A.
Definition Stream. alternate : A → A → Stream.t A.

Execution

Execution = infinite sequence of configurations
 a stream of configurations

Definition execution := Stream.t configuration .

How to build streams?
Ï Coinductive type
Ï Constructors

Definition Stream.cons : A → Stream.t A → Stream.t A.
Definition Stream.constant : A → Stream.t A.
Definition Stream. alternate : A → A → Stream.t A.

Pactole: a Coq Framework for Mobile Robots

Very Parametric (but still useful):
Ï Space
Ï State of Robots (memory, battery level, etc.)
Ï Sensors
Ï Environment (adversary)
Ï How states are updated during the move phase

Main Ingredients:
Ï Robogram observation → Trobot
Ï Demon (scheduler)
Ï Round
Ï Execution Stream.t configuration
Ï Properties and Proofs

Expressing Properties

We can use all of Coq (inductive/coinductive, higher-order, etc.)
 Follow the mathematical definition

For streams (demon/execution), we define stream operators:

B
Ï P : configuration → Prop
Ï P : execution → Prop

Ï Stream.instant P:

Ï Stream.next P:

Ï Stream. forever P:

Ï Stream.eventually P:

Also useful for defining fairness conditions over demons
(cf. exercises)

Expressing Properties

We can use all of Coq (inductive/coinductive, higher-order, etc.)
 Follow the mathematical definition

For streams (demon/execution), we define stream operators:

B
Ï P : configuration → Prop
Ï P : execution → Prop

Ï Stream.instant P:

Ï Stream.next P:

Ï Stream. forever P:

Ï Stream.eventually P:

Also useful for defining fairness conditions over demons
(cf. exercises)

Expressing Properties

We can use all of Coq (inductive/coinductive, higher-order, etc.)
 Follow the mathematical definition

For streams (demon/execution), we define stream operators:

B
Ï P : configuration → Prop
Ï P : execution → Prop

Ï Stream.instant P:

Ï Stream.next P:

Ï Stream. forever P:

Ï Stream.eventually P:

Also useful for defining fairness conditions over demons
(cf. exercises)

Example of Properties: Gathering

Definition (Gathering Problem)

Robots gather if all (non byzantine) robots reach in finite time
the same location (unknown ahead of time) and then stay there.

(∗ All good robots are at the same location pt (exactly). ∗)
Definition gathered_at (pt : loc) (config : configuration) :=
∀ g, get_location (config (Good g)) = pt.

(∗ At all rounds of the execution e, robots are gathered at pt. ∗)
Definition Gather (pt : loc) (e : execution) : Prop :=
Stream. forever (Stream.instant (gathered_at pt)) e.

(∗ The (infinite) execution e is ∗ eventually ∗ Gathered. ∗)
Definition WillGather (pt : loc) (e : execution) : Prop :=
Stream.eventually (Gather pt) e.

Example of Properties: Gathering

Definition (Gathering Problem)

Robots gather if all (non byzantine) robots reach in finite time
the same location (unknown ahead of time) and then stay there.

(∗ All good robots are at the same location pt (exactly). ∗)
Definition gathered_at (pt : loc) (config : configuration) :=
∀ g, get_location (config (Good g)) = pt.

(∗ At all rounds of the execution e, robots are gathered at pt. ∗)
Definition Gather (pt : loc) (e : execution) : Prop :=
Stream. forever (Stream.instant (gathered_at pt)) e.

(∗ The (infinite) execution e is ∗ eventually ∗ Gathered. ∗)
Definition WillGather (pt : loc) (e : execution) : Prop :=
Stream.eventually (Gather pt) e.

Example of Properties: Gathering

Definition (Gathering Problem)

Robots gather if all (non byzantine) robots reach in finite time
the same location (unknown ahead of time) and then stay there.

(∗ All good robots are at the same location pt (exactly). ∗)
Definition gathered_at (pt : loc) (config : configuration) :=
∀ g, get_location (config (Good g)) = pt.

(∗ At all rounds of the execution e, robots are gathered at pt. ∗)
Definition Gather (pt : loc) (e : execution) : Prop :=
Stream. forever (Stream.instant (gathered_at pt)) e.

(∗ The (infinite) execution e is ∗ eventually ∗ Gathered. ∗)
Definition WillGather (pt : loc) (e : execution) : Prop :=
Stream.eventually (Gather pt) e.

Proving in Pactole

0. Instantiate your setting

Correctness proof:
1. Formalize your problem
2. Write your algorithm

3. Express your algorithm in the global frame of reference

Use geometric patterns that are invariant by change of frame
Lemma round_simplify :∀d config, round r d config == ...

4. Prove that your algorithm solves your problem
following your paper proof

Impossibility proof:
1. Formalize your problem
2. Assume given a robogram (a variable) + its properties
3. Prove that the algorithm does not solve the problem

Proving in Pactole

0. Instantiate your setting

Correctness proof:
1. Formalize your problem
2. Write your algorithm
3. Express your algorithm in the global frame of reference

Use geometric patterns that are invariant by change of frame
Lemma round_simplify :∀d config, round r d config == ...

