
Mechanically Proving Termination Using

Polynomial Interpretationsj

EVELYNE CONTEJEAN1, CLAUDE MARCHÉ1, ANA PAULA TOMÁS2

and XAVIER URBAIN3

1PCRI-LRI (CNRS UMR 8623) & INRIA Futurs Bât. 490, Université Paris-Sud, Centre d’Orsay,
91405 Orsay, Cedex, France. e-mail: {contejea, marche}@lri.fr
2DCC-FC & LIACC, University of Porto, R. do Campo Alegre 823, 4150-180 Porto, Portugal.
e-mail: apt@ncc.up.pt
3CEDRIC, IIE, Conservatoire National des Arts et Métiers, 18 allée Jean Rostand, 91025 Evry,
Cedex, France.

Abstract. For a long time, term orderings defined by polynomial interpretations were scarcely

used in computer-aided termination proof of TRSs. But recently, the introduction of the depen-

dency pairs approach achieved considerable progress w.r.t. automated termination proof, in par-

ticular by requiring from the underlying ordering much weaker properties than the classical

approach. As a consequence, the noticeable power of a combination dependency pairs/polynomial

orderings yielded a regain of interest for these interpretations. We describe criteria on polynomial

interpretations for them to define weakly monotonic orderings. From these criteria, we obtain new

techniques both for mechanically checking termination using a given polynomial interpretation and

for finding such interpretations with full automation. With regard to automated search, we propose

an original method for solving Diophantine constraints. We implemented these techniques into the

CiME rewrite tool, and we provide some experimental results that show how useful polynomial

orderings actually are in practice.

Key words: term rewriting, termination, polynomial interpretations.

1. Introduction

For decades, the use of the standard MannaYNess criterion [38] (that is each

rule decreases w.r.t. a well-founded ordering) dominated among the different

known methods aimed at proving termination of term rewriting systems. The

orderings required by this criterion must have strong properties, such as strict

monotonicity; they are usually distinguished in two classes: syntactical orderings

and semantical orderings. Syntactical orderings rely on a precedence on symbols

that is extended to terms, while semantical ones make use of an interpretation of

terms. Among the latter, term orderings defined by polynomial interpretations

have been defined in 1979 in a pioneer paper of Lankford [35].

j This research was supported in part by the EWG CCL II, the cooperation CNRS-ICCTI,

projects 4312, 5518 and 6777, and the BATIP CiME du département STIC du CNRS^.

Journal of Automated Reasoning (2005) 34: 325–363

DOI: 10.1007/s10817-005-9022-x

Springer 2006

There are several reasons that made polynomial interpretations less popular

than syntactical methods like RPO [16]. From a theoretical point of view, the

combination of polynomials with the MannaYNess criterion puts strong restric-

tions on the class of relations the obtained ordering can contain: first, the length

of derivations has a double exponential bound [28]; second, the computed func-

tion necessarily belongs to a restricted complexity class [7]. For instance, the

termination of the famous AckermannYPeter function can easily be proven by

using RPO, while it is impossible to obtain a suitable polynomial interpretation.

From a practical point of view, precedence-based orderings are easier to

implement, automatic search is decidable, whereas the search for suitable

polynomials is necessarily incomplete.

But recently, considerable progress was achieved on automated termination

proof, in particular by the use of the dependency pairs method and its termination

criteria [1], its applications to incremental/hierarchical termination proofs [23,

56], and to termination under specific strategies such as innermost termination [1,

23] or context-sensitive rewriting [25].

These new techniques demand much weaker properties on the underlying

ordering used in termination proofs. In particular, monotonicity of the strict part

of the ordering is not required. As a consequence, some orderings previously seen

as less powerful than others w.r.t. termination proof with the MannaYNess criterion

observed a regain of interest. This is the case for polynomial orderings.

It has been noticed that the situation is in part similar to KnuthYBendix

orderings [24, 27], but not to Recursive Path orderings. In fact, the latter are

always strictly monotonic; hence transformations have been proposed such as

argument filtering [1] or more generally recursive program scheme [13, 31].

Thus, some additional transformation steps have to take place during a proof

discovery process using RPO-like orderings. However, to add argument filtering

to polynomial orderings is pointless since any ordering defined by an argument

filtering and a set of polynomial interpretations can be also defined directly by

some other set of interpretations.

This new interest in polynomial interpretations-based orderings led us to

design a new implementation of them inside the CiME rewrite tool [11]. We

describe hereafter the theoretical basis of this implementation, which is able to

find polynomial orderings for termination proofs with full and efficient autom-

ation. New improvements include a technique of translation (Section 3.4) and an

original method for solving non-linear Diophantine constraints (Section 4.2).

A key issue in finding polynomial orderings is to solve some nonlinear

constraints over natural numbers. In order to improve efficiency, these con-

straints are linearized thanks to the introduction of abstraction variables, and the

problem of minimising the number of such variables arises. Quite surprising, this

problem is a generalization of the well-known problem of computation of

addition chains [4Y6, 8, 14, 19, 20, 44Y46, 50, 51, 57], which arises naturally

326 EVELYNE CONTEJEAN ET AL.

when one wants to compute a polynomial expression while minimizing the num-

ber of multiplications.

This paper is organised as follows. In Section 2, we first discuss the currently

known termination criteria that are suitable for automation, and which properties

of term orderings are needed for such criteria. In Section 3, we recall how

orderings by polynomial interpretations are defined, and we show that, given a

TRS R and a polynomial interpretation, every verification needed to check

termination of R reduces to check positiveness of polynomial expressions. Then,

we recall known techniques for checking positiveness of such expressions

and give new results about �-translation of polynomial interpretations. In

Section 4, we consider the problem of finding suitable polynomial interpretations

with full automation, and present our new method for solving Diophantine con-

straints arising in such a search. In Section 5 we present a few results from a

selection of experiments conducted with the CiME system.

2. Termination Criteria

We assume the reader familiar with basic notions of term rewriting and ter-

mination, especially with the dependency pairs approach; we refer to surveys

[2, 18, 53] for details and to Arts & Giesl [1, 23] regarding dependency pairs.

As it is now suitable for the dependency pairs approach where both strict and

nonstrict comparisons of terms occur, we need both strict orderings and quasi-

orderings.

Formally, a term ordering is a pair ð�; >Þ of relations over the set TðF ;XÞ of

terms over signature F and variables X, such that (1) � is a quasi-ordering, that

is, reflexive and transitive; (2) > is a strict ordering, i.e., irreflexive and transitive;

and (3) > � � ¼ > or ��> ¼ >.

A term ordering is said to be well-founded if there is no infinite strictly

decreasing sequence t1 > t2 > � � � and stable if both > and � are stable under

substitutions, that is for any terms t1 and t2 and for any substitution �; if t1 > t2,

then t1� > t2�; and if t1 � t2 then t1� � t2�.

For a given symbol f of the signature, of arity n � 1, we say that a relation R
is monotonic with reference to the i-th argument of f ; 1 � i � n; if for any terms

t; u; v1; . . . ; vi�1; viþ1; . . . ; vn; tR u implies

f ðv1; . . . ; vi�1; t; viþ1; . . . ; vnÞR f ðv1; . . . ; vi�1; u; viþ1; . . . ; vnÞ:

A term ordering ð�; >Þ is weakly monotonic if � is monotonic with reference

to all arguments of all function symbols; it is strictly monotonic if > is also

monotonic with reference to all arguments of all function symbols. A term

ordering ð�; >Þ is called a weak (resp. strict) reduction ordering if it is well-

founded, stable and weakly (resp. strictly) monotonic.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 327

We shall point out that our notion of weak reduction ordering is a particular

case of the very general notion of weak reduction pair of Kusakari & al. [33],

which requires (1’) � being any monotonic and stable relation (but not nec-

essarily reflexive nor transitive), (2’) > being well-founded and stable, and (3’)

> � � � > or ��> � >: However it is easy to see that if � is reflexive, (3’)

implies (3); in other words, any weak reduction pair made of orderings is a weak

reduction ordering in our setting.

In order to prove termination of a given TRS R; several possible criteria exist.

The simplest one is the standard Manna-Ness criterion [39]: if there exists a

strict reduction ordering ð�; >Þ such that l > r for each rule l! r 2 R; then R is

terminating. There are a few variants of dependency pairs criteria, the simplest

one being: if there exists a weak reduction ordering ð�; >Þ such that

Y for each rule l! r 2 R; l � r;
Y for each dependency pair hu; vi of R; u > v;

then R is terminating. Hence, unlike the standard criterion, the underlying

ordering is not required to be strictly monotonic. In fact, a common requirement

of dependency pairs criteria consists in relying on the use of a weak reduction

ordering, even for criteria based on estimated dependency graphs [1, 42].

Regarding innermost termination, there are improvements of dependency pairs

criteria [1] where the underlying ordering is no longer asked to be weakly

monotonic with reference to all arguments of all symbols in the signature, but to

some of them only. Thus, defining such orderings makes an issue.

