Simulations numériques du champ magnétique terrestre

Nathanaël Schaeffer

ISTerre / CNRS / Université Grenoble Alpes

IDHCP, 10 May 2022

nathanael.schaeffer@univ-grenoble-alpes.fr

Foreword: Are planetary magnetic fields useful?

• Earth has life and a magnetic field.

Foreword: Are planetary magnetic fields useful?

- Earth has life and a magnetic field.
- Mars has no life and no magnetic field.

- Earth has life and a magnetic field.
- Mars has no life and no magnetic field.
- But a magnetic field does NOT shield from cosmic rays, the atmosphere does.

Foreword: Are planetary magnetic fields useful?

- Earth has life and a magnetic field.
- Mars has no life and no magnetic field.
- But a magnetic field does NOT shield from cosmic rays, the atmosphere does.
- A magnetic field **may** be important to keep an atmosphere from being eroded by solar/stellar wind, at least in case the surface gravity is not enough.

Lammer+ 2008, Space Science Reviews, Atmospheric escape and evolution of terrestrial planets and satellites.

Outline

The core and magnetic field of the Earth

- Observations and facts
- The geomagnetic field
- A dynamic magnetic field
- 2 Numerical models
 - 20+ years of simulations
 - Recent advances

3 Numerical method

4 Reversals

- 20+ years of reversing simulations
- Geodynamo models vs Earth
- Reversals elsewhere
- Discussion & Outlook

Structure of the Earth

4 / 46

Geomagnetic field measurements

Started by Gauss (and others) in 1836, today we have many magnetic ground observatories

Geomagnetic field measurements

Started by Gauss (and others) in 1836, today we have many magnetic ground observatories

Measures from satellites since 1979. Currently 3 dedicated satellites (SWARM).

Geomagnetic field models

Magnetic field at the Core-Mantle Boundary (CMB) in 2015. (CHAOS-6 model, from Finlay+ 2016).

The magnetic north pole is moving

Polarity reversals

• A superchron with the same polarity for almost 40 Millions years.

 \bullet Frequently reversing periods, where a given polarity stays for 1 Million year or less. from Hulot et al., 2010

Paleointensity models: sint2000

• Typical intensity variations from 0.5 to 1.5 times the mean – factor 3 between min and max outside reversals.

from Valet, Meynadier, and Guyodo, 2005.

A very old magnetic field

from Landeau et al., 2022, Sustaining Earth's magnetic dynamo, Nature Review Earth & Environment.

Cool facts about the Earth's core

- A broad range of time-scales
 - from months (SV) to million years (reversals)
- Viscosity of water
 - Earth's spin (Coriolis force) dominates the dynamics $\Leftrightarrow E \sim 10^{-15}$
 - Momentum diffuses much slower than magnetic field $\Leftrightarrow Pm \sim 10^{-5}$
- Large scale motions at the top of the core have speeds around 10 km/year (0.3 mm/sec, turnover time is about 200 years)
 - Turbulent motion (very high Reynolds number $Re \gtrsim 10^8$).
 - Magnetic Reynolds number $Rm \gtrsim 1000$ (moderate compared to astrophysical objects)
 - Earth's spin (Coriolis force) dominates the dynamics $\Leftrightarrow Ro \sim 3 \times 10^{-6}$.

- Magnetic field at the surface is dominated by a tilted dipole.
- Magnetic energy dominates kinetic energy by a factor 10⁴ (4 mT estimated in the core Gillet+ 2010, 0.5 mT or 5 gauss at the surface).
 - Earth's spin (Coriolis force) still dominates the fast dynamics \Leftrightarrow $Le \sim 10^{-4}$ (e.g. Jault 2008).
 - ▶ The magnetic field and the Coriolis force influence long-term dynamics $\Leftrightarrow \Lambda \gtrsim 10$.
- Heat flux extracted by the mantle (~ 10 TW, < 100mW/m²).
 - \blacktriangleright Strong convection (very high Rayleigh number $Ra \gg 10^{20}$? Probably many times critical.
 - A (thermo-chemical) convection-driven dynamo produces the Earth's magnetic field.