4. Prove that your algorithm solves your problem
following your paper proof

Impossibility proof:
1. Formalize your problem
2. Assume given a robogram (a variable) + its properties
3. Prove that the algorithm does not solve the problem

Two different points of view

Global View (demon) Local View (robots)
absolute location local frame of reference
robots: Byzantine or not (B / G) indistinguishable robots
identifiers ident =G +B
configuration = ident → location local configuration

observation (abstract type)
robogram

: observation → Trobot
round r d : config → config
execution = Stream.t configuration

Proving in Pactole

0. Instantiate your setting

Correctness proof:
1. Formalize your problem
2. Write your algorithm
3. Express your algorithm in the global frame of reference

Use geometric patterns that are invariant by change of frame
Lemma round_simplify :∀d config, round r d config == ...

4. Prove that your algorithm solves your problem
following your paper proof

Impossibility proof:
1. Formalize your problem
2. Assume given a robogram (a variable) + its properties
3. Prove that the algorithm does not solve the problem

Proving in Pactole

0. Instantiate your setting

Correctness proof:
1. Formalize your problem
2. Write your algorithm
3. Express your algorithm in the global frame of reference

Use geometric patterns that are invariant by change of frame
Lemma round_simplify :∀d config, round r d config == ...

4. Prove that your algorithm solves your problem
following your paper proof

Impossibility proof:
1. Formalize your problem
2. Assume given a robogram (a variable) + its properties
3. Prove that the algorithm does not solve the problem

Universal Algorithms

We can easily formalize what a universal algorithm is:
Ï Under some conditions, the problem is unsolvable
Ï Outside these conditions, the algorithm works

Lemma impossibility : ∀ r, ∃ d, ∀ config,
invalid config → ¬good_execution (execute r d config).

Lemma correctness r : ∀ d, ∀ config,
¬ invalid config → good_execution (execute r d config).

Universal Algorithms

We can easily formalize what a universal algorithm is:
Ï Under some conditions, the problem is unsolvable
Ï Outside these conditions, the algorithm works

Lemma impossibility : ∀ r, ∃ d, ∀ config,
invalid config → ¬good_execution (execute r d config).

Lemma correctness r : ∀ d, ∀ config,
¬ invalid config → good_execution (execute r d config).

Conclusion About Pactole

⊕ Designed for mobile robot networks

Ï cycle built-in
Ï Other features are possible memory, battery, . . .

⊕ Ease of use for specification

Ï Expressive logic
Ï Maths can be directly expressed
Ï Principled bottom-up approach

⊕ Broadly applicable

Ï Highly parametric space, sensors, execution model, . . .
Ï Very expressive
Ï Common base of definition (no more mismatches)

⇒ A junction point for several formal resultsª Caveat
Ï No fully automated procedure (yet)
Ï Building proofs is a lot of work

Conclusion About Pactole

⊕ Designed for mobile robot networks
Ï cycle built-in
Ï Other features are possible memory, battery, . . .

⊕ Ease of use for specification

Ï Expressive logic
Ï Maths can be directly expressed
Ï Principled bottom-up approach

⊕ Broadly applicable

Ï Highly parametric space, sensors, execution model, . . .
Ï Very expressive
Ï Common base of definition (no more mismatches)

⇒ A junction point for several formal resultsª Caveat
Ï No fully automated procedure (yet)
Ï Building proofs is a lot of work

Conclusion About Pactole

⊕ Designed for mobile robot networks
Ï cycle built-in
Ï Other features are possible memory, battery, . . .

⊕ Ease of use for specification
Ï Expressive logic
Ï Maths can be directly expressed
Ï Principled bottom-up approach⊕ Broadly applicable

Ï Highly parametric space, sensors, execution model, . . .
Ï Very expressive
Ï Common base of definition (no more mismatches)

⇒ A junction point for several formal resultsª Caveat
Ï No fully automated procedure (yet)
Ï Building proofs is a lot of work

Conclusion About Pactole

⊕ Designed for mobile robot networks
Ï cycle built-in
Ï Other features are possible memory, battery, . . .

⊕ Ease of use for specification
Ï Expressive logic
Ï Maths can be directly expressed
Ï Principled bottom-up approach⊕ Broadly applicable
Ï Highly parametric space, sensors, execution model, . . .
Ï Very expressive
Ï Common base of definition (no more mismatches)

⇒ A junction point for several formal results

ª Caveat
Ï No fully automated procedure (yet)
Ï Building proofs is a lot of work

Conclusion About Pactole

⊕ Designed for mobile robot networks
Ï cycle built-in
Ï Other features are possible memory, battery, . . .

