First order rewriting	Equality (decision) Group theory $\begin{array}{rcl} x \cdot e &= x \\ x \cdot x^{-1} &= e \\ (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{array}$ $e \cdot x = x \cdot e \ OK$ Using equations $e \cdot x &= e \cdot (x \cdot e) = e \cdot (x \cdot (x^{-1} \cdot (x^{-1})^{-1})) = e \cdot ((x \cdot x^{-1}) \cdot (x^{-1})^{-1})$		
Xavier Urbain 2024-2025	$= e \cdot (e \cdot (x^{-1})^{-1}) = (e \cdot e) \cdot (x^{-1})^{-1} = e \cdot (x^{-1})^{-1}$ $= (x \cdot x^{-1}) \cdot (x^{-1})^{-1} = x \cdot (x^{-1} \cdot (x^{-1})^{-1}) = x \cdot e$		
X. URBAIN M2 2024-2025 UCBL1 First order	1 X. URBAIN M2 2024-2025 UCBL1 2 First order		
Monosorted Signature : (\mathcal{F}, τ) • \mathcal{F} : set of symbols • τ : function $\mathcal{F} \to \mathbb{N}$, n : arity of f	$\mathcal{T}(\mathcal{F}, X)$: smallest set such that • $x \in X$ term		
Arity 0 : constants			
X. URBAIN M2 2024-2025 UCBL1	3 X. URBAIN M2 2024-2025 UCBL1 4		

Г

First order - subterms	First order	
Terms seen as trees \rightsquigarrow positions $\Lambda = \text{root}$ as functions from positions to $\mathcal{F} \cup X$	Substitution : application $X \rightarrow \mathcal{T}(\mathcal{F}, X)$ Usually : identity except on a finite set	
\mathbb{N}_{+}^{\star} sequences over \mathbb{N}_{+} Concat p and $q : p \cdot q$	Notation postfix : $\sigma(x) \rightsquigarrow x\sigma$	
$p \leq_{pref} q \text{ iff } \exists r \in \mathbb{N}_{+}^{\star}, p \cdot r = q \qquad p \text{ prefix of } q$	Extended to terms by unique $H_{\sigma} : \mathcal{T}(\mathcal{F}, X) \to \mathcal{T}(\mathcal{F}, X)$	
Subterm of t at position $p, t _p = \{q \in \mathbb{N}^*_+ p \cdot q \in \mathcal{P}os(t)\}$ $t _p(q) = t(p \cdot q)$ Subterm relation : $t \triangleright s$ if $\exists p \neq \Lambda$ such that $t _p = s$ (proper subterm) For $t _p (p \in \mathcal{P}os(t))$ and u , Replacement $t[u]_p$, defined by : $\{q \in \mathbb{N}^*_+ q \in \mathcal{P}os(t) \land p \notin_{pref.} q\} \cup \{p \cdot q q \in \mathcal{P}os(u)\}$	• $\Pi_{\sigma}(x) = x \partial \Pi x \Pi \partial S \operatorname{domain}$	
$t[u]_p(q) = t(q) \text{if } q \in \mathcal{P}\text{os}(t) \land p \nleq \text{pref. } q$ $t[u]_p(p \cdot q) = u(q)$ X. Urbain M2 2024-2025 UCBL1 5	Ground substitution if $X \rightarrow \mathcal{T}(\mathcal{F}, \emptyset)$ Rk. Term with variables : seen as all its ground instances X. URBAIN M2 2024-2025 UCBL1 6	
First order	A hint of semantics	
More general? subsumption : $s \ge t$ iff $\exists \sigma, s\sigma = t$ σ more general than τ iff $\exists \theta, \sigma\theta = \tau$	Monosorted For (\mathcal{F}, τ) a signature, \mathcal{F} -algebra :	
Renaming : equivalence relation akin to α -conversion	• Support $A \neq \emptyset$	
$\sigma = \{x_1 \mapsto y_1, \dots, x_n \mapsto y_n\} \qquad y_i \text{ pairwise distincts}$	• Application $f_A : A^n \to A$	
	for all $f \in \mathcal{F}, \tau(f) : n$ $\mathcal{T}(\mathcal{F}, X) \mathcal{F}$ -algebra	
Matching : for $s t$ terms, finding σ such that $s\sigma = t$	For $A \ B \ \mathcal{F}$ -algebras, homomorphism from A to B : application $h : A \to B$ such that for all $f, \tau(f) = n$	
Unification : for $s t$ terms, finding σ such that $s\sigma = t\sigma$	$\forall a_1, \dots, a_n \in A, h(f_A(a_1, \dots, a_n)) = f_B(h(a_1), \dots, h(a_n))$	
 Decidable (1st order, e.g. Robinson) 	A-assignment : homomorphism from $\mathcal{T}(\mathcal{F}, X)$ to A	
If unifiable : unique most general unifier (vanilla)		
	Congruence (equi. relation compatible with A) \sim Quotient	
X. URBAIN M2 2024-2025 UCBL1 7	X. URBAIN M2 2024-2025 UCBL1 8	