Outline

The core and magnetic field of the Earth

2 Numerical models

- 20+ years of simulations
- Recent advances

3 Numerical method

4 Reversals

• 1995 : Glatzmaier & Roberts

- Chebychev, 64 × 32 × 49
- hyperviscosity
- Earth-like, reversals, and all the hype.

• 1995 : Glatzmaier & Roberts

- Chebychev, 64 × 32 × 49
- hyperviscosity
- Earth-like, reversals, and all the hype.

• 2006 : Christensen & Aubert

- Chebychev, 168 × 336 × 97
- $E \ge 3 \times 10^{-6}$, $Pm \ge 0.06$
- Extensive parameter study, scaling laws.

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2006 : Christensen & Aubert
 - Chebychev, 168 × 336 × 97
 - $E \ge 3 \times 10^{-6}$, $Pm \ge 0.06$
 - Extensive parameter study, scaling laws.

• 2008 : Kageyama+

- Yin-Yang grid, 2048 × 1024 × 511
- $E = 10^{-6}$, Re=700, Pm=1
- convection sheets, zonal jets.

- 1995 : Glatzmaier & Roberts
 - Chebychev, 64 × 32 × 49
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2006 : Christensen & Aubert
 - Chebychev, 168 × 336 × 97
 - $E \ge 3 \times 10^{-6}$, $Pm \ge 0.06$
 - Extensive parameter study, scaling laws.
- 2008 : Kageyama+
 - Yin-Yang grid, 2048 × 1024 × 511
 - $E = 10^{-6}$, Re=700, Pm=1
 - convection sheets, zonal jets.

• 2013 : Aubert+

- Chebychev, 768_× 384 × 160
- $E = 2.5 \times 10^{-5}$, Re=1000, Pm=0.2
- Coupled Earth, westward drift got right.

Earth: $E = 10^{-15}$, $Pm = 10^{-6}$. From Schaeffer et al., 2017.

Recent advances (I)

A series of recent studies at lower viscosities ($E \le 10^{-6}$, Yadav et al., 2016; Aubert, Gastine, and Fournier, 2017; Schaeffer et al., 2017) all point in the same direction:

- Stronger magnetic field, a Magneto-Buoyancy-Coriolis force balance replaces the inertia-driven regimes.
- The magnetic field changes the scale of convection to larger scales.

from Yadav et al., 2016

Recent advances (II)

- Schaeffer et al., 2017 highlights the very large spatial and temporal fluctuations of the magnetic field.
- Intense polar vortices: thermal winds, magnetically shaped.

Recent advances (III)

- Schaeffer et al., 2017 highlights the density segregation between polar and equatorial regions.
- Looking at the numbers, the density contrast is too low for being seen by seismology, except if composition variations contribute too.

Ostensibly lacking in these models are:

- slow MAC waves difficult to sort out?
- stably stratified layer & possible double-diffusive effects.
- reversals simulations are too short...

Outline

1 The core and magnetic field of the Earth

2 Numerical models

Numerical method

Equations of rotating MHD in planetary cores

Navier-Stokes equation

 $\partial_t \mathbf{u} + (2\Omega \, \mathbf{e}_z + \nabla \times \mathbf{u}) \times \mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} + (\nabla \times \mathbf{b}) \times \mathbf{b} - \alpha g \, T \, \vec{r}$

Induction equation

$$\partial_t \mathbf{b} = \nabla \times (\mathbf{u} \times \mathbf{b}) + \eta \Delta \mathbf{b}$$

Temperature equation

$$\partial_t T + \mathbf{u} \cdot \nabla T = \kappa \Delta T$$

 $E = \nu/D^2 \Omega \sim 10^{-15}$ $Pm = \nu \mu_0 \sigma \sim 10^{-5}$

 $Ra = \Delta T \alpha g D^3 / \kappa \nu \gg 1 \quad (?)$ $Pr = \nu / \kappa \sim 1$