⊕ Ease of use for specification
Ï Expressive logic
Ï Maths can be directly expressed
Ï Principled bottom-up approach⊕ Broadly applicable
Ï Highly parametric space, sensors, execution model, . . .
Ï Very expressive
Ï Common base of definition (no more mismatches)

⇒ A junction point for several formal resultsª Caveat
Ï No fully automated procedure (yet)
Ï Building proofs is a lot of work

Outline

Motivations

Overview of the Model

The Pactole Formalism

Case Study: Gathering

Pactole in Practice

Gathering

Objective

Have all (non byzantine) robots reach the same location in finite
time and then stay there.

Let’s start simple:
Ï On a real line
Ï No byzantine/crash
Ï FSYNC execution
Ï As much info as you want (but still anonymous)

How to do it? Easy: move to the (bary)center

What about SSYNC? Impossible!

Theorem [Suzuki & Yamashita 99]

Gathering is impossible even for 2 robots only.

Gathering

Objective

Have all (non byzantine) robots reach the same location in finite
time and then stay there.

Let’s start simple:
Ï On a real line
Ï No byzantine/crash
Ï FSYNC execution
Ï As much info as you want (but still anonymous)

How to do it?

Easy: move to the (bary)center

What about SSYNC? Impossible!

Theorem [Suzuki & Yamashita 99]

Gathering is impossible even for 2 robots only.

Gathering

Objective

Have all (non byzantine) robots reach the same location in finite
time and then stay there.

Let’s start simple:
Ï On a real line
Ï No byzantine/crash
Ï FSYNC execution
Ï As much info as you want (but still anonymous)

How to do it? Easy: move to the (bary)center

What about SSYNC? Impossible!

Theorem [Suzuki & Yamashita 99]

Gathering is impossible even for 2 robots only.

Gathering

Objective

Have all (non byzantine) robots reach the same location in finite
time and then stay there.

Let’s start simple:
Ï On a real line
Ï No byzantine/crash
Ï FSYNC execution
Ï As much info as you want (but still anonymous)

How to do it? Easy: move to the (bary)center

What about SSYNC?

Impossible!

Theorem [Suzuki & Yamashita 99]

Gathering is impossible even for 2 robots only.

Gathering

Objective

Have all (non byzantine) robots reach the same location in finite
time and then stay there.

Let’s start simple:
Ï On a real line
Ï No byzantine/crash
Ï FSYNC execution
Ï As much info as you want (but still anonymous)

How to do it? Easy: move to the (bary)center

What about SSYNC? Impossible!

Theorem [Suzuki & Yamashita 99]

Gathering is impossible even for 2 robots only.

Gathering

Objective

Have all (non byzantine) robots reach the same location in finite
time and then stay there.

Let’s start simple:
Ï On a real line
Ï No byzantine/crash
Ï FSYNC execution
Ï As much info as you want (but still anonymous)

How to do it? Easy: move to the (bary)center

What about SSYNC? Impossible!

Theorem [Suzuki & Yamashita 99]

Gathering is impossible even for 2 robots only.

Proof

By symmetry, both robots act the same.

Two cases:

1. Left robot moves to the right one

activate both: swap locations

2. Left robot goes anywhere else

activate only one: same configuration up to scale

In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Proof

By symmetry, both robots act the same.

Two cases:
1. Left robot moves to the right one

activate both: swap locations
2. Left robot goes anywhere else

activate only one: same configuration up to scale

In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Proof

By symmetry, both robots act the same.

Two cases:
1. Left robot moves to the right one

activate both: swap locations

2. Left robot goes anywhere else

activate only one: same configuration up to scale

In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Proof

By symmetry, both robots act the same.

Two cases:

1. Left robot moves to the right one

activate both: swap locations

2. Left robot goes anywhere else

activate only one: same configuration up to scale
In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Proof

By symmetry, both robots act the same.

Two cases:

1. Left robot moves to the right one

activate both: swap locations

2. Left robot goes anywhere else
activate only one: same configuration up to scale

In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Proof

By symmetry, both robots act the same.

Two cases:
1. Left robot moves to the right one

activate both: swap locations
2. Left robot goes anywhere else

activate only one: same configuration up to scale
In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Proof

By symmetry, both robots act the same.

Two cases:
1. Left robot moves to the right one

activate both: swap locations
2. Left robot goes anywhere else

activate only one: same configuration up to scale
In both cases, similar configuration at the next round

Generalizations:
Ï even number of robots
Ï type of line (Q ou R)

Going Beyond Impossibility

Gathering is impossible in general

Why?

Because we cannot break symmetry

Here: two towers of the same size (bivalent config)

What about other configurations?

There is an algorithm! no byzantine, #robots ≥ 3

Definition solGathering (r : robogram) :=
∀ d : demon, SSYNC d → Fair d →
∀ config , ¬bivalent conf→ ∃pt, WillGather pt (execute r d config).