Finally, another usual concern in the practice of termination is rewriting

modulo an equational theory E; like commutativity (C) or associativity and

commutativity (AC). In such a case, the underlying ordering must be compatible
with the aforementioned theory, that is, s0 > t0 whenever s > t, s ¼E s0 and

t ¼E t0, and similarly for � :

3. Term Orderings Defined by Polynomial Interpretations

We will now focus on term orderings defined by polynomial interpretations. For

all material regarding polynomials we use Lang’s notations and refer to his book

[34]. In Section 3.1, we define orderings based on arbitrary interpretations and

we show which conditions they must satisfy to guarantee, on the generated

ordering, the properties listed in the previous section. In Section 3.2, we focus

on polynomial interpretations, and we show that all these conditions can be re-

duced to positiveness of some polynomials. Then, in Section 3.3, we summarize

the known methods for checking positiveness. Those are still complex, and in

Section 3.4 we propose a new technique of translation of interpretations, which

eventually allows to reduce checkings of conditions required on polynomials to

very simple tests on positiveness of their coefficients.

328 EVELYNE CONTEJEAN ET AL.

3.1. ORDERINGS DEFINED BY INTERPRETATIONS

Let D be an arbitrary non-empty domain equipped with some ordering �D; and

let >D be �D ��D.

DEFINITION 3.1. Let � be a function that maps each ground term t 2 TðFÞ to

an element of D: The relations �� and >� generated by � are defined by

t1 �� t2 iff �ðt1Þ �D �ðt2Þ
t1 >� t2 iff �ðt1Þ >D �ðt2Þ :

LEMMA 3.2. ð��; >�Þ is a term ordering on ground terms. It is well-founded
if >D is well-founded.

Proof. From >D ¼ �D ��D; it is easy to get >D � �D ¼ �D �>D ¼ >D; and

from that it is easy to get that ð��; >�Þ is a term ordering. If ð��;>�Þ was not

well-founded, there would be an infinite decreasing sequence t1 >� t2 >� t3 >�

� � � that is, by definition, �ðt1Þ >D �ðt2Þ >D �ðt3Þ >D � � � : Hence, >D would not

be well-founded. Ì

Now, we want to generalize this construction to nonground terms. A natural

way would be to define t1 �� t2 when t1� �� t2� for any ground substitution �.

However, such a definition is not well suited for automation, and we proceed in a

different way that leads to an almost equivalent definition.

The idea is the following: we should not interpret a nonground term into

an element of D; but actually into an abstraction mapping any interpretation

(or valuation) of its variables in D into an element in D: In other words,

interpretation �ðtÞ of a non-ground term t is a function from X! D to D:
This set ðX! DÞ ! D of functions is naturally equipped with the ordering

defined by

f �D;X g iff for all � 2 X! D; f ð�Þ �D gð�Þ
f >D;X g iff for all � 2 X! D; f ð�Þ >D gð�Þ :

We point out that >D; X is not �D; X � �D; X; and in some sense, that is why

term orderings as ordering pairs are needed. For instance, if one maps a constant

a to the minimal element of D then, for any variable x; x �D;X a but x 6�D;X a:
Hence ðx; aÞ 2�D;X � �D;X while ðx; aÞ 62>D;X.

Now, automation of such an ordering relies only on the automation of this

ordering on functions. We shall see in Section 3.3 how to automate that ordering

in the special case of D being a set of integers.

DEFINITION 3.3. Let � be a function that maps each term t 2 TðF ;XÞ to a

function from X ! D to D. The relations �� and >� generated by � are defined

by

t1 �� t2 iff �ðt1Þ �D;X �ðt2Þ
t1 >� t2 iff �ðt1Þ >D;X �ðt2Þ :

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 329

LEMMA 3.4. ð��; >�Þ is a term ordering on nonground terms. It is well-
founded if >D is well-founded.

Proof. Proof is similar to that of previous lemma, but additionally we have to

show that >D;X is well-founded itself. If it was not, there would be an infinite

decreasing sequence f1 >D;X f2 >D;X f3 >D;X . . . ; but then for an arbitrary

interpretation � of variables, we would have an infinite decreasing sequence

f1ð�Þ >D f2ð�Þ >D f3ð�Þ >D . . . of elements of D, leading to a contradiction. Ì

EXAMPLE 3.5. Let D be the set N of natural numbers, and let �D be the

standard ordering � on N: Let us consider signature F ¼ fa; fg; where a is a

constant and f is of arity 2.

An interpretation � can map a term like f ð f ða; xÞ; yÞ into, say, 2x þ 2yþ 3:
That means precisely that given any nonnegative integer values �ðxÞ and �ð yÞ for

x and y:

�ð f ð f ða; xÞ; yÞÞð�Þ ¼ 2�ðxÞ þ 2�ð yÞ þ 3:

Moreover, if we interpret f ðx; aÞ into xþ 4, then we have f ð f ða; xÞ; yÞ ��
f ðx; aÞ since 2n þ 2mþ 3 � nþ 4 for all n;m 2 N (because 2n � nþ 1). On the

other hand, f ð f ða; xÞ; yÞ 6>� f ðx; aÞ because when �ðxÞ ¼ �ð yÞ ¼ 0; both terms

are interpreted as 4.

DEFINITION 3.6. We define an homomorphic interpretation � by giving, for

each f of arity n; a function ½½ f ��� from Dn to D; and then by induction on terms :

for any � 2 X! D;

�ðf ðt1; . . . ; tnÞÞð�Þ ¼ ½½ f ���ð�ðt1Þð�Þ; . . . ; �ðtnÞð�ÞÞ
�ðxÞð�Þ ¼ �ðxÞ:

For the sake of readability we shall write ½½ f �� if the relevant interpretation is

clear from the context.

LEMMA 3.7. Let � be any homomorphic interpretation. For any substitution �
and any valuation �, let us denote �ð�; �Þ the valuation mapping any variable x
to �ðx�Þð�Þ: Then for any term t; �ðt�Þð�Þ ¼ �ðtÞ�ð�; �Þ:

Proof. By structural induction on t: If t ¼ f ðt1; . . . ; tnÞ; then

�ðt�Þð�Þ ¼ �ðf ðt1�; . . . ; tn�ÞÞð�Þ
¼ ½½ f ���ð�ðt1�Þð�Þ; . . . ; �ðtn�Þð�ÞÞ
¼ ½½ f ���ð�ðt1Þ�ð�; �Þ; . . . ; �ðtnÞ�ð�; �ÞÞ by induction

¼ �ðf ðt1; . . . ; tnÞÞ�ð�; �Þ

and if t is a variable x, �ðxÞ�ð�; �Þ ¼ �ð�; �ÞðxÞ ¼ �ðx�Þð�Þ. Ì

LEMMA 3.8. If � is an homomorphic interpretation, then ð��; >�Þ is stable.

330 EVELYNE CONTEJEAN ET AL.

Proof. Let t1 and t2 be two terms such that t1 >� t2, that is, by definition

�ðt1Þ >D;X �ðt2Þ, that is,

for all � 2 X! D; �ðt1Þð�Þ >D �ðt2Þð�Þ: ð1Þ
Let � be any substitution. Then for all � 2 X! D,

�ðt1�Þð�Þ ¼ �ðt1Þ�ð�; �Þ
>D �ðt2Þ�ð�; �Þ by ð1Þ
¼ �ðt2�Þð�Þ:

Hence t1� >� t2�. the same proof holds for ��. Ì

LEMMA 3.9. For any symbol f of arity n, and 1 � i � n, if for all d1; . . . ; di�1;
diþ1; . . . ; dn in D, ½½ f ��ðd1; . . . ; di�1; x; diþ1; . . . ; dnÞ is monotonic (resp. strictly)
nondecreasing in x; then �� (resp. >�) is monotonic with reference to i-th
argument of f .

Proof. Straightforward. Ì

EXAMPLE 3.10. (Continued) Let us consider ½½ f ��ðx; yÞ ¼ xyþ 1 and a ¼ 0.

The generated ordering is weakly but not strictly monotonic, since ½½ f �� is not

strictly increasing in x when y ¼ 0. For instance f ða; aÞ >� a (since �ð f ða; aÞÞ ¼
1 > 0 ¼ �ðaÞ), but f ð f ða; aÞ; aÞ 6>� f ða; aÞ (since �ð f ð f ða; aÞ; aÞÞ ¼ 1	 0þ 1 ¼
1 ¼ �ð f ða; aÞÞ).

3.2. INTERPRETATIONS OVER INTEGERS

In order to automate the search for interpretations, it is necessary to focus on a

particular interpretation domain. The most convenient one is the set of integers.

Since it is not well-ordered, we have in fact to consider a set of integers greater

than or equal to a given minimum value �.

DEFINITION 3.11. For a given � 2 Z, let D� ¼ fx 2 Z j x � �g. It is clear that

the usual ordering > is well-founded over each D�. Interpretations into D� are

called arithmetic, they may be called �-interpretations in order to precise the

value of �.

An arithmetic homomorphic interpretation � defined by functions ½½ f ���,

f 2 F , is called a polynomial interpretation if for all f , ½½ f ��� is a polynomial

function.

