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Cellular differentiation
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Cellular differentiation
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Cellular reprogramming
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Modeling focus: gene and signaling networks

L Paulevé

Protein

Many features: cell shape, composition
(proteins), ion fluxes, gene expression,
metabolism, ...

a modeling choice has to be made:
hypotheses from experts

This talk: methods related to gene
regulatory networks and signalling
pathways

Some numbers in human cells:

e ~20,000 genes

e ~1,500-2,000 transcription factors
but not all important for a specific
differentiation process!
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Modeling approaches

e Differential equations: concentration of proteins/gene activity
= numerous parameters (speed, quantities, precise function of derivatives...)

digene) L,
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e Stochastic models (Markov chains, graph rewriting): copy-number of proteins, gene activity
= rougly same type of parameters than ODEs

e Qualitative models: coarse-grain view of activity of genes/proteins

= discrete parameters
= Boolean networks (~1970: Stuart Kaufman; René Thomas)
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Boolean networks

definition and basic properties
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Boolean networks across scientific communities

Object of study on their own... and a tool for the study of biological processes

Combinatorics Experimental biology

Boolean (automata) networks
Theory of

) Theoretical biology
dynamical systems

Formal methods Simulation

Algorithmics  Software engineering

(non-exhaustive list)

L Paulevé



Formal methods for capturing dynamics of biological systems

Boolean Network (BN)
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Boolean Network BN)  f : B™ — B™ with B = {0,1} = {

1}

Configuration: X € B"™ X state of automaton :

i BN ) N | S

Local function of automaton ¢

+ updating mode =
discrete dynamical system
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l synchronous update
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asynchronous
updates
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Asynchronous dynamics of BNs
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Example with asynchronous updating mode

Boolean network of dimension 3
f1(x) = not xs
f2 (X) = not X1

f3(x) = not x; and x5
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Related formalisms

Cellular automata
e Finite cellular automata are a subclass of BNs

Petri nets gg p.z

e safe (1-bounded) with read arcs

e explicit conditions for state change / Concurrency in BNs

e steps semantics: b . . = unfoldings
synchronous = max-steps - synchronism
fully-asynchronous = atomic sensitivity
asynchronous = steps :

O
PN - BN: linear & "
BN = PN: requires computing implicants w/ Haar, Chatain; see Nat. Comp. 2020
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Reachable configurations
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Dynamical properties and complexity

Given a BN f and an updating mode o...

Reachability problem o Non-empty set of configurations A C B"
given configurations X,y € I3

decide wether Vx e A, ,O(J; (x)=A

y © p(]; (X) (Terminal SCC of transition graph)
(Fixed points are singleton attractors)

Attractor

with sync/fasync/async:
PSPACE-complete

In-attractor problem

Given a configuration x € B"

decide wether it belongs to an attractor
with sync/fasync/async:
PSPACE-complete

Fixed point: ,OG( ) — {X}
deciding existence is NP-complete;

equiv with f(x)=x with sync/fasync/async

(f represented using propositional logic;
eval f(x) is linear with size of f)

w scale limitation for verification: 50-200 automata
L Paulevé 14
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Architecture of a BN: influence graph

Recall that for each automaton i € {1,--- ,n}, f; : B" — B
but,f,,; likely does not depend on all automata:

f1(x) = not xs
fa(x) = not x;

f3(x) = not x; and x5
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Influence graph and dynamical properties

L Paulevé

(> KK

G(f) Dyn(f)

e having multiple attractors requires a positive cycle in G(f)

e acyclic G(f): : unique attractor is a fixed point, reachable in n steps

e in (fully-)async, cyclic attractors require a negative cycle

e bounds on the number of attractors, notably influence of intersection of

positive cycles on upper bound
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Boolean networks in practice in systems biology

are trendy ;-)
e typical queries: reachable attractors from initial conditions
= verify if they match with observed phenotypes

= compute propensities/probabilities of reaching this or that attractor

e predictions for cellular reprogramming: control of reachable attractors

e most models are designed by experts, 3 to 200 automata
= tedious task, complexity of verification is one of the limiting factors

= many arbitrary choices, does not scale
= direction: automatic synthesis of BNs from knowledge and observations

L Pauleve 17
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Boolean networks in practice in systems biology

ArAa tranAg

-\

Stem/PIurlpotent cell (stable)

A:eratlon/

-~ environment change

= Natural
+ dynamics

v

\ auunnnt® ' {

/

reprogramming

U

.