A hint of semantics	Equational reasoning		
Multisorted For (S, F, τ) a sorted signature, <i>F</i> -algebra :	Equation : pair of terms of same sort, $s = t$ set of equations E Model : $A \mathcal{F}$ -algebra, $A \models E$ if $\forall s = t \in E$, $\forall A$ -assignment σ , $s\sigma = t\sigma$		
 Support A ≠ Ø for each s ∈ S Application f_A: A_{s1} × ··· × A_{sn} → A_s for all f ∈ F, f : s₁ × ··· × s_n → s T(F, X) F-algebra 	= $_E$ smallest congruence on $\mathcal{T}(\mathcal{F}, X)$ such that $\forall \sigma, \forall s = t \in E, s\sigma =_E t\sigma$ Quotient : $\mathcal{T}(\mathcal{F}, X) / =_E \qquad \rightsquigarrow \mathcal{F}$ -algebra, and $\mathcal{T}(\mathcal{F}, X) / =_E \models E$		
For $A \ B \ \mathcal{F}$ -algebras, homomorphism from A to B : set of applications $h_s : A_s \to B_s$ such that for all $f : s_1 \times \cdots s_n \to s$ $\forall a_1, \cdots, a_n \in A, h_s(f_A(a_1, \cdots, a_n)) = f_B(h_{s_1}(a_1), \cdots, h_{s_n}(a_n))$ <i>A</i> -assignment : homomorphism from $\mathcal{T}(\mathcal{F}, X)$ to A	$s = t$ an equation, word problem related to $s = t$: $E \models ? s = t$ Equational theory (of E) : { $s = t E \models s = t$ }		
Congruence (equi. relation compatible with A) \sim Quotient	To solve it : equational reasoning		
X. URBAIN M2 2024-2025 UCBL1 9	X. URBAIN M2 2024-2025 UCBL1 10		
Equational reasoning $s = s$ Reflexivity	Equational reasoning $(x \cdot I(x)) = e$		
$\frac{s=t}{t=s}$ Symmetry	$e \cdot \overline{I(I(x)) = (x \cdot I(x)) \cdot I(I(x))} \qquad (x \cdot y) \cdot z = x \cdot (y \cdot z)$ $e \cdot \overline{I(I(x)) = (x \cdot I(x)) \cdot I(I(x))} \qquad (x \cdot \overline{I(x)) \cdot I(I(x))} = x \cdot (I(x) \cdot I(x)) \xrightarrow{x \cdot (I(x) \cdot I(x))} x \cdot I(x) = e$ $e \cdot \overline{I(I(x)) = x \cdot (I(x) \cdot I(I(x)))} \qquad x \cdot (I(x) \cdot I(I(x))) = x \cdot e$ $e \cdot \overline{I(I(x)) = x \cdot e} \qquad x \cdot e = x$ $e \cdot \overline{I(I(x)) = x}$		
$\frac{s=t}{s=u} t=u$ Transitivity	$\frac{(x \cdot e) = x}{x = (x \cdot e)} (x \cdot y) \cdot z = x \cdot (y \cdot z) \qquad \vdots \qquad \vdots \\ x \cdot \overline{I(I(y)) = (x \cdot e) \cdot I(I(y))} (x \cdot e) \cdot I(I(y)) = x \cdot (e \cdot I(I(y))) \qquad x \cdot (e \cdot I(I(y))) = x \cdot y \\ x \cdot I(I(y)) = x \cdot y \\ e \cdot \overline{I(I(y)) = e} \cdot x \qquad \vdots \\ \vdots \\ \end{array}$		
$\frac{s=t}{u[s\sigma]_p = u[t\sigma]_p}$ Replacement	$e \cdot x = e \cdot I(I(x)) \qquad e \cdot I(I(x)) = x$ $e \cdot x = x$ [(Birkoff)] if at least a ground term (per sort),		
Starting from E, uses of : Refl., Symmetry, Transitivity, Replacement	$E \vDash s = t \iff E \vdash s = t \iff s \equiv_E t$		
If derivation : $E \vdash s = t$ X. URBAIN M2 2024-2025 UCBL1 11	X. URBAIN M2 2024-2025 UCBL1 12		