Going Beyond Impossibility

Gathering is impossible in general

Why? Because we cannot break symmetry

Here: two towers of the same size (bivalent config)

What about other configurations?

There is an algorithm! no byzantine, #robots ≥ 3

Definition solGathering (r : robogram) :=
∀ d : demon, SSYNC d → Fair d →
∀ config , ¬bivalent conf→ ∃pt, WillGather pt (execute r d config).

Going Beyond Impossibility

Gathering is impossible in general

Why? Because we cannot break symmetry

Here: two towers of the same size (bivalent config)

What about other configurations?

There is an algorithm! no byzantine, #robots ≥ 3

Definition solGathering (r : robogram) :=
∀ d : demon, SSYNC d → Fair d →
∀ config , ¬bivalent conf→ ∃pt, WillGather pt (execute r d config).

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.
1.

Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.

Move non extreme robots there.
2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.

1. Find the middle of the extreme location.
Move non extreme robots there.

2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.
1. Find the middle of the extreme location.

Move non extreme robots there.
2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.
1. Find the middle of the extreme location.

Move non extreme robots there.
2. If 3 equidistant towers, move extreme robots to the middle.

Gathering Algo

�

Careful to the bivalent config! SSYNC

0. If there is a (unique) majority tower, go there.
1. Find the middle of the extreme location.

Move non extreme robots there.
2. If 3 equidistant towers, move extreme robots to the middle.

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower:

X in 1 round

all robots move toward to same location

2. Otherwise, If 3 towers (no majority):

X in 1 round

idem

3. Otherwise, general case:

X in 2 rounds

back to case 1 or 2 at the next round

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower:

X in 1 round

all robots move toward to same location

2. Otherwise, If 3 towers (no majority):

X in 1 round

idem

3. Otherwise, general case:

X in 2 rounds

back to case 1 or 2 at the next round

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower: X in 1 round
all robots move toward to same location

2. Otherwise, If 3 towers (no majority):

X in 1 round

idem

3. Otherwise, general case:

X in 2 rounds

back to case 1 or 2 at the next round

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower: X in 1 round
all robots move toward to same location

2. Otherwise, If 3 towers (no majority):

X in 1 round

idem

3. Otherwise, general case:

X in 2 rounds

back to case 1 or 2 at the next round

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower: X in 1 round
all robots move toward to same location

2. Otherwise, If 3 towers (no majority): X in 1 round
idem

3. Otherwise, general case:

X in 2 rounds

back to case 1 or 2 at the next round

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower: X in 1 round
all robots move toward to same location

2. Otherwise, If 3 towers (no majority): X in 1 round
idem

3. Otherwise, general case:

X in 2 rounds

back to case 1 or 2 at the next round

Why Does It Work? FSYNC Case

3 configurations to consider:

1. If majority tower: X in 1 round
all robots move toward to same location

2. Otherwise, If 3 towers (no majority): X in 1 round
idem

3. Otherwise, general case: X in 2 rounds
back to case 1 or 2 at the next round

Why Does It Work? SSYNC Case

Idea: adapt FSYNC proofs

Issue: Movement are not done in a single step
 may lead to interference

Hopefully,
Ï in each case, we want to reach a configuration

that does not depend on the robots that should move
Ï there is no memory
Ï we never backtrack

 Just wait long enough fairness

And formally?
Separate proofs for correctness and termination

Why Does It Work? SSYNC Case

Idea: adapt FSYNC proofs

Issue: Movement are not done in a single step
 may lead to interference

Hopefully,
Ï in each case, we want to reach a configuration

that does not depend on the robots that should move
Ï there is no memory
Ï we never backtrack

 Just wait long enough fairness

And formally?
Separate proofs for correctness and termination

Why Does It Work? SSYNC Case

Idea: adapt FSYNC proofs

Issue: Movement are not done in a single step
 may lead to interference

Hopefully,
Ï in each case, we want to reach a configuration

that does not depend on the robots that should move
Ï there is no memory
Ï we never backtrack

 Just wait long enough fairness

And formally?

Separate proofs for correctness and termination

Why Does It Work? SSYNC Case

Idea: adapt FSYNC proofs

Issue: Movement are not done in a single step
 may lead to interference

Hopefully,
Ï in each case, we want to reach a configuration

that does not depend on the robots that should move
Ï there is no memory
Ï we never backtrack

 Just wait long enough fairness

And formally?
Separate proofs for correctness and termination

Correctness and Termination

(Partial) Correctness: if there is a result, it is correct easy!
Ï non bivalent + non gathered =⇒ a robot should move
Ï OK by contrapositive

Termination: there is a result hard!
Ï lexicographic order on configurations
Ï movement =⇒ smaller configuration

Generic 3 towers Majority Gathered

Correctness and Termination

(Partial) Correctness: if there is a result, it is correct easy!
Ï non bivalent + non gathered =⇒ a robot should move
Ï OK by contrapositive

Termination: there is a result hard!
Ï lexicographic order on configurations
Ï movement =⇒ smaller configuration

Generic 3 towers Majority Gathered

Main Steps of the Coq Formalization

1. Ability to detect majority towers observation = multisets

2. Express the configuration after one round
 local/global frame of reference
 depends on the demon (which robots are activated?)