Equations of rotating MHD in planetary cores

Navier-Stokes equation

Pressure gradient + Coriolis force

+ Magnetic force + Archimedes force + viscous drag

Induction equation

magnetic field variations = Induction + ohmic losses

Temperature equation

temperature variations = Advection + thermal conduction

 $E = \nu/D^2 \Omega \sim 10^{-15}$ $Pm = \nu \mu_0 \sigma \sim 10^{-5}$

 $Ra = \Delta T \alpha g D^3 / \kappa \nu \gg 1$ (?) $Pr = \nu / \kappa \sim 1$

the standard framework to solve the problem

• Divergence-free vector fields are represented with two scalar fields

$$\mathbf{u} = \nabla \times (\mathbf{r}T) + \nabla \times \nabla \times (\mathbf{r}P)$$

• Spherical harmonic decomposition:

$$P(r, \theta, \phi) = \sum_{\ell} \sum_{m} P_{\ell,m}(r) Y_m^{\ell}(\theta, \phi)$$

• Finite difference discretization of $P_{\ell,m}(r)$.

the standard framework to solve the problem

• Divergence-free vector fields are represented with two scalar fields

$$\mathbf{u} = \nabla \times (\mathbf{r}T) + \nabla \times \nabla \times (\mathbf{r}P)$$

• Spherical harmonic decomposition:

$$P(r,\theta,\phi) = \sum_{\ell} \sum_{m} P_{\ell,m}(r) Y_m^{\ell}(\theta,\phi)$$

• Finite difference discretization of $P_{\ell,m}(r)$.

Pros:

- Two scalars instead of 3 components and zero-divergence constrain enforced.
- Spherical harmonics make the magnetic boundary condition easy;
- Spherical harmonics are concise: less data to describe the field;
- No problem at the poles.

• At least one order of magnitude faster than local methods

Cons:

• It is a spectral method: more difficult to parallelize.

Discretized equations

 $Mu_{t+dt} = Lu_t + NL(u_t)$

Discretized equations

$$Mu_{t+dt} = Lu_t + NL(u_t)$$

- Evaluate linear term Lu
 - ▶ sparse matrix L, band-diagonal \rightarrow easy, cheap, independent
 - bandwidth limited

Discretized equations

 $Mu_{t+dt} = Lu_t + NL(u_t)$

- Evaluate linear term Lu
 - ▶ sparse matrix L, band-diagonal → easy, cheap, independent
 - bandwidth limited
- Evaluate non-linear term *NL*(*u*)
 - in spatial space using spherical harmonic transforms \rightarrow costly, coupling in θ, ϕ
 - FFT $O(n^3 \log n)$ is bandwidth limited, Legendre transform $O(n^4)$ not so much
- Solve for u_{t+dt} by "inverting" matrix M.
 - sparse matrix M, band-diagonal
 - Thomas algorithm (Gauss substitution) \rightarrow cheap, coupling in r, sequential in r
 - bandwidth limited

the SHTns library: efficient spherical harmonic transforms

- blazingly fast.
- on-the-fly transforms (do not store matrix coefficients, compute them as needed).
- on-the-fly rotations (do not store Wigner-d matrices).
- use FFTW library for the Fourier transform, or VkFFT on GPU.
- hand vectorized routines (support AVX & AVX-512, VSX, Neon).
- Tested up to degree 65000+.

SHTns library is freely available

https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns

A high performance simulation code for rotating incompressible flows and magnetic fields in spherical shells.

- written in C++
- Free & Open-source software https://nschaeff.bitbucket.io/xshells
- Compilers: gnu or intel (OpenMP 4 support needed)
- Dependencies: FFTW (or MKL) and SHTns
- Parallelization: domain decomposition with MPI + OpenMP.
- ongoing port to GPU (cuda).

A high performance simulation code for rotating incompressible flows and magnetic fields in spherical shells.

