Formal methods for capturing dynamics of biological systems

Loïc Paulevé

CNRS/LaBRI, Bordeaux, France

https://loicpauleve.name

Formal methods for capturing dynamics of biological systems **Cellular differentiation**

Cell identity cascading landscape

(source : Crespo et al. Stem cells 2013)

Formal methods for capturing dynamics of biological systems **Cellular differentiation**

(source : Regalo, Leutz. EMBO Mol Medicine, 2013)

Formal methods for capturing dynamics of biological systems **Cellular reprogramming**

(credits : Thomas Graf, Centre for Genomic Regulation (Spain))

Formal methods for capturing dynamics of biological systems Modeling focus: gene and signaling networks

Many features: cell shape, composition (proteins), ion fluxes, gene expression, metabolism, ...

a modeling choice has to be made: hypotheses from experts

This talk: methods related to gene regulatory networks and signalling pathways

Some numbers in human cells:

- ~20,000 genes
- ~1,500-2,000 transcription factors but not all important for a specific differentiation process!

Formal methods for capturing dynamics of biological systems Modeling focus: gene and signaling networks

Many features: cell shape, composition (proteins), ion fluxes, gene expression, metabolism, ...

a modeling choice has to be made: hypotheses from experts

This talk: methods related to gene regulatory networks and signalling pathways

Some numbers in human cells:

- ~20,000 genes
- ~1,500-2,000 transcription factors but not all important for a specific differentiation process!

Formal methods for capturing dynamics of biological systems **Modeling approaches**

- Differential equations: concentration of proteins/gene activity
- → numerous parameters (speed, quantities, precise function of derivatives...)

- Stochastic models (Markov chains, graph rewriting): copy-number of proteins, gene activity
- ➡ rougly same type of parameters than ODEs
- Qualitative models: coarse-grain view of activity of genes/proteins
- ➡ discrete parameters
- → Boolean networks (~1970: Stuart Kaufman; René Thomas)

Boolean networks

definition and basic properties

Formal methods for capturing dynamics of biological systems Boolean networks across scientific communities

Object of study on their own... and a tool for the study of biological processes

(non-exhaustive list)

Boolean Network (BN)
$$f:\mathbb{B}^n o\mathbb{B}^n$$
 with $\mathbb{B}=\{0,1\}=\{[...,n]\}$

Local function of automaton i

$$f_i: \mathbb{B}^n \to \mathbb{B}$$

Boolean Network (BN)
$$f: \mathbb{B}^n o \mathbb{B}^n$$
 with $\mathbb{B} = \{0, 1\} = \{ [], [] \}$

Configuration: $\mathbf{X} \in \mathbb{B}^n$

 \mathbf{x}_i : state of automaton i

Local function of automaton i

$$f_i: \mathbb{B}^n \to \mathbb{B}$$

+ updating mode = discrete dynamical system

+ updating mode = discrete dynamical system

Formal methods for capturing dynamics of biological systems **Asynchronous dynamics of BNs**

Boolean network of dimension 3 $f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$

$$f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Boolean network of dimension 3 $f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$ $f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$ $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1$ and \mathbf{x}_2

Boolean network of dimension 3 $f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$ $f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$ $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Boolean network of dimension 3 $f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$ $f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$ $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Boolean network of dimension 3 $f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$ $f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$ $f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$

Formal methods for capturing dynamics of biological systems **Related formalisms**

Cellular automata

• Finite cellular automata are a subclass of BNs

 $BN \rightarrow PN$: requires computing implicants

w/ Haar, Chatain; see Nat. Comp. 2020

Formal methods for capturing dynamics of biological systems **Reachable configurations**

• Given a BN f and an initial configuration \mathbf{x} , an updating mode σ defines

 $\rho_{\sigma}^{f}:\mathbb{B}^{n}\rightarrow 2^{\mathbb{B}^{n}}$

• For reachability, asynchronous also includes sequential, bloc-sequential, ...

but is it complete? (w.r.t. what?) Formal methods for capturing dynamics of biological systems **Dynamical properties and complexity**

Given a BN f and an updating mode σ ...

Reachability problem given configurations $\mathbf{x}, \mathbf{y} \in \mathbb{B}^n$ decide wether

$$\mathbf{y} \in \rho^f_\sigma(\mathbf{x})$$

with sync/fasync/async: PSPACE-complete

Fixed point: $\rho_{\sigma}^{f}(\mathbf{x}) = \{\mathbf{x}\}\$ deciding existence is NP-complete; equiv with f(x)=x with sync/fasync/async

(f represented using propositional logic; eval f(x) is linear with size of f) Attractor

Non-empty set of configurations $A \subseteq \mathbb{B}^n$ $\forall \mathbf{x} \in A, \rho_{\sigma}^f(\mathbf{x}) = A$

(Terminal SCC of transition graph) (Fixed points are singleton attractors)

