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IDHCP, 10 May 2022

nathanael.schaeffer@univ-grenoble-alpes.fr geodynamo simulations 10 May 2022 1 / 46



Foreword: Are planetary magnetic fields useful?

Earth has life and a magnetic field.

Mars has no life and no magnetic field.

But a magnetic field does NOT shield from cosmic rays, the atmosphere does.

A magnetic field may be important to keep an atmosphere from being eroded by
solar/stellar wind, at least in case the surface gravity is not enough.

Lammer+ 2008, Space Science Reviews, Atmospheric escape and evolution of terrestrial planets and satellites.
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Structure of the Earth
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Geomagnetic field measurements

Started by Gauss (and others) in 1836,
today we have many magnetic ground
observatories

(from Finlay+ 2016)

Measures from satellites since 1979.
Currently 3 dedicated satellites (SWARM).
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Geomagnetic field models

Magnetic field at the Core-Mantle Boundary (CMB) in 2015.
(CHAOS-6 model, from Finlay+ 2016).
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The magnetic north pole is moving

1590–2020 https://maps.ngdc.noaa.gov/viewers/historical_declination/
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Polarity reversals

A superchron with the same polarity for almost 40 Millions years.

Frequently reversing periods, where a given polarity stays for 1 Million year or less.
from Hulot et al., 2010
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Paleointensity models: sint2000

Typical intensity variations from 0.5 to 1.5 times the mean – factor 3 between min
and max outside reversals.

from Valet, Meynadier, and Guyodo, 2005.
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A very old magnetic field

from Landeau et al., 2022, Sustaining Earth’s magnetic dynamo, Nature Review Earth & Environment.
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Cool facts about the Earth’s core

A broad range of time-scales
▶ from months (SV) to million years (reversals)

Viscosity of water
▶ Earth’s spin (Coriolis force) dominates the dynamics ⇔ E ∼ 10−15

▶ Momentum diffuses much slower than magnetic field ⇔ Pm ∼ 10−5

Large scale motions at the top of the core have speeds around 10 km/year
(0.3 mm/sec, turnover time is about 200 years)

▶ Turbulent motion (very high Reynolds number Re ≳ 108).
▶ Magnetic Reynolds number Rm ≳ 1000 (moderate compared to astrophysical objects)
▶ Earth’s spin (Coriolis force) dominates the dynamics ⇔ Ro ∼ 3× 10−6.
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Cool facts about the Earth’s magnetic field

Magnetic field at the surface is dominated by a tilted dipole.

Magnetic energy dominates kinetic energy by a factor 104 (4 mT estimated in the
core – Gillet+ 2010, 0.5 mT or 5 gauss at the surface).

▶ Earth’s spin (Coriolis force) still dominates the fast dynamics ⇔ Le ∼ 10−4 (e.g. Jault
2008).

▶ The magnetic field and the Coriolis force influence long-term dynamics ⇔ Λ ≳ 10.

Heat flux extracted by the mantle (∼ 10TW, < 100mW/m2).
▶ Strong convection (very high Rayleigh number Ra ≫ 1020 ? Probably many times

critical.
▶ A (thermo-chemical) convection-driven dynamo produces the Earth’s magnetic field.
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20+ years of geodynamo simulations: toward the Earth

1995 : Glatzmaier & Roberts
▶ Chebychev, 64 x 32 x 49
▶ hyperviscosity
▶ Earth-like, reversals, and all the hype.

2006 : Christensen & Aubert
▶ Chebychev, 168 x 336 x 97
▶ E ≥ 3 × 10−6, Pm ≥ 0.06
▶ Extensive parameter study, scaling laws.

2008 : Kageyama+
▶ Yin-Yang grid, 2048 x 1024 x 511
▶ E = 10−6, Re=700, Pm=1
▶ convection sheets, zonal jets.

2013 : Aubert+
▶ Chebychev, 768 x 384 x 160
▶ E = 2.5 × 10−5, Re=1000, Pm=0.2
▶ Coupled Earth, westward drift got right.

nathanael.schaeffer@univ-grenoble-alpes.fr geodynamo simulations 10 May 2022 14 / 46



20+ years of geodynamo simulations: toward the Earth

1995 : Glatzmaier & Roberts
▶ Chebychev, 64 x 32 x 49
▶ hyperviscosity
▶ Earth-like, reversals, and all the hype.