- written in C++
- Free & Open-source software https://nschaeff.bitbucket.io/xshells
- Compilers: gnu or intel (OpenMP 4 support needed)
- Dependencies: FFTW (or MKL) and SHTns
- Parallelization: domain decomposition with MPI + OpenMP.
- ongoing port to GPU (cuda).

the XSHELLS code: key idea for parallel performance

limit communications as much as possible

- domain decomposition favors the SH transform: radial decomposition
- do not use "transpose" data (no MPI_Alltoall)
- linear solve phase is tricky to parallelize efficiently

the XSHELLS code: key idea for parallel performance

limit communications as much as possible

- domain decomposition favors the SH transform: radial decomposition
- do not use "transpose" data (no MPI_Alltoall)
- linear solve phase is tricky to parallelize efficiently

Porting of XSHELLS on GPU with CUDA

Except the Legendre transform, everything is "memory bound". GPU bring a lot more memory handwidth.

- Ongoing effort
- About 75% of the computations are ported.
- About 900 lines of additional GPU specific code so far.

XSHELLS code is freely available https://gricad-gitlab. univ-grenoble-alpes.fr/ schaeffn/xshells

XSHELLS strong scaling @ NR=512, Lmax=426

Outline

The core and magnetic field of the Earth

2 Numerical models

3 Numerical method

4 Reversals

- 20+ years of reversing simulations
- Geodynamo models vs Earth
- Reversals elsewhere
- Discussion & Outlook

• 1995 : Glatzmaier & Roberts

- hyperviscosity
- Earth-like, reversals, and all the hype.

- 1995 : Glatzmaier & Roberts
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2002 : Kutzner & Christensen
 - $E \ge 10^{-4}$, Pm > 0.5
 - Extensive study, reversal controls.

- 1995 : Glatzmaier & Roberts
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2002 : Kutzner & Christensen
 - $E \ge 10^{-4}$, Pm > 0.5
 - Extensive study, reversal controls.
- 2005 : Takahashi+
 - $E = 10^{-5}$, Pm = 0.5.
 - only reverses in the transient (t < 1, see Christensen, 2011).

- 1995 : Glatzmaier & Roberts
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2002 : Kutzner & Christensen
 - $E \ge 10^{-4}$, Pm > 0.5
 - Extensive study, reversal controls.
- 2005 : Takahashi+
 - $E = 10^{-5}$, Pm = 0.5.
 - only reverses in the transient (t < 1, see Christensen, 2011).
- 2008 : Aubert+
 - $E \geq 3 \times 10^{-4}$, $Pm \geq 3$
 - tracking internal mechanism (+many other).

- 1995 : Glatzmaier & Roberts
 - hyperviscosity
 - Earth-like, reversals, and all the hype.
- 2002 : Kutzner & Christensen
 - $E \ge 10^{-4}$, Pm > 0.5
 - Extensive study, reversal controls.
- 2005 : Takahashi+
 - $E = 10^{-5}$, Pm = 0.5.
 - only reverses in the transient (t < 1, see Christensen, 2011).
- 2008 : Aubert+
 - $E \geq 3 \times 10^{-4}$, $Pm \geq 3$
 - tracking internal mechanism (+many other).
- 2016 : Sheyko+
 - $E = 2.4 \times 10^{-6}$, Pm = 0.04
 - Parker waves, quasi-periodic, low field

When do geodynamo models reverse?

Kutzner and Christensen, 2002

Olson, Glatzmaier, and Coe, 2011

Examples of reversing dynamos

U.R. Christensen/Physics of the Earth and Planetary Interiors 187 (2011) 157-169

From Christensen, 2011: $E = 3 \times 10^{-4}$, Pm = 3; large fluctuations of intensity.