3. In a round, robots always move toward a single location

4. Bivalent configuration cannot appear

5. No backtrack to previous configurations (lexico order)

6. By fairness of the demon, a robot will eventually move

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Going to 2D

Switch « middle » for « center of the smallest enclosing circle ».

�

Problem in the last step!

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

X

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

X

Does it work in general?

Yes, but we need to change the proof cases

Problem in 2D

It is possible to backtrack on the two phases of the algorithm.

X

Does it work in general?
Yes, but we need to change the proof cases

Problem in 2D Solved

Key Ideas
Ï #robots on the circle decreases
 big cases of the proof

Ï Clean/dirty config in each case
Ï clean: config ⊆ circle ∪ center
Ï dirty: otherwise

Ï Avoid looping with triangles

n/a Majority
2. Diameter
3. Triangle

Ï scalene, isosceles
Ï equilateral

4+. Generic

Most cases = same as 1D

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Problem in 2D Solved

Key Ideas
Ï #robots on the circle decreases
 big cases of the proof

Ï Clean/dirty config in each case
Ï clean: config ⊆ circle ∪ center
Ï dirty: otherwise

Ï Avoid looping with triangles

n/a Majority
2. Diameter
3. Triangle

Ï scalene, isosceles
Ï equilateral

4+. Generic

Most cases = same as 1D

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Problem in 2D Solved

Key Ideas
Ï #robots on the circle decreases
 big cases of the proof

Ï Clean/dirty config in each case
Ï clean: config ⊆ circle ∪ center
Ï dirty: otherwise

Ï Avoid looping with triangles

n/a Majority
2. Diameter
3. Triangle

Ï scalene, isosceles
Ï equilateral

4+. Generic

Most cases = same as 1D

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Problem in 2D Solved

Key Ideas
Ï #robots on the circle decreases
 big cases of the proof

Ï Clean/dirty config in each case
Ï clean: config ⊆ circle ∪ center
Ï dirty: otherwise

Ï Avoid looping with triangles

n/a Majority
2. Diameter
3. Triangle

Ï scalene, isosceles
Ï equilateral

4+. Generic

Most cases = same as 1D

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Problem in 2D Solved

Key Ideas
Ï #robots on the circle decreases
 big cases of the proof

Ï Clean/dirty config in each case
Ï clean: config ⊆ circle ∪ center
Ï dirty: otherwise

Ï Avoid looping with triangles

n/a Majority
2. Diameter
3. Triangle

Ï scalene, isosceles
Ï equilateral

4+. Generic

Most cases = same as 1D

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Overall, What Do We Need?

Lots of geometric properties:
Ï Invariance through frame change (similarity)
Ï Evolution of configurations along the algorithm (SEC)
Ï Some classical properties (barycenter)

A few other things:
Ï Permutations
Ï Except for termination, everything is easy (like in 1D)

Outline

Motivations

Overview of the Model

The Pactole Formalism

Case Study: Gathering

Pactole in Practice

Before the Practice Session

Ï Make sure you have downloaded and extracted the Pactole
package from the course website

https://perso.liris.cnrs.fr/xavier.urbain/ens/m2ensl.html

or from the following link (from the pad of the class)
https://www-verimag.imag.fr/~riegl/teaching/package.tgz

Ï Start compiling Pactole:
Use make at the root of the package ≈ 5-6 minutes

Ï Possible internships
Ï Topics (flexible): (non-euclidian) geometry

certification for randomized algo
automated proofs (graphs + swarms)

Ï ANR project SAPPORO (France/Japan)
Ï Collaboration between:

Lyon 1 / Sorbonne univ. / CNAM Paris / Tokyo-Tech.

https://perso.liris.cnrs.fr/xavier.urbain/ens/m2ensl.html
https://www-verimag.imag.fr/~riegl/teaching/package.tgz

Structure of the libraries

Pactole:
Ï Util/

Complements to Coq’s libraries, external libraries
Ï Core/

Core of the formalism
Ï Spaces/

The spaces in which robots evolve
Ï Observations/

The information available for robograms
Ï Models/

Additional constraints on models
Ï CaseStudies/

Ï Gathering
Ï Convergence
Ï Exploration

What do you need to set it up?

Parameters that need to be imported/instantiated:
Ï The core of the formalism
Ï A space in which robots evolve
Ï A type of observation
Ï (optional) Extra constraints on your setting

Ï The number of robots in your case (can be parameters)
Ï A type of state for robots (containing the space)
Ï The choices made by the demon:

Ï the change of frame: frame_choice
Ï the choices for update for active and inactive robots:

update_choice and inactive_choice
Ï The update and inactive functions

Everything is handled through typeclasses
(typeclasses = mechanism for modularity and overloading)

What do you need to set it up?