2006 : Christensen & Aubert
▶ Chebychev, 168 x 336 x 97
▶ E ≥ 3 × 10−6, Pm ≥ 0.06
▶ Extensive parameter study, scaling laws.

2008 : Kageyama+
▶ Yin-Yang grid, 2048 x 1024 x 511
▶ E = 10−6, Re=700, Pm=1
▶ convection sheets, zonal jets.

2013 : Aubert+
▶ Chebychev, 768 x 384 x 160
▶ E = 2.5 × 10−5, Re=1000, Pm=0.2
▶ Coupled Earth, westward drift got right.

nathanael.schaeffer@univ-grenoble-alpes.fr geodynamo simulations 10 May 2022 14 / 46



20+ years of geodynamo simulations: toward the Earth

1995 : Glatzmaier & Roberts
▶ Chebychev, 64 x 32 x 49
▶ hyperviscosity
▶ Earth-like, reversals, and all the hype.

2006 : Christensen & Aubert
▶ Chebychev, 168 x 336 x 97
▶ E ≥ 3 × 10−6, Pm ≥ 0.06
▶ Extensive parameter study, scaling laws.

2008 : Kageyama+
▶ Yin-Yang grid, 2048 x 1024 x 511
▶ E = 10−6, Re=700, Pm=1
▶ convection sheets, zonal jets.

2013 : Aubert+
▶ Chebychev, 768 x 384 x 160
▶ E = 2.5 × 10−5, Re=1000, Pm=0.2
▶ Coupled Earth, westward drift got right.

nathanael.schaeffer@univ-grenoble-alpes.fr geodynamo simulations 10 May 2022 14 / 46



20+ years of geodynamo simulations: toward the Earth

1995 : Glatzmaier & Roberts
▶ Chebychev, 64 x 32 x 49
▶ hyperviscosity
▶ Earth-like, reversals, and all the hype.

2006 : Christensen & Aubert
▶ Chebychev, 168 x 336 x 97
▶ E ≥ 3 × 10−6, Pm ≥ 0.06
▶ Extensive parameter study, scaling laws.

2008 : Kageyama+
▶ Yin-Yang grid, 2048 x 1024 x 511
▶ E = 10−6, Re=700, Pm=1
▶ convection sheets, zonal jets.

2013 : Aubert+
▶ Chebychev, 768 x 384 x 160
▶ E = 2.5 × 10−5, Re=1000, Pm=0.2
▶ Coupled Earth, westward drift got right.

nathanael.schaeffer@univ-grenoble-alpes.fr geodynamo simulations 10 May 2022 14 / 46



20+ years of geodynamo simulations: toward the Earth
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Earth: E = 10−15, Pm = 10−6. From Schaeffer et al., 2017.
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Recent advances (I)

A series of recent studies at lower viscosities (E ≤ 10−6, Yadav et al., 2016; Aubert, Gastine, and Fournier,
2017; Schaeffer et al., 2017) all point in the same direction:

Stronger magnetic field, a Magneto-Buoyancy-Coriolis force balance replaces the inertia-driven regimes.

The magnetic field changes the scale of convection to larger scales.

from Yadav et al., 2016
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Recent advances (II)

Schaeffer et al., 2017 highlights the very large spatial and temporal fluctuations of
the magnetic field.

Intense polar vortices: thermal winds, magnetically shaped.
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Recent advances (III)

Schaeffer et al., 2017 highlights the density segregation between polar and equatorial
regions.

Looking at the numbers, the density contrast is too low for being seen by
seismology, except if composition variations contribute too.
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Hot topics

Ostensibly lacking in these models are:

slow MAC waves – difficult to sort out?

stably stratified layer & possible double-diffusive effects.

reversals – simulations are too short...
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Outline
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2 Numerical models

3 Numerical method
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Equations of rotating MHD in planetary cores

Navier-Stokes equation

∂tu +(2Ω ez +∇× u)× u = −∇p + ν∆u+ (∇× b)× b − αg T r⃗

Induction equation

∂tb = ∇× (u× b) +η∆b

Temperature equation

∂tT + u.∇T = κ∆T

E = ν/D2Ω ∼ 10−15

Pm = νµ0σ ∼ 10−5
Ra = ∆TαgD3/κν ≫ 1 (?)