Examples of reversing dynamos

- geodynamo run at Re=217, Pm=3, $E_{mag}/E_{kin}=0.84$
- 3 reversals within 2 Myr
- same polarity for more than 17 Myr (superchron)

	all	reversing numerics		
	numerics	high viscosity	medium viscosity	Earth's core
Е	$\geq 10^{-7}$	$\geq 10^{-4}$	$\geq 2.4 imes 10^{-6}$	$\simeq 10^{-15}$
Pm	\geq 0.05	\geq 0.67	\geq 0.05	$\simeq 10^{-6}$
E_m/E_k	\leq 50	< 0.3	< 0.3	$\simeq 10000$
Λ	\leq 40		< 0.4	$\simeq 10$
reversal mechanism		inertia driven	Parker waves	??

	all	reversing numerics		
	numerics	high viscosity	medium viscosity	Earth's core
Е	$\geq 10^{-7}$	$\geq 10^{-4}$	$\geq 2.4 imes 10^{-6}$	$\simeq 10^{-15}$
Pm	\geq 0.05	\geq 0.67	\geq 0.05	$\simeq 10^{-6}$
E_m/E_k	\leq 50	< 0.3	< 0.3	$\simeq 10000$
Λ	\leq 40		< 0.4	$\simeq 10$
reversal mechanism		inertia driven	Parker waves	??

Successes:

• these models reverse polarity

	all	reversing numerics		
	numerics	high viscosity	medium viscosity	Earth's core
Е	$\geq 10^{-7}$	$\geq 10^{-4}$	$\geq 2.4 imes 10^{-6}$	$\simeq 10^{-15}$
Рm	\geq 0.05	\geq 0.67	\geq 0.05	$\simeq 10^{-6}$
E_m/E_k	\leq 50	< 0.3	< 0.3	$\simeq 10000$
Λ	\leq 40		< 0.4	$\simeq 10$
reversal mechanism		inertia driven	Parker waves	??

Successes:

• these models reverse polarity

Problems:

- Parker waves: periodic, weak-field: impossible in the Earth's core.
- inertia driven: impossible to happen in the Earth's core.

Inertia-driven reversing dynamos operate at $Ro_{loc} = 0.1$ (e.g. Olson and Christensen, 2006). With $Ro_{loc} = Ro R/\ell^*$, where ℓ^* is a typical scale of convection.

If polarity reversals were inertia-driven:

For the Earth, $Ro = 3 \times 10^{-6} \Rightarrow \ell^{\star} = 100m$. What do we know about ℓ^{\star} in the core?

Inertia-driven reversing dynamos operate at $Ro_{loc} = 0.1$ (e.g. Olson and Christensen, 2006). With $Ro_{loc} = Ro R/\ell^*$, where ℓ^* is a typical scale of convection.

If polarity reversals were inertia-driven:

For the Earth, $Ro = 3 \times 10^{-6} \Rightarrow \ell^{\star} = 100$ m. What do we know about ℓ^{\star} in the core?

• constraint #1: non-magnetic convection onset at $\ell \sim E^{1/3} = 35m$ (so far so good).

Inertia-driven reversing dynamos operate at $Ro_{loc} = 0.1$ (e.g. Olson and Christensen, 2006). With $Ro_{loc} = Ro R/\ell^*$, where ℓ^* is a typical scale of convection.

If polarity reversals were inertia-driven:

For the Earth, $Ro = 3 \times 10^{-6} \Rightarrow \ell^{\star} = 100$ m. What do we know about ℓ^{\star} in the core?

- constraint #1: non-magnetic convection onset at $\ell \sim E^{1/3} = 35m$ (so far so good).
- constraint #2: turbulent non-magnetic convection at $\ell \sim Ro^{1/2} = 30$ km. Implies $Ro_{loc} \sim 10^{-4}$ in the Earth (Guervilly+ 2019).

Inertia-driven reversing dynamos operate at $Ro_{loc} = 0.1$ (e.g. Olson and Christensen, 2006). With $Ro_{loc} = Ro R/\ell^*$, where ℓ^* is a typical scale of convection.

If polarity reversals were inertia-driven:

For the Earth, $Ro = 3 \times 10^{-6} \Rightarrow \ell^{\star} = 100$ m. What do we know about ℓ^{\star} in the core?