Parameters that need to be imported/instantiated:
Ï The core of the formalism
Ï A space in which robots evolve
Ï A type of observation
Ï (optional) Extra constraints on your setting

Ï The number of robots in your case (can be parameters)
Ï A type of state for robots (containing the space)
Ï The choices made by the demon:

Ï the change of frame: frame_choice
Ï the choices for update for active and inactive robots:

update_choice and inactive_choice
Ï The update and inactive functions

Everything is handled through typeclasses
(typeclasses = mechanism for modularity and overloading)

Why typeclasses?

Advantages:
Ï Glues everything together
Ï Does not require a specific order
Ï Better separation of concerns
Ï More flexibility for partial instances

But:
Ï Infinite loops if missing instances
Ï Unpredictable results if more than one instance
Ï Use About rather than Check
Ï Rather large and unpleasant unfoldings

How to do it? (1/6)

2 steps:
1. Require Import the files you need

2. Define the adequate Instance s

First step: Require Import
Ï Formalism core

Require Import Pactole . Setting .

Ï Space
Require Import Pactole .Spaces.XXX.

Ï Observations
Require Import Pactole .Observations.XXX.

Ï Extra constraints
Require Import Pactole .Models.XXX.

How to do it? (1/6)

2 steps:
1. Require Import the files you need

2. Define the adequate Instance s

First step: Require Import
Ï Formalism core

Require Import Pactole . Setting .

Ï Space
Require Import Pactole .Spaces.XXX.

Ï Observations
Require Import Pactole .Observations.XXX.

Ï Extra constraints
Require Import Pactole .Models.XXX.

How to do it? (2/6)

Second step: Instances
Ï Formalism core
Ï Space type with decidable equivalence

Class Location := {
location : Type;
location_Setoid :> Setoid location ;
location_EqDec :> EqDec location_Setoid }.

Instance XXX : Location := XXX.

Often: Instance XXX : Location := make_Location XXX.

Ï Observation
Ï Extra contraints (depends on what you want)

Instance Update : RigidSetting .

How to do it? (3/6): Number of Robots

Instance XXX : Names := Robots nG nB.

nG = number of good robots
nB = number of Byzantine robots

nG and nB can be left as variables

Parameter n : nat.
Hypothesis n_non_0 : n 6= 0.
Instance MyRobots : Names := Robots (2 ∗ n) 0.

How to do it? (3/6): Number of Robots

Instance XXX : Names := Robots nG nB.

nG = number of good robots
nB = number of Byzantine robots

nG and nB can be left as variables

Parameter n : nat.
Hypothesis n_non_0 : n 6= 0.
Instance MyRobots : Names := Robots (2 ∗ n) 0.

How to do it? (4/6): State of Robots

Instance XXX : State info := XXX.

Instance Info : State location := OnlyLocation _.

How to do it? (4/6): State of Robots

Instance XXX : State info := XXX.

Instance Info : State location := OnlyLocation _.

Class State {Loc : Location} info := {
get_location : info → location ;

... }.

How to do it? (4/6): State of Robots

Instance XXX : State info := XXX.

Instance Info : State location := OnlyLocation _.

Class State {Loc : Location} info := {
get_location : info → location ;
(∗∗ States are equipped with a decidable equality ∗)
state_Setoid :> Setoid info ;
state_EqDec :> EqDec state_Setoid;

... }.

How to do it? (4/6): State of Robots

Instance XXX : State info := XXX.

Instance Info : State location := OnlyLocation _.

Class State {Loc : Location} info := {
get_location : info → location ;
(∗∗ States are equipped with a decidable equality ∗)
state_Setoid :> Setoid info ;
state_EqDec :> EqDec state_Setoid;
(∗∗ Lifting a change of frame from a location to a full state ∗)
precondition : (location → location) → Prop;
lift : forall f , precondition f → info → info ;

... }.

How to do it? (4/6): State of Robots

Instance XXX : State info := XXX.

Instance Info : State location := OnlyLocation _.

Class State {Loc : Location} info := {
get_location : info → location ;
(∗∗ States are equipped with a decidable equality ∗)
state_Setoid :> Setoid info ;
state_EqDec :> EqDec state_Setoid;
(∗∗ Lifting a change of frame from a location to a full state ∗)
precondition : (location → location) → Prop;
lift : forall f , precondition f → info → info ;
(∗∗ Properties (compatibility , ...) ∗)
lift_id : forall Pid, @lift id Pid == id;
get_location_lift : forall f (Pf : precondition f) state ,
get_location (@lift f Pf state) == f (get_location state);
... }.

In Practice: Template.v (1/2)

Require Import Pactole . Setting .