A view on $=_E$, equational step $=_E$ a bit rich \rightsquigarrow smaller relation \nleftrightarrow_E smallest reflexive pre-congruence that contains E $(=_E : \leftrightarrow_E^*)$ $s \leftrightarrow_E t : \exists u = v \in E, \sigma$ substitution, $s = s[u\sigma]_p t = s[v\sigma]_p$ Notation $s \leftrightarrow_{u=v,\sigma}^p t$	A view on = _E , equational step Group theory, E: $ \begin{array}{rcl} (U) & x \cdot e &= x \\ (I) & x \cdot I(x) &= e \\ (A) & (x \cdot y) \cdot z &= x \cdot (y \cdot z) \end{array} $ $ \begin{array}{rcl} e \cdot x & \longleftrightarrow_{N}^{2} e \cdot (x \cdot e) \longleftrightarrow_{I}^{22} e \cdot (x \cdot (I(x) \cdot I(I(x)))) \\ & \longleftrightarrow_{A}^{2} e \cdot ((x \cdot I(x)) \cdot I(I(x))) \longleftrightarrow_{I}^{21} e \cdot (e \cdot I(I(x))) \\ & \longleftrightarrow_{A}^{\Lambda} (e \cdot e) \cdot I(I(x)) \longleftrightarrow_{N}^{1} e \cdot I(I(x)) \longleftrightarrow_{I}^{1} (x \cdot I(x)) \cdot I(I(x)) \\ & \longleftrightarrow_{A}^{\Lambda} x \cdot (I(x) \cdot I(I(x))) \longleftrightarrow_{I}^{2} x \cdot e \end{array} $
X. URBAIN M2 2024-2025 UCBL1 13 Unification problem	X. URBAIN M2 2024-2025 UCBL1 14 Unification problem, example
Definition	
$T(\mathcal{F}, X)$ term algebra. Unification problem : • T, • \bot , • $s_1 = t_1 \land \ldots \land s_n = t_n$.	$f(x, a) = f(f(b, y), y) \land y = a$ Question : is there any σ such that $f(x, a)\sigma \equiv f(f(b, y), y)\sigma$ AND $y\sigma \equiv a$? Here yes, though not always the case
Every substitution solution of \top . No substitution solution of \bot . σ solution of $s_1 = t_1 \land \ldots \land s_n = t_n$ if for all $i = 1, \ldots, n, s_i \sigma \equiv t_i \sigma$. Set of solutions of $P : U(P)$. X. URBAIN M2 2024-2025 UCBL1 15	X. URBAIN M2 2024-2025 UCBL1 16

Unification problem, mgu

Theorem.

 $T(\mathcal{F}, X)$ term algebra, *P* unification problem.