To check whether a given polynomial interpretation is suitable for proving

termination of a given TRS using any of the criteria mentioned in Section 2, we

must be able to check that

1. each polynomial effectively maps Dn
� into D�;

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 331

2. any of those polynomials is weakly and/or strictly increasing in some/all of

its arguments. Moreover, to perform comparisons, we must be able to check

that

3. for any two terms t1 and t2, t1 �� t2 and/or t1 >� t2.

Finally, for the case of rewriting modulo a theory E, we have to be able to check

that

4. � and > are compatible with E.

We are now ready to transform each of these properties into a positiveness-

property.

Item (1) can be dealt with as follows: given a polynomial P with n variables,

P effectively maps Dn
� into D� if and only if polynomial P� � is nonnegative on

Dn
�.

Item (2) can be dealt with as follows: given a polynomial P with n variables,

P is nondecreasing in its i-th argument if and only if polynomial

QðX1; . . . ;XnÞ ¼ PðX1; . . . ;Xi�1;Xi þ 1;Xiþ1; . . . ;XnÞ

� PðX1; . . . ;Xi�1;Xi;Xiþ1; . . . ;XnÞ
is nonnegative on Dn

�. Similarly, P is strictly increasing in its ith argument if and

only if polynomial

QðX1; . . . ;XnÞ ¼ PðX1; . . . ;Xi�1;Xi þ 1;Xiþ1; . . . ;XnÞ

� PðX1; . . . ;Xi�1;Xi;Xiþ1; . . . ;XnÞ � 1

is nonnegative on Dn
�.

Item (3) can be taken care of as follows: given t1 and t2, �ðt1Þ and �ðt2Þ can

be computed as polynomials P1 and P2 over their variables, and then t1 �� t2; if

and only if polynomial P1 � P2 is nonnegative on Dn
�, and t1 >� t2 if and only if

polynomial P1 � P2 � 1 is nonnegative on Dn
�.

Regarding Item (4), it is sufficient to check that for each equation t ’ u of

theory E, we have t �� u and u �� t, that is �ðtÞ � �ðuÞ ¼ 0. For the case of AC,

Ben Cherifa and Lescanne [3] showed a simplified sufficient condition: a poly-

nomial interpretation ½½ f ��ðx; yÞ generates an ordering compatible with asso-

ciativity and commutativity of f if and only if it has the form axyþ bðxþ yÞ þ c
where b2 ¼ bþ ac.

EXAMPLE 3.12. Here is a rewrite system for an endomorphism on a monoid

[3].

ðx	 yÞ 	 z! x	 ðy	 zÞ
f ðxÞ 	 f ðyÞ ! f ðx	 yÞ

f ðxÞ 	 ðf ðyÞ 	 zÞ ! f ðx	 yÞ 	 z:

332 EVELYNE CONTEJEAN ET AL.

In order to prove termination of this system using the standard MannaYNess

criterion, the following interpretation is proposed [3], with � ¼ 1:

½½ f ��ðxÞ ¼ 2x and

½½	��ðx; yÞ ¼ xyþ x :

Let us check all needed conditions:

1. First, to check that ½½ f �� effectively maps D1 into D1 we check that ½½ f ��ðxÞ�
1 ¼ 2x� 1 is nonnegative when x � 1. Similarly, for ½½	��, we check that

½½	��ðx; yÞ � 1 ¼ xyþ x� 1 is nonnegative when x; y � 1.

2. Second, to check that ½½ f �� strictly increases in its argument, we check that

½½ f ��ðxþ 1Þ � ½½ f ��ðxÞ � 1 ¼ 2ðxþ 1Þ � 2x� 1

¼ 1

is nonnegative when x � 1. To check that ½½	�� strictly increases in its first

argument, we check that

½½	��ðxþ 1; yÞ � ½½	��ðx; yÞ � 1 ¼ ððxþ 1Þyþ ðxþ 1ÞÞ � ðxyþ xÞ � 1

¼ xyþ yþ xþ 1� xy� x� 1

¼ y

is nonnegative when x; y � 1. Finally, to check that ½½	�� strictly increases in

its second argument, we check that

½½	��ðx; yþ 1Þ � ½½	��ðx; yÞ � 1 ¼ ðxðyþ 1Þ þ xÞ � ðxyþ xÞ � 1

¼ xyþ xþ x� xy� x� 1

¼ x� 1

is nonnegative when x; y � 1.

3. And third, we have to check that for each rule, the left-hand side is strictly

greater than the right-hand side. For the first rule we have

½½ðx	 yÞ 	 z�� ¼ ðxyþ xÞzþ ðxyþ xÞ
½½x	 ðy	 zÞ�� ¼ xðyzþ yÞ þ x

hence,

½½ðx	 yÞ 	 z�� � ½½ xðy	 zÞ�� � 1

¼ ½ðxyþ xÞzþ ðxyþ xÞ� � ½xðyzþ yÞ þ x� � 1

¼ xyzþ xzþ xyþ x� xyz� xy� x� 1

¼ xz� 1

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 333

is nonnegative when x; y; z � 1. For the second rule we have

½½ f ðxÞ 	 f ðyÞ�� ¼ ð2xÞð2yÞ þ 2x

½½ f ðx	 yÞ�� ¼ 2ðxyþ xÞ:
Hence

½½ f ðxÞ 	 f ðyÞ�� � ½½ f ðx	 yÞ�� � 1 ¼ ½4xyþ 2x� � ½2ðxyþ xÞ� � 1

¼ 2xy� 1

is nonnegative when x; y � 1. For the third rule we have

½½ f ðxÞ 	 ð f ðyÞ 	 zÞ�� ¼ 2xð2yzþ 2yÞ þ 2x

½½ f ðx	 yÞ 	 z�� ¼ 2ðxyþ xÞzþ 2ðxyþ xÞ:

Hence

½½ f ðxÞ 	 ð f ðyÞ 	 zÞ�� � f ðx	 yÞ 	 z� 1

¼ ½2xð2yzþ 2yÞ þ 2x� � ½2ðxyþ xÞzþ 2ðxyþ xÞ� � 1

¼ 4xyzþ 4xyþ 2x� 2xyz� 2xz� 2xy� 2x� 1

¼ 2xyzþ 2xy� 2xz� 1

which, after proper factorization 2xzðy� 1Þ þ ð2xy� 1Þ, is easily proven

nonnegative when x; y; z � 1.

We see that proving termination of TRS using a given polynomial �-inter-

pretation can be done automatically, as soon as one can check whether a given

polynomial with n variables is nonnegative over Dn
�.

However, as illustrated by this last check where a smart factorization was

required to somehow dominate the negative coefficients, checking whether a poly-

nomial is nonnegative or not is far from being a simple task. We shall address

this problem in the next section.

3.3. TESTING POSITIVENESS OF POLYNOMIAL FUNCTIONS

We focus now on the positiveness problem of polynomial functions that is: given

a polynomial P 2 Z½X1; . . . ;Xn�, prove that Pðx1; . . . ; xnÞ � 0 for any value

xi � �. We remark first that this problem is undecidable in general since

Hilbert’s Tenth Problem can be reduced to it [40, 41].

Testing positiveness, in the context of automated termination proof, has been

studied by several authors [3, 22, 36, 48, 49, 52]. All their methods propose to

approximate the problem by checking positiveness for any real values greater

than � of their arguments, a problem that becomes decidable [54] but still

334 EVELYNE CONTEJEAN ET AL.

algorithmically very complex. These authors proposed partial methods (i.e.,

correct and terminating but incomplete) supposed to be sufficient for an ap-

plication to termination of TRSs.

Recently, Hong & Jakuš [29] made a comparison between some of these

methods while proposing a new one: the absolute positiveness method. They

proved it to be strictly more powerful than methods of Ben Cherifa & Lescanne

[3] and Steinbach [52], and to be equivalent to Giesl’s method [22] (which com-

putes successive derivatives).

The methods of Rouyer [48, 49] and Lescanne [36] are not comparable with

the absolute positiveness method. On a few examples, they succeed in proving

positiveness of nonabsolutely positive polynomials, such as x2 þ y2 � 2xy.

However, they do not propose any way to automate the search for polynomial

interpretations. Since they do not offer a clear increment of power in practice,

our method of choice will be the absolute-positiveness method.

DEFINITION 3.13. A polynomial P is said to be �-absolutely positive if and

only if polynomial

QðX1; . . . ;XnÞ ¼ PðX1 þ �; . . . ;Xn þ �Þ

has nonnegative coefficients only.

Note that this is not exactly the definition of Hong & Jakuš: they regard strict
positiveness, which can be obtained by considering polynomial Q� 1 instead

of Q in our definition. A straightforward sufficient condition for positiveness

(adapted from Hong & Jakuš [29]) is the following.

LEMMA 3.14. If P is �-absolutely positive, then it is nonnegative for all values
in D� of its variables.