(∗ Number of robots ∗)
Parameter n : nat.
Axiom n_non_0 : n <> 0.
Instance MyRobots : Names := Robots (2 ∗ n) 0.

(∗ Space and state and robot choice ∗)
Require Import Pactole .Spaces.R2.
Close Scope R_scope.
Instance Loc : Location := make_Location R2.
Instance Info : State location := OnlyLocation (...).
Instance RC : robot_choice location := {
robot_choice_Setoid := location_Setoid }.

(∗ Type of observations ∗)
Require Import Pactole .Observations.MultisetObservation .

How to do it? (5/6): Demon & Robot Choices

Instance XXX : robot_choice Trobot := XXX.
Instance XXX : frame_choice Tframe := XXX.
Instance XXX : update_choice Tactive := XXX.
Instance XXX : inactive_choice Tinactive := XXX.

Instance FC : frame_choice (Similarity . similarity location) :=
FrameChoiceSimilarity .

Instance UC : update_choice unit := {
update_choice_EqDec := unit_eqdec}.

Class frame_choice Tframe := {
frame_choice_bijection : Tframe → bijection location ;
frame_choice_Setoid : Setoid Tframe;
frame_choice_bijection_compat :
Proper (equiv =⇒ equiv) frame_choice_bijection }.

Class update_choice Tactive := {
update_choice_Setoid : Setoid Tactive ;
update_choice_EqDec : EqDec update_choice_Setoid }.

Class inactive_choice Tinactive := { ... }.
Class robot_choice Trobot := { ... }.

How to do it? (6/6): Update Functions

Instance XXX : update_function Tactive := XXX.
Instance XXX : inactive_function Tinactive := XXX.

Instance UpdateFun : update_function bool := {
update := fun _ _ target choice ⇒

if choice then target ratio_1 else target (1 /r 2) }
Instance UpdateFun : inactive_function unit := {

inactive := fun config id _ ⇒ config id }.

Class update_function ‘{robot_choice} ‘{frame_choice} ‘{update_choice} := {
update :> configuration → G → Tframe →Trobot → Tactive → info ;
update_compat :> Proper (equiv =⇒ Logic.eq =⇒ equiv =⇒

equiv =⇒ equiv =⇒ equiv) update }.
Class inactive_function ‘{ inactive_choice} := {

inactive :> configuration → ident → Tinactive → info ;
inactive_compat :> Proper (equiv =⇒ Logic.eq =⇒

equiv =⇒ equiv) inactive }.

In Practice: Template.v (2/2)

(∗ Demon choices ∗)
Require Import Pactole .Models. Similarity .
Instance FC : frame_choice (Similarity . similarity location) :=
FrameChoiceSimilarity .

Instance UC : update_choice unit := {update_choice_EqDec := unit_eqdec}.
Instance IC : inactive_choice unit := {inactive_choice_EqDec := unit_eqdec}.

(∗ Update functions ∗)
Instance UpdateFun : update_function unit := {
update := fun _ _ _ pt _ ⇒pt }.

Proof. now repeat intro . Defined.

Instance InactiveFun : inactive_function unit := {
inactive := fun config id _ ⇒ config id }.

Proof. now repeat intro ; subst . Defined.

(∗ Properties about the framework ∗)
Require Import Pactole .Models.Rigid.
Instance Update : RigidSetting .
Proof. split . now intros . Qed.

Another Example: Gathering/Definitions.v

Require Export Pactole . Setting .
Require Export Pactole .Spaces.RealMetricSpace.
Require Pactole .Spaces. Similarity .

Section GatheringDefinitions .

(∗ We only required the space to be a real metric space.
The actual number of robots is arbitrary . ∗)

Context {Tactive Tinactive : Type}.
Context {N : Names}.
Context {Loc : Location}.
Context {RMS : RealMetricSpace location}.

Global Instance Info : State location := OnlyLocation.

(∗∗ The observation and state updates are still arbitrary . ∗)
Context {Obs : Observation}.
Context {UC : update_choice Tactive}.
Context {IC : inactive_choice Tinactive }.
Context {UpdFun : update_functions Tactive Tinactive}.

Exercises

See file exercises.v.

Ï Modeling of problems
Ï gathering
Ï convergence
Ï exploration with Stop
Ï perpetual exploration
Ï safety

Ï Properties of streams and demons
Ï until / weak until
Ï fully-synchronous / centralized demon

Ï State with lights
Ï Internal: only visible by self (akin to memory)
Ï External: only visible by others
Ï Full: visible by all

Ï Rendezvous by Viglietta

Exercises

See file exercises.v.