Pr = ν/κ ∼ 1
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Equations of rotating MHD in planetary cores

Navier-Stokes equation

acceleration = advection

Pressure gradient + Coriolis force
+ Magnetic force + Archimedes force + viscous drag

Induction equation

magnetic field variations = Induction + ohmic losses

Temperature equation

temperature variations = Advection + thermal conduction

E = ν/D2Ω ∼ 10−15

Pm = νµ0σ ∼ 10−5
Ra = ∆TαgD3/κν ≫ 1 (?)

Pr = ν/κ ∼ 1
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the standard framework to solve the problem

Divergence-free vector fields are represented with two scalar fields

u = ∇× (rT ) + ∇×∇× (rP)

Spherical harmonic decomposition:

P(r , θ, ϕ) =
∑
ℓ

∑
m

Pℓ,m(r)Y
ℓ
m(θ, ϕ)

Finite difference discretization of Pℓ,m(r).

Pros:

Two scalars instead of 3 components and zero-divergence constrain enforced.

Spherical harmonics make the magnetic boundary condition easy;

Spherical harmonics are concise: less data to describe the field;

No problem at the poles.

At least one order of magnitude faster than local methods

Cons:

It is a spectral method: more difficult to parallelize.
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Discretized equations

Mut+dt = Lut + NL(ut)

Evaluate linear term Lu
▶ sparse matrix L, band-diagonal → easy, cheap, independent
▶ bandwidth limited

Evaluate non-linear term NL(u)
▶ in spatial space using spherical harmonic transforms → costly, coupling in θ, ϕ
▶ FFT O(n3 log n) is bandwidth limited, Legendre transform O(n4) not so much

Solve for ut+dt by ”inverting” matrix M.
▶ sparse matrix M, band-diagonal
▶ Thomas algorithm (Gauss substitution) → cheap, coupling in r , sequential in r
▶ bandwidth limited
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the SHTns library: efficient spherical harmonic transforms

blazingly fast.

on-the-fly transforms (do not
store matrix coefficients,
compute them as needed).

on-the-fly rotations (do not
store Wigner-d matrices).

use FFTW library for the
Fourier transform, or VkFFT
on GPU.

hand vectorized routines
(support AVX & AVX-512,
VSX, Neon).

Tested up to degree 65000+.
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Spherical Harmonic Transforms from SHTns
V100 backward
V100 forward
V100 batch backward
V100 batch forward
SKL 12T backward
SKL 48T backward

Lmax
2.8

SHTns library is freely available
https://gricad-gitlab.univ-grenoble-alpes.fr/schaeffn/shtns
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the XSHELLS code: resistive MHD in the sphere

A high performance simulation code for rotating incompressible flows and magnetic fields
in spherical shells.

written in C++

Free & Open-source software https://nschaeff.bitbucket.io/xshells

Compilers: gnu or intel (OpenMP 4 support needed)

Dependencies: FFTW (or MKL) and SHTns

Parallelization: domain decomposition with MPI + OpenMP.

ongoing port to GPU (cuda).
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the XSHELLS code: key idea for parallel performance

limit communications as much as possible

domain decomposition favors the SH
transform: radial decomposition

do not use ”transpose” data (no
MPI Alltoall)

linear solve phase is tricky to parallelize
efficiently

t

t

rank k

rank k+1

rank k+2

rank k

rank k+1

rank k+2

compute

compute

compute

xfer

xfer
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Porting of XSHELLS on GPU with CUDA

Except the Legendre
transform, everything is
”memory bound”. GPU
bring a lot more memory
bandwidth.

Ongoing effort

About 75% of the
computations are
ported.

About 900 lines of
additional GPU
specific code so far.

XSHELLS code is freely
available
https://gricad-gitlab.
univ-grenoble-alpes.fr/
schaeffn/xshells
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XSHELLS strong scaling @ NR=512, Lmax=426
irene-amd
irene-skl
Jean Zay CPU
Jean Zay GPU (V100)
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20+ years of geodynamo simulations: reversals

1995 : Glatzmaier & Roberts
▶ hyperviscosity
▶ Earth-like, reversals, and all the hype.

2002 : Kutzner & Christensen
▶ E ≥ 10−4, Pm > 0.5
▶ Extensive study, reversal controls.

2005 : Takahashi+
▶ E = 10−5, Pm = 0.5.
▶ only reverses in the transient (t < 1, see

Christensen, 2011).