Proof. If P has n variables, let k1; . . . ; kn be arbitrary integers greater or equal

to �, then

Pðk1; . . . ; knÞ ¼ Qðk1 � �; . . . ; kn � �Þ

is nonnegative since it is an expression without any negative operations. Ì

This seems to be a nice and simple check to perform. However, computing the

Ftranslated_ polynomial Q above can be quite costly in general, as shown in the

example below. More precisely, Hong & Jakuš showed that the algorithmic

complexity of computing translation is the same as Giesl’s method [22].

EXAMPLE 3.15. Let us consider the last rule in Lankford’s example, Section

3.12. We have to check whether

Pðx; y; zÞ ¼ 2xyzþ 2xy� 2xz� 1 � 0

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 335

for each x; y; z � 1. We compute

Pðxþ 1; yþ 1; zþ 1Þ
¼ 2ðxþ 1Þðyþ 1Þðzþ 1Þ þ 2ðxþ 1Þðyþ 1Þ � 2ðxþ 1Þðzþ 1Þ � 1

¼ 2xyzþ 2xyþ 2yzþ 2xzþ 2xþ 2yþ 2zþ 2

þ 2xyþ 2xþ 2yþ 2� 2xz� 2x� 2z� 2� 1

¼ 2xyzþ 4xyþ 2yzþ 2xþ 4yþ 1

which has nonnegative coefficients only.

Nevertheless, since this method is at least as powerful as the former ones

while being quite simple, it will be our choice. But in fact, we are going to

improve it a bit in our context, as we shall see in next subsection.

3.4. COMPUTING �-TRANSLATION IN ADVANCE

We start from the easy remark that if we have � ¼ 0, the previous posi-

tiveness test based on absolute positiveness becomes completely trivial. Hence

taking � ¼ 0 as often as possible seems to be a good choice.

A natural question is: BIs it always possible to choose � ¼ 0?^ The answer is

BYes^ indeed, and the proof is surprisingly easy.

PROPOSITION 3.16. Let ð��;
�Þ be a term ordering defined by polynomial
interpretations with a given �. Then this ordering can also be defined by some
polynomial interpretations with � ¼ 0.

Proof. Assuming given a polynomial �-interpretation �, let us define inter-

pretation �0 by

½½ f ���0
ðx1; . . . ; xnÞ ¼ ½½ f ���ðx1 þ �; . . . ; xn þ �Þ � �

where �0 is the newly defined 0-interpretation on terms. By an easy structural

induction, we have for any ground term t

�0ðtÞ ¼ �ðtÞ � �:
Hence we have immediately, for any ground terms t1 and t2, t1 ��0

t2 iff t1 �� t2,

and the same for
�0
. On nonground terms, we have to take care of valuations of

variables: indeed, there is a one-to-one correspondence T between valuations in

D0 and valuations in D�, defined by TðIÞðxÞ ¼ IðxÞ þ �, and we have for any

nonground term t, by structural induction:

�0ðtÞðIÞ ¼ �ðtÞðTðIÞÞ � �
Hence we have, for any nonground terms t1 and t2, t1 ��0

t2 iff t1 �� t2, and the

same for
�0
. So both interpretations define the same ordering. Ì

336 EVELYNE CONTEJEAN ET AL.

The consequence is double. First, regarding implementation, in order to avoid

the computation cost of �-translation of some polynomial P each time we want

to check its positiveness, it is much more efficient to compute the �-translation of

interpretations once and for all: later on, each time we will want to check

t1 �� t2, we will compute �0ðt1Þ � �0ðt2Þ and check positivity of its coefficients,

thus avoiding any additional and expensive computation of �-translations. So all

further computations will be done with these new interpretations, and checking

positiveness will be done simply by examining positiveness of coefficients only.

EXAMPLE 3.17. Again with Lankford’s example, we can compute the trans-

lations of interpretations of f and 	. We define the new interpretations as

½½ f ���0
ðxÞ ¼ ½½ f ���ðxþ 1Þ � 1 ¼ 2ðxþ 1Þ � 1 ¼ 2xþ 1

½½	���0
ðx; yÞ ¼ ½½	���ðxþ 1; yþ 1Þ � 1

¼ ðxþ 1Þðyþ 1Þ þ ðxþ 1Þ � 1 ¼ xyþ 2xþ yþ 1:

Second, it shows that if we want to search for a polynomial interpretation

automatically, fixing � ¼ 0 is enough. This important fact will be used in the

next section. There is a potential drawback though, coefficients of �-translated

polynomials could be larger, but in general we can hope that there are other

solutions with smaller coefficients: for the example above, an automatic search

indeed found that ½½ f ��ðxÞ ¼ xþ 1 is suitable too.

We end this section by giving a simplified criterion for weak or strict

monotonicity of the generated ordering, when � ¼ 0.

LEMMA 3.18. A polynomial 0-interpretation Pðx1; . . . ; xnÞ with nonnegative
coefficients is always nondecreasing in each of its arguments. It is strictly
increasing in its i-th argument if and only if there is a monomial axk

i with a > 0

and k > 0.

Proof. If Pðx1; . . . ; xnÞ ¼ axk
i þ Qðx1; . . . ; xnÞ with a > 0, k > 0 and Q has

nonnegative coefficients, then it is clearly increasing in xi. Conversely, if

Pðx1; . . . ; xnÞ is increasing in xi, then Pð0; . . . ; 0; xi; 0; . . . ; 0Þ is also increasing in

xi, so there must be a monomial in only xi with a positive coefficient. Ì

EXAMPLE 3.19. With Lankford’s example, the new interpretations given for

� ¼ 0 generate a strictly monotonic ordering, since the coefficient of x in ½½ f ���0

is 2 and the coefficients of x and y in ½½	���0
are 2 and 1; respectively.

4. Automated Search for Polynomial Interpretations

This section is devoted to methods for searching suitable polynomial inter-

pretations for proving termination of a given TRS. As shown in the previous

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 337

section, we may look for 0-interpretations only, without any loss of generality.

And for such interpretations, reducing positiveness of a polynomial to posi-

tiveness of each of its coefficients is a correct (yet incomplete) method which is

at least as powerful as other methods known in the literature.

The first step, done in Section 4.1, is to fix a bound on the degree of poly-

nomials we search for. On that respect, we follow Steinbach classification [52].

Such a bound being fixed, we show that searching for interpretations reduces

to solving Diophantine constraints. However, this problem is still undecidable

[40, 41].

Thus, in Section 4.2, we discuss partial methods for solving such constraints.

As in the first step, we need to fix a bound on the values of variables we search

for: to make the problem decidable, we are reduced to solving constraints over a

finite domain. We show in Section 4.3 how known methods for such constraints

can be tailored to solve Diophantine constraints. Then, in Section 4.4, we address

practical problems arising in implementation, that is, the excessively high

algorithmic complexity.

4.1. PARAMETRIC POLYNOMIAL INTERPRETATIONS

To find a suitable interpretation automatically, we choose for each symbol of the

signature a parametric polynomial, that is, a polynomial where coefficients are

variables the values of which have to be found. In order to have a finite number

of such variables, we need to fix a bound on degree of the polynomials we search

for.

Steinbach classified restricted forms of multivariate polynomials [52]. The

linear class contains polynomials of degree 1 at most, that is,

Pðx1; . . . ; xnÞ ¼ a1x1 þ � � � þ anxn þ c:

The simple class contains polynomials of at most degree 1 in each variable:

Pðx1; . . . ; xnÞ ¼
X

ij2f0;1g
ai1;...;inx

i1
1 � � � xin

n :

The simple-mixed class contains polynomials whose monomials consist of either

a single variable with degree 2, or of several variables of at most degree 1:

Pðx1; . . . ; xnÞ ¼
X

ij 2 f0;1g
ai1;...;inx

i1
1 � � � xin

n þ
X

1� i�n

bix
2
i :

This terminology is used Fas is_ in our implementation, to select a given class.

We added the quadratic class for polynomials of degree 2, an extension to the

simple-mixed class:

Pðx1; . . . ; xnÞ ¼
X

ij2f0;1;2g
ai1;...;inx

i1
1 � � � xin

n :

338 EVELYNE CONTEJEAN ET AL.

This classification is slightly overridden when commutative or associative-

commutative symbols are involved (those are the only equational theories sup-

ported in our implementation). For AC symbols, we always choose a parametric

interpretation of the form axyþ bðxþ yÞ þ c where b2 ¼ bþ ac. For a com-

mutative but not associative symbol f , we should use a polynomial ½½ f �� such that

½½ f ��ðx; yÞ ¼ ½½ f ��ðy; xÞ, hence the special form of linear polynomials ½½ f ��ðx; yÞ ¼
aðxþ yÞ þ b, simple polynomials ½½ f ��ðx; yÞ ¼ axyþ bðxþ yÞ þ c, and simple-

mixed or quadratic polynomials ½½ f ��ðx; yÞ ¼ aðx2 þ y2Þ þ bxyþ cðxþ yÞ þ d.

Once a class of polynomials is chosen, we have a finite number of variables.

Now we have to translate, into constraints on these variables, each of the con-

ditions that ensure suitability of the defined ordering ð�;
Þ. We detail this

process below. In the following, P � 0 means each coefficient of P is non-

negative, and P ¼ 0 means each coefficient is null.