Ï Modeling of problems
Ï gathering
Ï convergence
Ï exploration with Stop
Ï perpetual exploration
Ï safety

Ï Properties of streams and demons
Ï until / weak until
Ï fully-synchronous / centralized demon

Ï State with lights
Ï Internal: only visible by self (akin to memory)
Ï External: only visible by others
Ï Full: visible by all

Ï Rendezvous by Viglietta

Solution: Gathering

(∗ All good robots are at the same location [pt] (exactly). ∗)
Definition gathered_at (pt : location) (config : configuration) :=
∀ g, get_location (config (Good g)) == pt.

(∗ At all rounds of the execution [e], robots are gathered at [pt]. ∗)
Definition Gather (pt : location) (e : execution) : Prop :=
Stream. forever (Stream.instant (gathered_at pt)) e.

(∗ The infinite execution [e] is ∗ eventually ∗ [Gather]ed. ∗)
Definition WillGather (pt : location) (e : execution) : Prop :=
Stream.eventually (Gather pt) e.

Definition gathering (e : execution) := ∃ pt, WillGather pt e.

Solution: Convergence

(∗ All robots are contained in the disk defined by [center] and [radius]. ∗)
Definition contained (center : location) (radius : R) config :=
∀ g, dist center (get_location (config (Good g))) ≤ radius .

(∗ All good robots stay confined in a small disk . ∗)
Definition imprisoned (center : location) (radius : R) (e : execution) :=
Stream. forever (Stream.instant (contained center radius)) e.

(∗ The execution will end in a small disk . ∗)
Definition attracted (c : location) (r : R) (e : execution) : Prop :=
Stream.eventually (imprisoned c r) e.

Definition convergence (e : execution) :=
∀ ε: R, 0 < ε→ ∃ pt : location , attracted pt ε e

(∗ A solution ensures convergence for any demon and configuration. ∗)
Definition convergence_sol (r : robogram) : Prop :=
∀ d, Fair d → ∀ config, convergence (execute r d config).

Solution: Exploration with Stop

Definition visited pt config :=
∃ g, get_location (config (Good g)) == pt.

Definition will_be_visited pt e : Prop :=
Stream.eventually (Stream.instant (visited pt)) e.

Definition stall (e : execution) :=
Stream.hd e == Stream.hd (Stream.tl e).

Definition stopped (e : execution) : Prop :=
Stream. forever stall e.

Definition will_stop (e : execution) : Prop :=
Stream.eventually stopped e.

Definition Explore_and_Stop e :=
(∀ pt, will_be_visited pt e) ∧
will_stop e.

Definition is_solution (r : robogram) :=
∀ d config, Fair d → Explore_and_Stop (execute r d config).

Solution: Exploration with Stop & Safety

(∗∗ Perpetual exploration:
each location is visited infinitely often . ∗)

Definition perpetual_exploration e :=
forall pt, Stream. forever (Stream.eventually

(Stream.instant (visited pt))) e.

(∗∗ Safety: stay outside of a given set [danger] of states . ∗)
Definition safe_config (danger : location → Prop) config :=
forall g, ¬danger (config (Good g)).

Definition safe danger e :=
Stream. forever (Stream.instant (safe_config danger)) e.

Solution: Until + FSYNC + Centralized

Inductive until (P Q : t A → Prop) (s : t A) : Prop :=
| NotYet : P s → until P Q (tl s) → until P Q s
| YesNow : Q s → until P Q s.

Definition weak_until P Q s := Stream.forever P s ∨ until P Q s.

Definition FSYNC_da da : Prop :=
∀ config g, activate da config g = true.

Definition FullySynchronous : demon →Prop :=
Stream. forever (Stream.instant FSYNC_da).

Definition centralized_da da :=
∀ id1 id2, activate da id1 = true →

activate da id2 = true → id1 = id2.
Definition centralized (d : demon) :=
Stream. forever (Stream.instant centralized_da) d.

Solution: Lights

(∗ The simple version: only location and lights . ∗)
Context ‘{Location}.
Context {nbLights : nat}.
Definition lights := {k : nat | k < nbLights}.

Instance lights_Setoid : Setoid lights := @sig_Setoid _ _ _.
Instance lights_EqDec : EqDec lights_Setoid := sig_EqDec _ _.

Instance InfoWithLights : State (location ∗ lights) := {|
get_location := fst ;
state_Setoid := prod_Setoid location_Setoid lights_Setoid ;
precondition := fun _ ⇒ True;
lift := fun f info ⇒ (projT1 f (fst info), snd info) |}.

Proof.
+ now intros [].
+ now intros f [].
+ now intros [] [] [].
+ intros f g Hfg [] [] []. simpl . split ; trivial ; []. now apply Hfg.
Defined.

Table of Contents

Motivations

Overview of the Model

The Pactole Formalism

Case Study: Gathering
Impossibility of gathering on a line
Gathering on a line
Going to 2D

Pactole in Practice

	Motivations
	Overview of the Model
	The Pactole Formalism
	Case Study: Gathering
	Impossibility of gathering on a line
	Gathering on a line
	Going to 2D

	Pactole in Practice