- $U(P) = \emptyset$,
- $U(P) \neq \emptyset$, main solution (most general) σ unique (up to renaming).
 - σ Most General Unifier mgu(P).

Proof : translation to equivalent and easier problem.

Unification problem, mgu

Theorem.

 $T(\mathcal{F}, X)$ term algebra, P unification problem.

- $U(P) = \emptyset$,
- $U(P) \neq \emptyset$, main solution (most general) σ unique (up to renaming). σ Most General Unifier mgu(P).

Proof : translation to equivalent and easier problem.

Definition P_1, P_2 unification problems over $T(\mathcal{F}, X)$. P_1 and P_2 equivalents if $U(P_1) = U(P_2)$.	Definition P unification problem sur T(F, X). P solved form : T, I, x₁ = t₁ A = A x = t where x₁ pairwise distincts outside t: 		
X. URBAIN M2 2024-2025 UCBL1 17	• $x_1 = t_1 \land \ldots \land x_n = t_n$ where x_i pairwise distincts, outside t_j . X. URBAIN M2 2024-2025 UCBL1 17		
Solved forms, solutions	Transformation rules 1/2		
Proposition. $P \equiv x_1 = t_1 \land \ldots \land x_n = t_n \text{ solved form, } \theta = \{x_1 \coloneqq t_1, \ldots, x_n \coloneqq t_n\}$	Trivial $\frac{s=s}{T}$		
Then U(P) = { $\theta \sigma \mid \sigma$ substitution} Proof : for σ solution, $\sigma = \theta \sigma$.	Т		
• $x = x_i \in Dom(\theta)$ $x \theta \sigma \equiv x_i \theta \sigma = (x_i \theta) \sigma = t_i \sigma = x_i \sigma = x \sigma.$	Decompose $\frac{f(s_1, \dots, s_n) = f(t_1, \dots, t_n)}{s_1 = t_1 \land \dots \land s_n = t_n}$		
• $x \neq x_i \in \text{Dom}(\theta)$ $x\theta\sigma = (x\theta)\sigma = x\sigma$. For $\sigma : x_i\theta\sigma = (x_i\theta)\sigma = t_i\sigma = t_i\theta\sigma$ hence $\theta\sigma$ solution.	Incompat. $\frac{f(s_1, \dots, s_n) = g(t_1, \dots, t_m)}{\bot} \text{if } f \neq g$		
Definition For <i>P</i> equivalent to solved form $x_1 = t_1 \land \ldots \land x_n = t_n$, $mgu(P) = \{x_1 := t_1, \ldots, x_n := t_n\}.$	Union $\frac{x = y \land P}{x = y \land P\{x \coloneqq y\}} \text{if } x, y \in \text{Var}(P)$		
$f(x,a) = f(f(b,y), y) \land y = a \text{ equivalent to } x = f(b,a) \land y = a,$ x. Urbangul(2B2)2025{xcbl1}f(b,a), $y \coloneqq a$ }.	X. URBAIN M2 2024-2025 UCBL1 19		