In-attractor problem

Given a configuration $\mathbf{x} \in \mathbb{B}^n$ decide wether it belongs to an attractor with sync/fasync/async: PSPACE-complete

→ scale limitation for verification: 50-200 automata

Recall that for each automaton $i \in \{1, \dots, n\}$, $f_i : \mathbb{B}^n \to \mathbb{B}$... but, f_i likely does not depend on all automata:

$$f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$$

$$f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Recall that for each automaton $i \in \{1, \dots, n\}$, $f_i : \mathbb{B}^n \to \mathbb{B}$... but, f_i likely does not depend on all automata:

$$f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$$

$$f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Influence graph: signed digraph between automata

Recall that for each automaton $i \in \{1, \dots, n\}$, $f_i : \mathbb{B}^n \to \mathbb{B}$... but, f_i likely does not depend on all automata:

$$f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$$

$$f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Influence graph: signed digraph between automata

If there exists at least one configuration s.t.:

rightarrow j has a positive influence on i

Recall that for each automaton $i \in \{1, \dots, n\}$, $f_i : \mathbb{B}^n \to \mathbb{B}$... but, f_i likely does not depend on all automata:

$$f_1(\mathbf{x}) = \text{not } \mathbf{x}_2$$

$$f_2(\mathbf{x}) = \text{not } \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Influence graph: signed digraph between automata

If there exists at least one configuration s.t.:

Formal methods for capturing dynamics of biological systems **Influence graph and dynamical properties**

- having multiple attractors requires a positive cycle in G(f)
- acyclic G(f): : unique attractor is a fixed point, reachable in *n* steps
- in (fully-)async, cyclic attractors require a negative cycle
- bounds on the number of attractors, notably influence of intersection of positive cycles on upper bound

Formal methods for capturing dynamics of biological systems Boolean networks in practice in systems biology

are trendy ;-)

- typical queries: reachable attractors from initial conditions
- verify if they match with observed phenotypes
- ← compute propensities/probabilities of reaching this or that attractor
- predictions for cellular reprogramming: control of reachable attractors
- most models are designed by experts, 3 to 200 automata
- → tedious task, complexity of verification is one of the limiting factors
- → many arbitrary choices, does not scale
- ← direction: automatic synthesis of BNs from knowledge and observations

Formal methods for capturing dynamics of biological systems Boolean networks in practice in systems biology

Boolean networks as abstractions of quantitative systems

Regulation motif

Observed output

Regulation motif

Observed output

Boolean network

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Asynchronous dynamics from 000

Regulation motif

Observed output

Boolean network

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Asynchronous dynamics from 000

➡ impossible to activate 3...

- model validation fails but the logic is correct!
- no BN matching the motif works..
- ➡ incoherent abstraction for reachability...

Regulation motif

Observed output

activity of 3

Boolean network

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Asynchronous dynamics from 000

➡ impossible to activate 3...

Boolean dynamics fails to capture the period when 1 is high enough to activate 2, but not high enough to inhibit 3...
 one can fix the issue with multivalued networks, or delays
 L Paulevé adds many parameters, limiting their general application

Formal methods for capturing dynamics of biological systems **Most Permissive Boolean networks**

Two key ingredients:

- delay between firing and application of state change
 - → allow interleaving other state changes
- in pseudo "dynamic" states

other components choose what they see

Formal methods for capturing dynamics of biological systems **Most Permissive semantics - with pseudo dynamic states**

Automaton of component i

+ full-asynchronous interleaving

 $ho^f_{\mathrm{mp}}(\mathbf{x}) := \{\mathbf{y} \in \mathbb{B}^n \mid \mathbf{x} \xrightarrow{f}_{\mathrm{mp}} \mathbf{y}\}$

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

$$f_1(\mathbf{x}) = \text{signal}$$

$$f_2(\mathbf{x}) = \mathbf{x}_1$$

$$f_3(\mathbf{x}) = \text{not } \mathbf{x}_1 \text{ and } \mathbf{x}_2$$

Formal methods for capturing dynamics of biological systems (A)synchronous Boolean Networks

Bad abstractions of non-binary systems

- can miss behaviors...
- ... also includes stochastic methods
- impact reachable attractors: one can wrongly conclude an attractor is not reachable

Costly to analyze

- reachability and attractor properties are PSPACE-complete
- usually limited to 50-200 automata then requires approximations..

Most Permissive Boolean Networks (MPBNs) Paulevé et al, Nature Communications, 2020

Complete abstraction

- guarantees not to miss any behavior achievable by a quantitative model following the same logic
- remains stringent enough to capture differentiation processes

Highly scalable

- reachability: P/P^{NP}; attractor: coNP/coNP^{coNP}
- benchmarks with 100,000 automata
- unlocks large-scale BN inference

No additional parameters!

Formal methods for capturing dynamics of biological systems Synthesis of ensembles of BNs for reprogramming