Cell type A ‘

e

Cell typ(;B

L Paulevé

initial erturbations
condition P
transient
- State
natural
dynamics
other attractors .
target
attractor
initial
condition
perturbations other attractors

mtermedlate
attractor

target
attractor

17



Formal methods for capturing dynamics of biological systems

Boolean networks as abstractions
of quantitative systems

L Paulevé
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Boolean modeling of the I3-FFL (Incoherent feed-forward loop)

Regulation motif

signal —> 1 )
"'\ %3
2 +

Observed output

v ot

activity of 3

—>
time

with quantitative models, and
synthetically designed DNA circuits
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Boolean network
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Boolean modeling of the I3-FFL (Incoherent feed-forward loop)

Regulation motif Boolean network

signal —> 1 f1(x) = signal

| s 69—

f3(x) = not x; and x»

2 * Asynchronous dynamics from 000
Observed output 1 .
e A 2 — —
E o w impossible to activate 3...

' o time - model validation fails but the logic is correct!
with qutant|tat|ve.models, and. , - no BN matching the motif works..
synthetically designed DNA circuits 1, sherent abstraction for reachability...
L Paulevé 19
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Boolean modeling of the I3-FFL (Incoherent feed-forward loop)

Regulation motif Boolean network

signal —> 1 f1(x) = signal

| s

f3(x) = not x; and x»

2 * Asynchronous dynamics from 000

Observed output 1 .

A 2 — > —

2 3

® - = impossible to activate 3...

- e Boolean dynamlcs fails to capture the period when 1 is high correct!
With @ enough to activate 2, but not high enough to inhibit 3...
synthe ¢ one can fix the issue with multivalued networks, or delays lity...

L Paulevé = adds many parameters, limiting their general application 19
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Most Permissive Boolean networks

Two key ingredients:

e delay between firing and application of state change

= allow interleaving other state changes

e in pseudo "dynamic” states |2 :'

other components choose what they see

.

L Paulevé

current state

Ve
nd” nd

next state
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Most Permissive semantics - with pseudo dynamic states

Automaton of component 2
:;\*

32 € 9(2): filz) = 1
5 I

N

zeq(z): fi(z) =0
B

+ full-asynchronous interleaving p{np (x):={yeB"|x L>* Y}

mp

can fire anytime

v d—H, example: ’Y(E
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Most Permissive semantics - example of trajectory

f1(x) = signal
fa(x) =%

f3(x) = not x; and xs

time
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(A)synchronous Boolean Networks
Bad abstractions of non-binary systems | Costly to analyze

e can miss behaviors... e reachability and attractor properties
... also includes stochastic methods are PSPACE-complete

e impact reachable attractors: onecan | 4 usually limited to 50-200 automata
wrongly conclude an attractor is then requires approximations..

not reachable

Most Permissive Boolean Networks (MPBNs) Paulevé et al, Nature Communications, 2020

Complete abstraction Highly scalable

* guarantees not to miss any behavior | ¢ reachability: P/PM?:

achievable by a quantitative model attractor: coNP/coNPeoNP

following the same logic e benchmarks with 100,000 automata
e remains stringent enough to capture e unlocks large-scale BN inference
differentiation processes

- :
e No additional parameters! e
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Synthesis of ensembles of BNs for reprogramming

Architecture constraints
(databases, data analysis)

Most Permissive BNs
verifying architecture and
dynamical properties
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Dynamical properti

Sampling

(w/ diversity)

Observations il ss Myeloid
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A++/B--
C--/D++

Scoring
accross different profiles

A++/B-- 51%
C--/D++ 31%
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Sl a2 ; s5 Erythroid
ashge e, "
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Pseudotime [Chen et al., Nature Comm. (2019)]

Work in progress

e Logic programming
(Answer-Set Programming)
e Sampling with diversity

e Genome-scale

= tool BoNesis
github.com/bioasp/bonesis
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