Rules de transformation 2/2	Rules : properties		
	Set of rules U defines an algorithm		
Replace $x = s \land P$ $x = s \land P\{x := s\}$ if $x \in Var(P) \smallsetminus Var(s)$ and $s \notin X$.Fusion $\frac{x = s \land x = t}{x = s \land s = t}$ if $x \in X, s, t \notin X$ and $ s \le t $. $x_1 = t_1[x_2]$ $\land x_2 = t_2[x_1]$	Theorem.Transformation correct.I.e., if $P_0 \rightarrow_U P_1$ then P_0, P_1 equivalent.Theorem. \rightarrow_U well-founded.I.e., no infinite chain $P_0 \rightarrow_U P_1 \rightarrow_U \dots \rightarrow_U P_n \rightarrow_U P_{n+1} \rightarrow_U \dots$		
Occur. check $\frac{x_1 = t_1[x_2]_{p_1} \land \dots \land x_n = t_n[x_1]_{p_n}}{\bot} \text{if } p_1 \cdot \dots \cdot p_n \neq \Lambda$	Theorem.Transformation complete.I.e., when U not applicable, then P solved form.		
X. URBAIN M2 2024-2025 UCBL1 20	X. URBAIN M2 2024-2025 UCBL1 21		
Rules : termination	Rules : termination		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} Proof: \to_U \text{ included into > well-founded.} \\ & (I_1(P), I_2(P), I_3(P)) (\geq_1, \geq_2, \geq_3)_{lex} (I_1(Q), I_2(Q), I_3(Q)) \\ In fact: & I \uparrow & I \uparrow \\ & P & \geq & Q \end{array}$		
Definition	Definition		
$\leq_{1}, \dots, \leq_{n} \text{ over non empty } D_{1}, \dots, D_{n}.$ Lexicographic composition : disjoint union \simeq and \prec : $\begin{pmatrix} x_{1}, \dots, x_{n} \end{pmatrix} \simeq \begin{pmatrix} y_{1}, \dots, y_{n} \end{pmatrix} \text{if } \forall i = 1, \dots, n x_{i} \simeq_{i} y_{i} \\ (x_{1}, \dots, x_{n}) \prec (y_{1}, \dots, y_{n}) \text{if } \exists j \in \{1, \dots, n\} \forall i = 1, \dots, j-1 \\ x_{i} \simeq_{i} y_{i} \land x_{j} \prec_{j} y_{j} \end{pmatrix}$	Multiset extension :(reflexive) transitive closure of $\leq_{mul}^{1} = \simeq_{mul}^{1} \cup \prec_{mul}^{1}$ $M \cup \{x\} \simeq_{mul}^{1} M \cup \{y\}$ if $x \simeq y$ $M \cup \{y_{1}, \dots, y_{n}\} \prec_{mul}^{1} M \cup \{x\}$ if $\forall j \in \{1, \dots, n\}$ $y_{j} \prec x$		
X. URBAIN M2 2024-2025 UCBL1 22	X. URBAIN M2 2024-2025 UCBL1 22		

Rules : ter	rmination			Rules : te	ermination			
Proof : \rightarrow_U included into > well-founded.			Proof : \rightarrow_U included into > well-founded.					
$(I_1(P), I_2(P), I_3(P))$ (\geq_1, \geq_2, \geq_3) _{lex} $(I_1(Q), I_2(Q), I_3(Q))$			$(I_1(P), I_2(P), I_3(P)) (\geq_1, \geq_2, \geq_3)_{lex} (I_1(Q), I_2(Q), I_3(Q))$			1		
In fact :	<i>I</i> ↑	/ (-1)-2)-0)100	I ↑	In fact :	$I\uparrow$	(-1)-2)-0)100	I↑	
	P	≥	Q		P	≥	Q	
			·				·	
Definition	1 1 1		·	Definition				
		rrence in $P \equiv x =$	$t \wedge P'$		Size of $s = t : max(s , t)$.			
		not solved in P .			Itiset of sizes in I			
\geq_1 usual orde	ering on ℕ.			\geq_2 multiset	extention usual o	rdering on ℕ.		
Union	$>_1$			Union		>1		
Replace	$>_1$			Replace		>1		
Remainder	\geq_1			Triv., Dec.,	, Incomp., Occ.	$\geq_1 >_2$		
				Fusion		$\geq_1 \geq_2$		
X. URBAIN M2 2024-2	2025 UCBL1		22	X. URBAIN M2 202	24-2025 UCBL1			22
Rules : ter	rmination			Rules : c	ompleteness	;		
Proof : \rightarrow_U in	cluded into > we	ell-founded.						
$(I_1(P), I_2(P), I_3(P)) (\geq_1, \geq_2, \geq_3)_{lex} (I_1(Q), I_2(Q), I_3(Q))$		Proof : P with U not applicable, different from \top and \bot .						
In fact :	$I\uparrow$		$I\uparrow$					
	P	≥	Q	Neither Dec	compose nor Inco	ompat. hence $P \equiv$	$= x_1 = t_1 \wedge \ldots \wedge x_n = t_n.$	
Definition								
$I_3(P)$ = number of equations with member $\in X$.		No Fusion hence x_i pairwise distincts.						
\geq_3 usual orde	•		1.					
				If (at least)	two occurrences	of x_i in P :		
Union		$>_1$		• $t_i \triangleright x_i$ impossible : no Occur. check.				
Remplace		$>_1$		• x_i being t_i impossible : no Trivial.				
Triv., Dec., Incomp., Occ. $\geq_1 >_2$								
Fusion		$\geq_1 \geq_2 >_3$		• $t_j \triangleright x_i, i \neq j$ impossible : no Remplace.				
X. URBAIN M2 2024-2	2025 UCBL1		22	X. Urbain M2 202	24-2025 UCBL1			23
OTISSUIT ME EULT I	0002.							