First, we shall point out that the requirement for � monotonic,
 and �
stable, and
 well-founded is satisfied as soon as all coefficients are nonnegative.

The reduction of the remaining conditions to constraints is as follows:

Y
 monotonic w.r.t. ith arg. of f , reduces to

ai � 1

if ai is the coefficient of xi in ½½ f ��.
Y � and
 compatible with an equational theory E reduces to

½½t�� � ½½u�� ¼ 0

for each equation t ’ u of E.
Y For the special case of commutativity: � and
 C-compatible w.r.t. f

reduces to nothing if a symmetric parametric interpretation is chosen as

above.
Y For the AC case, � and
 AC-compatible w.r.t. f , reduces to

b2 ¼ bþ ac

if the parametric interpretation of f is ½½ f ��ðx; yÞ ¼ axyþ bðxþ yÞ þ c.
Y t1 � t2 reduces to

½½t1�� � ½½t2�� � 0

Y t1
 t2 reduces to

½½t1�� � ½½t2�� � 1 � 0:

Hence, at this step, proving termination of a given TRS has been reduced to

the problem of solving a set of Diophantine constraints on the coefficients in-

troduced in the parametric interpretations.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 339

EXAMPLE 4.1. Back to Lankford’s example, if we want to automatically find

suitable polynomial interpretations, we may try parametric simple interpretations

½½ f ��ðxÞ ¼ axþ b

½½	�� ðx; yÞ ¼ cxyþ dxþ eyþ f :

Thus, proving termination of the system reduces to solving the following con-

straints (the first three coming from strict monotonicity conditions):

a > 0 d > 0 e > 0

cðcxyþ dxþ eyþ f Þzþ dðcxyþ dxþ eyþ f Þ þ ezþ f

> cxðcyzþ dyþ ezþ f Þ þ dxþ eðcyzþ dyþ ezþ f Þ þ f

cðaxþ bÞðayþ bÞ þ dðaxþ bÞ þ eðayþ bÞ þ f

> aðcxyþ dxþ eyþ f Þ þ b

cðaxþ bÞðcðayþ bÞzþ dðayþ bÞ þ ezþ f Þ þ dðaxþ bÞþ
eðcðayþ bÞzþ dðayþ bÞ þ ezþ f Þ þ f

> cðaðcxyþ dxþ eyþ f Þ þ bÞzþ
dðaðcxyþ dxþ eyþ f Þ þ bÞ þ ezþ f :

The last three, after normalization, become

ðcd � ceÞxzþ ðd2 � cf � dÞxþ ðe� e2 þ fcÞzþ ðdf � ef � 1Þ � 0

ðca2 � caÞxyþ ðcabÞxþ ðcabÞyþ ðcb2 � faþ f þ ebþ db� b� 1Þ� 0

ðc2a2 � c2aÞxyzþ ðdca2 � dcaÞxyþ ðeca� dcaþ c2baÞxz

þð fca� d2aþ dcbaþ daÞxþ ðe2 � fcaþ 2ecb� eþ c2b2 � cbÞz
þðc2baÞyzþ ðdcbaÞyþ ð fe� fdaþ fcbþ edbþ dcb2 � 1Þ � 0:

Hence, by the simple criterion of absolute positiveness, proving termination re-

duces to solving

a� 1 � 0 cb2 � faþ f þ ebþ db� b� 1 � 0

d � 1 � 0 c2a2 � c2a � 0

e� 1 � 0 dca2 � dca � 0

cd � ce � 0 eca� dcaþ c2ba � 0

d2 � cf � d � 0 c2ba � 0

e� e2 þ fc � 0 fca� d2aþ dcbaþ da � 0

df � ef � 1 � 0 e2 � fcaþ 2ecb� eþ c2b2 � cb � 0

ca2 � ca � 0 dcba � 0

cab � 0 fe� fdaþ fcbþ edbþ dcb2 � 1 � 0:

340 EVELYNE CONTEJEAN ET AL.

4.2. SOLVING DIOPHANTINE CONSTRAINTS: GENERAL IDEA

The general idea is, first, to turn this problem into a decidable one by putting an

arbitrary bound on the solutions we look for: we restrain the search for values of

variables satisfying the constraints to a given interval ½0;B� where B is some

nonnegative integer bound. The problem becomes then an instance of the so-

called finite domain constraint satisfaction problems, which have been exten-

sively studied in the literature, especially in the context of constraint logic

programming [10, 30]. The usual way of solving such constraints is a gen-

eralization of the well-known DavisYPutnam procedure for deciding satisfiability

of propositional formulas, which are formulas where variables lie in the finite

domain ftrue; falseg. The general shape of the solving algorithm is made of two

parts, working on a data structure called store which tells which values are

possible for each variable. The first part is the constraint propagation procedure

that, given a store and a constraint, performs some logical deductions to produce

a smaller store. The second part is a nondeterministic branching which explores

all possible values of variables, with various heuristics.

When specialized to solving constraints in an integer domain ½0;B�, it is handy

to have a store which memorizes only the minimum and the maximum values of

variables, leading to the main algorithm given in Figure 1. In that algorithm,

propagate is the constraint propagation procedure: it is supposed to perform

arbitrary correct deductions from a given store and given constraints:

propagateðs;CÞ returns a store s0, included in s (that is for each variable x,

s0:x:min � s:x:min and s0:x:max � s:x:max) such that any solution of C inside s is

also inside s0. Note that it may also throw NoSolution if it deduces that no

solution exists. Procedure ChooseVarðsÞ chooses a variable on which a reasoning

by cases will be done. It should return any variable x such that x:min < x:max.

Figure 1. Main algorithm for solving Diophantine constrains.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 341

Finally, isSolution is a procedure that, given a store where each variable is

associated to a single value, tells whether this store is a solution or not. Notice

that the algorithm given in Figure 1 uses a particular branching strategy: once a

variable x is chosen, two cases are considered, the first one occurs when x is

equal to its minimum possible value, the second one occurs when it is greater

than that. Any other branching strategy is possible, such as domain bisection, but

the one chosen here gives better results in practice.

It is straightforward to see that this algorithm will end in finite time whatever

the implementations of propagate and chooseVar might be. But of course, the

efficiency highly depends on clever implementations of these two subroutines:

for example, if propagate does not deduce anything and simply returns the store

given as argument, then the algorithm will explore exhaustively the set ½0;B�n
(n number of variables) of possible solutions. In constraint programming in

general, and for finite domain constraints in particular, the Ffirst-fail principle_ is

known to be good: the idea is to try to fail as quickly as possible, in order to cut

branches. In CiME, we implemented the following heuristic: a variable with the

smallest min is chosen, amongst all variables with the minimal min, a variable

with the largest value of max is chosen, and again among all possible remaining

variables, the variable which occurs most often in the constraints is chosen. This

means that when setting the chosen variable to its minimum value, we add as

much new constraints as possible, in particular we first try to set variables to 0 as

much as possible. We have experimented variants of this heuristic, but this one

appears to be the best. We will not discuss further the possible implementation of

chooseVar.

EXAMPLE 4.2. Let’s consider the set of Diophantine constraints

2xþ y � 12; xy ¼ 15

and assume we want to solve it for x; y in interval ½0; 100�. We first build the

initial store

���������
x 0 100j

j
j���������

j

j
j

y 0 100

j

j
j

���������

j

j
j

We may then propagate the constraints: from 2xþ y � 12, we deduce y �
12� 2x � 12. From 2xþ y � 12 again, we deduce x � b12�y

2
c � b12

2
c ¼ 6 (we

denote bac the greatest integer less than or equal to a). Hence the store becomes

���������
x 0 6j

j
j���������

j

j
j

y 0 12

j

j
j

���������

j

j
j

342 EVELYNE CONTEJEAN ET AL.

Furthermore, from xy ¼ 15, x � d15
y e � d15

12
e ¼ 2 (we denote dae the smallest

integer greater than or equal to a), and y � d15
x e � d15

6
e ¼ 3; hence

���������
x 2 6j

j
j���������

j

j
j

y 3 12

j

j
j

���������

j

j
j

Considering again 2xþ y � 12, we get x � b12�3
2
c ¼ 4 and y � 12� 2	 2 ¼ 8,

and again from xy ¼ 15, we have y � d15
x e � d15

4
e ¼ 4; hence we get

���������
x 2 4j

j
j���������

j

j
j

y 4 8

j

j
j

���������

j

j
j

and we cannot deduce more on intervals for x and y, so this last store is the result

of propagation of the constraints on the initial store. We have then to reason by

cases. We choose one of the variables, say x, and branch into two cases: whether

x is equal to its minimum value in the store or not. If we fix x ¼ 2; we get the

store

���������
x 2 2j

j
j���������

j

j
j

y 4 8

j

j
j

���������

j

j
j

and propagation of d15
x e � y � b15

x c leads to an inconsistent store

���������
x 2 2j

j
j���������

j

j
j

y 8 7

j

j
j

���������

j

j
j

Hence exception NoSolution may be thrown. Backtracking to the last branching

point, we know that x 6¼ 2 and get the store

���������
x 3 4j

j
j���������

j

j
j

y 4 8

j

j
j

���������

j

j
j

which, after propagation, becomes

���������
x 3 4j

j
j���������

j

j
j

y 4 5

j

j
j

���������

j

j
j

Choosing then the value x ¼ 3 and propagating the constraints leads to the so-

lution x ¼ 3, y ¼ 5.