2008 : Aubert+
▶ E ≥ 3 × 10−4, Pm ≥ 3
▶ tracking internal mechanism (+many other).

2016 : Sheyko+
▶ E = 2.4 × 10−6, Pm = 0.04
▶ Parker waves, quasi-periodic, low field
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When do geodynamo models reverse?

Kutzner and Christensen, 2002 Olson, Glatzmaier, and Coe, 2011
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Examples of reversing dynamos

From Christensen, 2011: E = 3 × 10−4, Pm = 3; large fluctuations of intensity.
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Examples of reversing dynamos

geodynamo run at Re = 217, Pm = 3, Emag/Ekin = 0.84

3 reversals within 2 Myr

same polarity for more than 17 Myr (superchron)
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20+ years of geodynamo simulations: reversals

all reversing numerics
numerics high viscosity medium viscosity Earth’s core

E ≥ 10−7 ≥ 10−4 ≥ 2.4× 10−6 ≃ 10−15

Pm ≥ 0.05 ≥ 0.67 ≥ 0.05 ≃ 10−6

Em/Ek ≤ 50 < 0.3 < 0.3 ≃ 10 000
Λ ≤ 40 < 0.4 ≃ 10

reversal mechanism inertia driven Parker waves ??

Successes:

these models reverse polarity

Problems:

Parker waves: periodic, weak-field: impossible in the Earth’s core.

inertia driven: impossible to happen in the Earth’s core.
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Em/Ek ≤ 50 < 0.3 < 0.3 ≃ 10 000
Λ ≤ 40 < 0.4 ≃ 10

reversal mechanism inertia driven Parker waves ??

Successes:

these models reverse polarity

Problems:

Parker waves: periodic, weak-field: impossible in the Earth’s core.

inertia driven: impossible to happen in the Earth’s core.
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Inertia-driven reversals are impossible in the Earth’s core

Inertia-driven reversing dynamos operate at Roloc = 0.1 (e.g. Olson and Christensen, 2006).
With Roloc = Ro R/ℓ⋆, where ℓ⋆ is a typical scale of convection.

If polarity reversals were inertia-driven:

For the Earth, Ro = 3× 10−6 ⇒ ℓ⋆ = 100m.
What do we know about ℓ⋆ in the core?

constraint #1: non-magnetic convection onset at ℓ ∼ E1/3 = 35m (so far so good).

constraint #2: turbulent non-magnetic convection at ℓ ∼ Ro1/2 = 30km. Implies
Roloc ∼ 10−4 in the Earth (Guervilly+ 2019).

constraint #3: magnetic convection at ℓ ∼ Ro1/4 = 150km. Implies Roloc ∼ 2× 10−5 in
the Earth (see Davidson, 2013; Aubert, Gastine, and Fournier, 2017).

Ooops!
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Reversals...

from Berhanu et al., 2007
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Reversals in VKS2: a lab fluid dynamo (almost)

VKS2: Turbulent flow between discs

VKS2 (2006): 0.15 m3 Na, 300 kW

dynamo only with soft iron blades (ie magnets)
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Reversals are captured by a very simple model

A dynamical system below a saddle-
node bifurcation can be driven
into reversals by fluctuations (noise)
ζ(t).

Right: α0 = −185Myr−1, α0/α1 =

−0.9, ∆/
√

|α1| = 0.2.

from Pétrélis et al., 2009.
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Can we get reversals with strong magnetic fields?

For a hope of obtain strong magnetic fields in reversing simulations:

we need more realistic simulations (lower viscosity, strong forcing)

but not too high definition, so we can run them long enough!
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Magnetically-driven reversals?

E = 10−5, Pm = 2, Roloc = 0.053, fdip = 0.33, Λ = 19, Emag/Ekin = 2.8
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Zooming on a reversal
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What do we learn from these strong field reversals?

Joint distribution of total magnetic energy and surface axial dipole.

During reversal, magnetic field reduced by 15 to 20% in the whole core.
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Conclusion & Outlook

Strong field reversals exist in numerics. Study them to learn about Earth’s ones.

Influence of mantle geodynamics on reversals (input from N. Coltice)

Statistical properties of reversal (need to simulate a lot of events)
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Thank you for your attention

Core simulations made with XSHESLLS code: https://nschaeff.bitbucket.io/xshells
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