Examples **Rules : completeness** $\mathcal{F} = \{f, g, a, b\}$, with f binary, g unary, a and b constants, $X = \{x, y, z\}$. If (at least) two occurrences of x_i in P (cont.) : $U(f(a,b) = f(a,a)) = \emptyset$ • x_i being t_i , $j \neq i$ hence j^{th} equation : $x_i = x_i$. • $t_i \notin X$ impossible : no Remplace with x_i . f(a,b) = f(a,a)Decompose • $t_i \in X$, appearing outside *i*th equation impossible : no Union. $a = a \land b = a$ Trivial • $t_i \in X, t_i \equiv x'_i$, uniquely in i^{th} equation : b = aIncompat. $P \equiv x_1 = t_1 \land \dots \land x_{i-1} = t_{i-1} \land x'_i = x_i \land x_{i+1} = t_{i+1} \land \dots \land x_n = t_n$ **Corollary**. P unification problem, • $U(P) = \emptyset$ or • $U(P) \neq \emptyset$ with *mgu* unique (up to renaming). X. URBAIN M2 2024-2025 UCBL1 24 X. URBAIN M2 2024-2025 UCBL1 25 **Examples** Examples $\mathcal{F} = \{f, g, a, b\}$, with f binary, g unary, a and b constants, $X = \{x, y, z\}$. $\mathcal{F} = \{f, g, a, b\}$, with f binary, g unary, a and b constants, $X = \{x, y, z\}$. $U(f(x,y) = f(z,z)) = \{x := z, y := z\}$ $\mathsf{U}(f(x, f(a, y)) = f(f(b, z), x)) = \emptyset$ Decompose $\frac{f(x,y) = f(z,z)}{x = z \land y = z}$ f(x, f(a, y)) = f(f(b, z), x)Decompose $x = f(b, z) \wedge f(a, y) = x$ Fusion $x = f(b, z) \wedge f(a, y) = f(b, z)$ Decompose $x = f(b, z) \wedge a = b \wedge y = z$ Incompat.

Examples

 $\mathcal{F} = \{f, g, a, b\}, \text{ with } f \text{ binary, } g \text{ unary, } a \text{ and } b \text{ constants, } X = \{x, y, z\}.$ $\mathsf{U}(f(f(a, y), f(y, z)) = f(x, x)) = \{x \coloneqq f(a, a), y \coloneqq a, z \coloneqq a\}$

Examples

 $\mathcal{F} = \{f, g, a, b\}$, with f binary, g unary, a and b constants, $X = \{x, y, z\}$. U $(f(x, f(x, z)) = f(f(y, z), y) = \emptyset$

Decompose Fusion Decompose Replace	$f(f(a, y), f(y, z)) = f(x, x)$ $f(a, y) = x \land f(y, z) = x$ $f(a, y) = x \land f(y, z) = f(a, y)$ $f(a, y) = x \land y = a \land z = y$ $f(a, a) = x \land y = a \land z = a$	Decompose Occur. check	$r = t(y, z) \land t(r, z) = y$	
X. URBAIN M2 2024-2025 UCBL1	25	X. URBAIN M2 2024-2025 UCBL1		25