- constraint #1: non-magnetic convection onset at $\ell \sim E^{1/3} = 35m$ (so far so good).
- constraint #2: turbulent non-magnetic convection at $\ell \sim Ro^{1/2} = 30$ km. Implies $Ro_{loc} \sim 10^{-4}$ in the Earth (Guervilly+ 2019).
- constraint #3: magnetic convection at ℓ ~ Ro^{1/4} = 150km. Implies Ro_{loc} ~ 2 × 10⁻⁵ in the Earth (see Davidson, 2013; Aubert, Gastine, and Fournier, 2017).

Inertia-driven reversing dynamos operate at $Ro_{loc} = 0.1$ (e.g. Olson and Christensen, 2006). With $Ro_{loc} = Ro R/\ell^*$, where ℓ^* is a typical scale of convection.

If polarity reversals were inertia-driven:

For the Earth, $Ro = 3 \times 10^{-6} \Rightarrow \ell^{\star} = 100$ m. What do we know about ℓ^{\star} in the core?

- constraint #1: non-magnetic convection onset at $\ell \sim E^{1/3} = 35m$ (so far so good).
- constraint #2: turbulent non-magnetic convection at $\ell \sim Ro^{1/2} = 30$ km. Implies $Ro_{loc} \sim 10^{-4}$ in the Earth (Guervilly+ 2019).
- constraint #3: magnetic convection at ℓ ~ Ro^{1/4} = 150km. Implies Ro_{loc} ~ 2 × 10⁻⁵ in the Earth (see Davidson, 2013; Aubert, Gastine, and Fournier, 2017).

Ooops!

Outline

The core and magnetic field of the Earth

2 Numerical models

3 Numerical method

4 Reversals

- 20+ years of reversing simulations
- Geodynamo models vs Earth
- Reversals elsewhere
- Discussion & Outlook

Reversals...

Reversals in VKS2: a lab fluid dynamo (almost)

VKS2: Turbulent flow between discs

- VKS2 (2006): 0.15 m³ Na, 300 kW
- dynamo only with soft iron blades (ie magnets)

Reversals are captured by a very simple model

A dynamical system below a saddlenode bifurcation can be driven into reversals by fluctuations (noise) $\zeta(t)$.

Right:
$$\alpha_0 = -185 Myr^{-1}$$
, $\alpha_0/\alpha_1 = -0.9$, $\Delta/\sqrt{|\alpha_1|} = 0.2$.

from Pétrélis et al., 2009.

Reversals are captured by a very simple model

A dynamical system below a saddlenode bifurcation can be driven into reversals by fluctuations (noise) $\zeta(t).$

Right:
$$\alpha_0 = -185 Myr^{-1}$$
, $\alpha_0/\alpha_1 = -0.9$, $\Delta/\sqrt{|\alpha_1|} = 0.2$.

from Pétrélis et al., 2009.

300

200 100 (D) B

0 -100 -200

-300¹

VKS

100

Outline

The core and magnetic field of the Earth

2 Numerical models

3 Numerical method

4 Reversals

- 20+ years of reversing simulations
- Geodynamo models vs Earth
- Reversals elsewhere
- Discussion & Outlook

For a hope of obtain strong magnetic fields in reversing simulations:

- we need more realistic simulations (lower viscosity, strong forcing)
- but not too high definition, so we can run them long enough!

Magnetically-driven reversals?

Zooming on a reversal

t=0.47962

What do we learn from these strong field reversals?

Joint distribution of total magnetic energy and surface axial dipole.

During reversal, magnetic field reduced by 15 to 20% in the whole core.

Strong field reversals exist in numerics. Study them to learn about Earth's ones.

- Influence of mantle geodynamics on reversals (input from N. Coltice)
- Statistical properties of reversal (need to simulate a lot of events)

Thank you for your attention

Core simulations made with XSHESLLS code: https://nschaeff.bitbucket.io/xshells