4.3. TRANSLATING DIOPHANTINE CONSTRAINTS INTO FINITE DOMAIN

CONSTRAINTS

The next goal is to make constraint propagation efficient. The main idea, coming

from constraint logic programming and implicitly used in the previous example,

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 343

is to transform the constraints into so-called finite domain constraints of the form

x 2 ½e1; e2� where e1 and e2 are expressions. Constraint propagation will then be

done by computing minimal value of e1 and maximal value of e2 and comparing

them with minimal and maximal values of x.

EXAMPLE 4.3. The constraints f2xþ y � 12; xy ¼ 15g will be transformed

into finite domain constraints:

x 2 ½0; ð12� yÞ=2� x 2 ½15=y; 15=y�

y 2 ½0; 12� 2	 x� y 2 ½15=x; 15=x�

This approach is quite well-known indeed for linear Diophantine constraints

[10] which is a major case in applications of constraints logic programming.

However, the case of nonlinear Diophantine constraints seems not to have been

studied. So we designed a specialized variant of finite domain constraints to fit

our needs, which we describe now. A problem arising when putting Diophantine

constraints into a form x 2 ½e1; e2� is that we need to use divisions (as in the

example above) and/or n-th roots. Thus, we have to keep in mind the semantics

of such expressions and neither divide by zero nor take the root of a negative

number.

DEFINITION 4.4. A finite domain Diophantine constraint is a formula of the

form x 2 ½e1; e2�; where e1 and e2 are finite domain Diophantine expressions, of

the form

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f � f Þ=f

p

where n denotes a positive integer, and f denotes positive polynomial expressions
as defined by the grammar

f ::¼ n j x j f þ f j f 	 f

where n denotes a nonnegative integer constant and x a variable.

For readability, we simply write e for e� 0, 1
ffiffiffi
e
p

and e=1.

We define what a solution of a set of such finite domain constraints is,

taking care of not dividing by zero and not evaluating the root of a negative

number:

DEFINITION 4.5. For a valuation � : X! N, we define a function mapping

positive polynomial expressions to integers by

evalðn; �Þ ¼ n

evalðx; �Þ ¼ �ðxÞ
evalðe1 þ e2; �Þ ¼ evalðe1; �Þ þ evalðe2; �Þ
evalðe1 	 e2; �Þ ¼ evalðe1; �Þ 	 evalðe2; �Þ

344 EVELYNE CONTEJEAN ET AL.

We say that � is a solution of a set C of finite domain Diophantine con-

straints when it is a solution of each constraint in C. It is a solution of a con-

straint x 2 ½e1; e2� if it satisfies x � e1 and x � e2. A valuation � satisfies x �
n
ffi
ð f1 � f2Þ=f3

p
when �ðxÞn 	 evalð f3; �Þ þ evalð f2; �Þ � evalð f1; �Þ, and it sat-

isfies x � n
ffi
ð f1 � f2Þ=f3

p
when �ðxÞn 	 evalð f3; �Þ þ evalð f2; �Þ � evalð f1; �Þ.

We are now ready to define our translation from Diophantine constraints into

finite domain constraints.

DEFINITION 4.6. The finite domain translation of a Diophantine constraint

P � 0, P � 0 or P ¼ 0, is a set of n constraints, n being the number of

occurrences of each variable in P. Each of these constraints are computed as

follows: for each occurrence of a variable x in a monomial M of P, say M ¼
�axkQ where a > 0 and x does not occur in Q, we rewrite the constraint into one

of the three forms

axkQþ R � 0 ð2Þ

axkQþ R � 0 ð3Þ

axkQþ R ¼ 0 ð4Þ
A constraint of form equation (2) is translated into

x 2
�

k
ffi
ðRneg � RposÞ=aQ

q
;B

�

where B is the bound of solutions to search for, and R ¼ Rpos � Rneg where Rpos

and Rneg have only positive coefficients. A constraint of form (3) is translated

into

x 2
�

0; k
ffi
ðRneg � RposÞ=aQ

q �

A constraint of form (4) is translated into

x 2
�

k
ffi
ðRneg � RposÞ=aQ

q
; k
ffi
ðRneg � RposÞ=aQ

q �

The next proposition shows that our translation is sound. We point out that we

require the Diophantine constraints we start from to contain no Ftrivial_
constraint, that is, no constraint of the form c � 0 (or � or ¼), where c is a

constant. Such constraints are either trivially true and may be removed, or false

and the whole set is unsatisfiable.

PROPOSITION 4.7. If C is a set of Diophantine constraints containing no
trivial constraint, then its set of solutions in ½0;B� is exactly the same as the set of
so-lutions in ½0;B� of its translation D into finite domain constraints.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 345

Proof. If � satisfies C, since any constraint d of D comes from a translation of

some constraint c in C, and from Definition 4.5, the truth of �ðcÞ implies the truth

of �ðdÞ. Conversely, if � is a solution of D, then for any constraint c of C, c
generated at least one constraint d in D (because c is not trivial), and again, the

truth of �ðdÞ implies the truth of �ðcÞ by Definition 4.5. Ì

We can go back now to the algorithm for solving finite domain constraints.

We want to design an implementation of the propagation procedure that is

specific to the form of constraint we have. The proposed algorithm is given in

Figure 2, where the auxiliary procedure chooseðCÞ returns an arbitrary element

of C, and dependOnðC; xÞ returns the subset of C where x occurs. The while loop

always terminates because at each iteration either the store size
P
ðx:max�

x:minÞ decreases, or it remains unchanged and the size of the active set of con-

straints decreases. Functions minVal and maxVal are defined by

minValðn; sÞ ¼ maxValðn; sÞ ¼ n
minValðx; sÞ ¼ s:x:min

maxValðx; sÞ ¼ s:x:max

minValðe1 þ e2; sÞ ¼ minValðe1; sÞ þ minValðe2; sÞ
maxValðe1 þ e2; sÞ ¼ maxValðe1; sÞ þ maxValðe2; sÞ
minValðe1 	 e2; sÞ ¼ minValðe1; sÞ 	 minValðe2; sÞ
maxValðe1 	 e2; sÞ ¼ maxValðe1; sÞ 	 maxValðe2; sÞ
minValðe1 � e2; sÞ ¼ minValðe1; sÞ � maxValðe2; sÞ

maxValðe1 � e2; sÞ ¼ maxValðe1; sÞ � minValðe2; sÞ
minValðe1=e2; sÞ ¼ dminValðe1; sÞ=maxValðe2; sÞÞe
maxValðe1=e2; sÞ ¼ bmaxValðe1; sÞ=minValðe2; sÞÞc

minValð n
ffiffiffi
e
p
; sÞ ¼ n

ffi
minValðe; sÞ

p� �

maxValð n ffiffiffie
p
; sÞ ¼ n

ffi
maxValðe; sÞ

p� �

where any division by zero or root of a negative number throws exception

ArithError.

PROPOSITION 4.8. The propagation algorithm is correct, that is whenever �
is a solution of C included in some store s, then it is also included in store
propagateðs;CÞ.

Proof. It suffices to show that this property is an invariant of the while loop.

Assume � is a solution of C included in a store s, that is for all x, s:x:min �
�ðxÞ � s:x:max. Then by an easy structural induction, for any finite domain

positive polynomial expression f we have

minValð f ; sÞ � evalð f ; �Þ � maxValð f ; sÞ ð5Þ

This is true indeed because only nonnegative expressions are involved in f , hence

the minimum value of a product is the product of the minimum values of its

arguments, and the same for the maximum.

346 EVELYNE CONTEJEAN ET AL.

Assume a new deduction is made by propagation of some constraint x 2
½e1; e2�. Assume the new deduction is made on e1, that is minValðe1; sÞ is defined

and greater than s:x:min. Assume e1 ¼ n
ffi
ð f1 � f2Þ=f3

p
. Then

minValðe1; sÞ ¼ n

ffi
minValð f1; sÞ � maxValð f2; sÞ

maxValð f3; sÞ

� 	s& ’
ð6Þ

where no undefined operations exists in this formula, that is, maxValð f3; sÞ is

positive and the fraction is nonnegative. Since � is a solution, we have

�ðxÞn 	 evalð f3; �Þ þ evalð f2; �Þ � evalð f1; �Þ

Hence by equation (5)

�ðxÞn 	 maxValð f3; sÞ þ maxValð f2; sÞ � minValð f1; sÞ

So, since maxValð f3; sÞ is positive

�ðxÞn � ðminValð f1; sÞ � maxValð f2; sÞÞ=maxValð f3; sÞ

that is,

�ðxÞn � dðminValð f1; sÞ � maxValð f2; sÞÞ=maxValð f3; sÞe

Figure 2. The propagation algorithm.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 347

because �ðxÞn is an integer. Since the right-hand side is nonnegative, and root

functions are increasing

�ðxÞ � n
ffi
dðminValð f1; sÞ � maxValð f2; sÞÞ=maxValð f3; sÞe

p

and by equation (6), and again because �ðxÞ is an integer, we get �ðxÞ �
minValðe1; sÞ.

We similarly prove that �ðxÞ � maxValðe2; sÞ, and proceed similarly when the

new deduction is made on e2. Ì

4.4. FURTHER OPTIMIZATIONS

The algorithm provided in the previous section is reasonably efficient, at least

much more efficient than the trivial algorithm which explores all possible val-

uations. However, as noticed in the example of Section 4.1, the size of the

constraints to be solved increases quickly with the number of rules of the TRS.

Hence, dealing with actual systems brings to the fore the need for more opti-

mizations.

We first give some straightforward simplification rules, then we explore an

improvement that amounts to abstracting squares and products in order to make

each constraint more Fatomic_ and to share products as much as possible.

Eventually we analyze the complexity of performing these sharings.

4.4.1. Simplifications

In Proposition 4.7, we have already seen that one should handle constraints

where no variable occurs before performing any translation into finite domain

constraints. In fact, more simplification rules can be applied before the

translation: assume we write a polynomial
P

cimi where the mi are primitive

monomials and the ci are the coefficients, we have the following simplification

rules:
X

cimi ¼ 0) allNullðc0;m1; . . . ;mkÞ if all ci � 0

X
cimi � 0) true if all ci � 0

X
cimi ¼ 0) allNullðc0;m1; . . . ;mkÞ if all ci � 0

X
cimi � 0) allNullðc0;m1; . . . ;mkÞ if all ci � 0

where allNullðc0;m1 . . . ;mkÞ is either false if coefficient c0 is not 0, or the set of

constraints fm1 ¼ 0; . . . ;mk ¼ 0g if c0 ¼ 0.

PROPOSITION 4.9. These transformations preserve the set of solutions.
Proof. Straightforward. Ì

348 EVELYNE CONTEJEAN ET AL.

4.4.2. Abstracting squares and products of Diophantine constraints

As noticed, for finite domain constraints in general, by Codognet & Diaz [10],

the efficiency of the propagation procedure can be significantly improved by

making the constraints as small as possible, so as to get a small number of

constraints given by dependOn. One way to achieve this is to introduce an op-

eration called abstraction: to introduce fresh variables to denote subexpressions.

For example, for solving the constraint

x7 � x4 þ x3 � 5 � 0

one may introduce y ¼ x2 to transform the constraint into fxy3 � y2 � xy� 5 �
0; y ¼ x2g, then furthermore z ¼ y2 and t ¼ xy to get ftz� z� t� 5 � 0;
y ¼ x2; z ¼ y2; t ¼ xyg. On this form, one may further note that this introduction

of variables makes some sharing of common subexpressions. Such abstractions

could be made on any subexpressions, but we made the choice of performing

them only for abstractions of squares and products of variables, so as to share

multiplications only (we discuss further this choice in Section 5).

However, these abstractions introduce a small difficulty: they do not preserve

the set of solutions in a given interval ½0;B�. For instance, fxy ¼ 4; xþ y ¼ 4g
has a solution in ½0; 2� whereas fz ¼ 4; z ¼ xy; xþ y ¼ 4g has not. Hence, when

performing abstractions, a maximal bound has to be computed for each variable

(after computing the initial store, in procedure solve of Figure 1). The trans-

formation rules are

Square abstraction

S;C) S [fz:min ¼ 0; z:max ¼ ðx:maxÞ2g;C½x2=z� [fz ¼ x2g
Product abstraction

S;C) S [fz:min ¼ 0; z:max ¼ x:max	 y:maxg;C½xy=z� [fz ¼ xyg
where z is a fresh variable and C½e=z� denotes replacement of e by z in C.

Replacement of x2 by z amounts to replacing any power x2n by zn and x2nþ1 by

xzn, and replacement of xy by z amounts to replacing any xnþkyn by xkzn and any

xnynþk by ykzn.

PROPOSITION 4.10. These transformations preserve the set of solutions in
the following sense: given a bound B and a set of constraints C, given S;D
obtained by any number of abstractions starting from ðfx:min ¼ 0; x:max ¼ B j
x 2 Cg;CÞ, a valuation � in ½0;B� is a solution of C if and only if there is a
solution �0 of D in S such that �0ðxÞ ¼ �ðxÞ for each variable x of C.

Proof. The if part is trivial. For the only if part we proceed by induction on

the number of abstraction performed. If none this is trivial since DC. If the

proposition is true for S;D; and we perform an additional abstraction, say

S;D) S [fz:min ¼ 0; z:max ¼ x:max	 y:maxg;D½xy=z� [fz ¼ xyg

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 349

(the proof is similar with a square abstraction). If � is a solution of C, then by

induction there is a �0 solution of D such that �0ðxÞ ¼ �ðxÞ. We pose �00ðzÞ ¼
�0ðxÞ 	 �0ðyÞ and �00ðvÞ ¼ �0ðvÞ for v 6¼ z. Then �00 is clearly a solution of

D½xy=z� [fz ¼ xyg in S [fz:min ¼ 0; z:max ¼ x:max	 y:maxg. Ì

4.4.3. Minimisation of the number of introduced variables

Until now, we have not discussed strategies for choosing which product or square

to abstract, and in which order. Ideally, one would like to proceed in such a

way that a minimal number of extra variables is introduced. However, finding

such a minimal way is equivalent to solving the famous problem of addition
chains [32], where the length of a chain corresponds to the number of introduced

variables.

The simplest case is when one wants to compute a power of a single variable

with the minimum number of multiplications. A well-known efficient algorithm

is the dichotomic one: x2n ¼ ðxnÞ2, x2nþ1 ¼ x	 ðxnÞ2, also called recursive

scheme in [45]. Its complexity is bounded with 2logðnÞ;j but it is not optimal:

for x15 it requires six multiplications whereas it is possible to proceed with

only 5. The classical complexity results on addition chains for a single integer

n state that the length of the shortest chain is between logðnÞ and 2logðnÞ,
but in general, the only way to compute it is by using a nondeterministic

Fbranch and bound_ algorithm, and no closed formula on n giving the optimal

number of multiplications is known. Moreover, we are in the very general case,

with several variables and several monomials; thus the problem is even more

complicated.

Since no optimal deterministic algorithm was known, we decided to use a

nonoptimal algorithm of our own. It involves a heuristic way to decide which

square or product to abstract, and never backtracks so that the computation

would be done in a short time.

Our algorithm proceeds as follows: it computes the weight of each possible

square and product i.e.,, the number of multiplications that will be saved if the

abstraction is performed:

Y the weight of x2 is the sum of b�=2c for each occurrence of x�;

Y the weight of xy is the sum of minð�; �Þ for each occurrence of x�y�.

The complete algorithm, displayed in Figure 3, consists in applying square

abstraction or product abstraction iteratively, always choosing an abstraction of

maximal weight. If a product and a square have the same (maximal) weight, the

j logðnÞ denotes the logarithm of n in base 2, rounded by floor.

350 EVELYNE CONTEJEAN ET AL.

square abstraction will be preferred (a property we will use in the following

complexity analysis). Note that in the case of one power of one variable, this

algorithm is equivalent to the dichotomic one above. Technically, our imple-

mentation involves a variant, obtained by stopping the abstraction whenever the

maximal weight is not at least two. In other words, no abstraction of a product is

performed if it does not make some sharing. We will discuss this variant in

Section 5.

4.4.4. Complexity analysis

Pippenger [46] gave the following estimation of the length of the shortest chain:

Lðp; q; nÞ ¼ minðp; qÞ log nþ H

log H
U

ffi
log log H

log H

s !
þ Oðmaxðp; qÞÞ

where n is the maximal coefficient, p the number of variables, q the number of

monomials, H ¼ pqlogðnþ 1Þ, and UðxÞ is of the form 2OðxÞ. Roughly speaking,

this bound depends linearly in p and q, and logarithmically in n. Regarding our

algorithm, we have been able to establish a bound that is also logarithmic in n
and linear in the number of nonzero coefficients.

To study this complexity, we care neither about the original polynomials

nor about, the coefficients of monomials; we just have to assume we have a set

of power products (i.e., monomial with coefficient 1). Then if we have q such

monomials over p variables, we build a matrix q	 p of exponents, each row

corresponding to a monomial, and each column to a variable. Such a matrix

uniquely determines the set of monomials, up to permutation of variables

names, but their order is not significant for the complexity of the algorithm.

Figure 3. The complete algorithm for square and product abstraction.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 351

During the proof of the next theorem, we express the algorithm in terms of

matrix transformation.

THEOREM 4.11. On input of several monomials identified with their matrix
M, the complexity CðMÞ of our algorithm is bounded by

CðMÞ �
X

1�j�p

CðMjÞ � q

where Mj is the jth column of M and

CðAÞ ¼
X

a2A;1�a

logðaÞ þ

 X

a2A;1�a

1

�
ð1þ logð max

a2A;1�a
aÞÞ

when A is a column.

Proof. By induction on M (the sum of elements for example).

Let us first notice that the number of rows is invariant during the

process of abstraction, and if A is a 0/1 vector, CðAÞ is equal to the number of

nonzero components in A, and if A � B component by component, then

CðAÞ � CðBÞ.
If the input of the algorithm is a set of q monomials of the form xji ,

1 � i � q; 1 � ji � p, that is, M is a 0/1 matrix, which is exactly one 1 per row,

there is no abstraction to perform, hence CðMÞ ¼ 0.

X

1� j� p

CðMjÞ � q ¼ q� q � 0 ¼ CðMÞ

Otherwise, some abstractions have to be done.

1. Let us assume that the first step is a square abstraction over a variable of

column of exponents A: by reordering the variables, without loss of

generality, the matrix of exponents is of the form ½A; M�. After the square

abstraction, it is of the form

M0 ¼ A

2

�

; A mod 2; M

� �

and we have

C
A

2

�

 �
¼
X

a2A;2�a

ðlogðaÞ�1Þþ
X

a2A;2�a

1

 !
1þ log max

a2A;2�a
a

 �
�1

 �

C A mod 2ð Þ ¼
X

a2A;a mod 2¼1

1

352 EVELYNE CONTEJEAN ET AL.

Cð½A; M�Þ ¼ 1þ CðM0Þ

� 1þ C

bA

2
c
�
þ CðA mod 2Þ þ

X
1� j

CðMjÞ � q ðby inductionÞ

¼ 1þ
X

a2A;2�a

ðlogðaÞ � 1Þ þ
X

a2A;2�a

1

 !
1þ log max

a2A;2�a
a

 �
� 1

 �

þ
X

a2A; a mod 2¼1

1þ
X

1� j

CðMjÞ � q

¼ 1�
X

a2A;2�a

1þ
X

a2A;2�a

logðaÞ

þ
X

a2A;2�a

1

 !
1þ log max

a2A;2�a
a

 �
 �
�

X

a2A;2�a

1

þ
X

a2A; a mod 2¼1

1þ
X

1� j

CðMjÞ � q

¼ 1�
X

a2A;2�a

1þ
X

a2A;1�a

logðaÞ þ
X

a2A;1�a

1

 !
1þ log max

a2A;2�a
a

 �
 �

�
X

a2A;1¼a

1

 !
1þ log max

a2A;2�a
a

 �
 �
�

X

a2A;2�a

1þ
X

a2A; a mod 2¼1

1

þ
X

1� j

CðMjÞ � q

Cð½A; M�Þ ¼ 1þ CðM0Þ

� 1�
X

a2A;2�a

1þ
X

a2A;1�a

logðaÞ þ
X

a2A;1�a

1

 !
1þ log max

a2A;2�a
a

 �
 �

�
X

a2A;1¼a

1�
X

a2A;2�a

1þ
X

a2A; a mod 2¼1

1

þ
X

1�j

CðMjÞ � q

� 1�
X

a2A;2�a

1þ
X

a2A;1�a

logðaÞ þ
X

a2A;1�a

1

 !
1þ log max

a2A;2�a
a

 �
 �

þ
X

1�j

CðMjÞ � q

¼ 1�
X

a2A;2�a

1þ CðAÞ þ
X

1� j

CðMjÞ � q

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 353

Since a square abstraction has been performed, A contains at least an element

greater than or equal to 2, hence,

Cð½A; M�Þ � CðAÞ þ
X

1� j

CðMjÞ � q

2. Let us assume that the first step of the algorithm is a product abstraction over

some variables and that A and B are their columns of exponents,

respectively. By reordering the variables and then the monomials, the matrix

of exponents may be given the form

Aþ

A¼

A�

B�

B¼

Bþ
M

2
4

3
5

where Aþ > B�, A¼ ¼ B¼ and A� < Bþ component by component, the first

two columns being A and B. Hence,

minðA;BÞ ¼
B�

A¼

A�

2
4

3
5¼

B�

B¼

A�

2
4

3
5

A�minðA;BÞ ¼
Aþ � B�

0

0

2
4

3
5B�minðA;BÞ ¼

0

0

Bþ � A�

2
4

3
5

C½A; B; M� ¼ 1þ C½A�minðA;BÞ; B�minðA;BÞ; minðA;BÞ; M�

� 1þ CðA�minðA;BÞÞ þ CðB�minðA;BÞÞ

þ CðminðA;BÞÞ þ
X

j�1

CðMjÞ � q ðby inductionÞ

¼ 1þ CðAþ � B�Þ þ CðBþ � A�Þ

þ
X

a2A�;1�a

log aþ

 X

a2A�;1�a

1

�

1þ log

max

a2minðA;BÞ;1�a
a

��

þ
X

a2A¼;1�a

log aþ

 X

a2A¼;1�a

1

�

1þ log

max

a2minðA;BÞ;1�a
a

��

þ
X

b2B�;1�b

log bþ

 X

b2B�;1�b

1

�

1þ log

max

b2minðA;BÞ;1�b
b

��

þ
X

j�1

CðMjÞ � q

354 EVELYNE CONTEJEAN ET AL.

It is easy to obtain that

C½A; B; M� � 1þ CðAÞ þ CðBÞ þ
X

j�1

CðMjÞ � q

since

CðAþ � B�Þ þ
X

a2A�;1�a

log aþ

 X

a2A�;1�a

1

�

1þ log

max

a2minðA;BÞ;1�a
a

��

þ
X

a2A¼;1�a

log aþ

 X

a2A¼;1�a

1

�

1þ log

max

a2minðA;BÞ;1�a
a

��

� CðAÞ
and

CðBþ � A�Þ þ
X

b2B�;1�b

log bþ

 X

b2B�;1�b

1

�

1þ log

max

b2minðA;BÞ;1�b
b

��

� CðBÞ

We shall prove the actual strictness of the inequality between C½A; B; M� and

1þ CðAÞ þ CðBÞ þ
P

j�1 CðMjÞ � q, since the two inequalities cannot be

exact equalities simultaneously. Let us assume that we have indeed exact

equalities; this implies that

8ða; bÞ 2 ½Aþ; B�� logða� bÞ ¼ logðaÞ

8ða; bÞ 2 ½A�; Bþ� logðb� aÞ ¼ logðbÞ
8a 2 A¼a ¼ 0

that is,

Aþ > 2B�;A¼ ¼ B¼ ¼ 0;Bþ > 2A�;

componentwise, and

 X

a2A�;1�a

1

�

1þ log

max

a2minðA;BÞ;1�a
a

��

¼

 X

a2A�;1�a

1

�

1þ log

max

a2A;1�a
a

��
 X

b2B�;1�b

1

�

1þ log

max

a2minðA;BÞ;1�a
a

��

¼

 X

b2B�;1�b

1

�

1þ log

max

b2B;1�b
b

��

Since A¼ ¼ 0 and we have performed a product abstraction, it is impossible

that both A� and B� are equal to 0.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 355

a) Let us assume first that A� ¼ 0 and B� 6¼ 0. The square abstraction over A
has not been selected; this means that

X

a2A

a

2

j k
<
X

b2B�
bþ

X

b2B¼
bþ

X

a2A�
a ¼

X

b2B�
b

But since Aþ > 2B�, we can deduce that

X

b2B�
b �

X

a2A

a

2

j k
;

which leads to

X

a2A

a

2

j k
<
X

a2A

a

2

j k
;

a contradiction.

b) The case when A� 6¼ 0 and B� ¼ 0 is identical.

c) Let us assume now that A� 6¼ 0 and B� 6¼ 0. This implies that ð
P

a2A�;1�a 1Þ
6¼ 0 and ð

P
b2B�;1�b 1Þ 6¼ 0, hence

log
�

max
a2minðA;BÞ;1�a

a
�
¼ log

�
max

a2A;1�a
a
�

log
�

max
a2minðA;BÞ;1�a

a
�

¼ log
�

max
b2B;1�b

b
�

Let us assume without loss of generality that the maximum of A and

B is reached on a0 2 A (i.e., a0 ¼ maxfmax A;max Bg). When a is in

minðA;BÞ ¼ A� [B�, 2a is less than a0, hence

log
�

max
a2minðA;BÞ;1�a

a
�
� logða0Þ � 1

which contradicts the first one of the above equalities.

The case when

C½A; B; M� ¼ 1þ CðAÞ þ CðBÞ þ
X

j�1

CðMjÞ � q

has been eliminated, hence

C½A; B; M� � CðAÞ þ CðBÞ þ
X

j�1

CðMjÞ � q

and we are done. Ì

Notice that in the case of a single monomial, the bound can be improved:

CðlÞ � logðmaxðlÞÞ þ
X

z2l

logðzÞ þ jlj � 1

356 EVELYNE CONTEJEAN ET AL.

where jlj denotes the length of l, since the subcase 2c) cannot occur (see [12] for

more details).

5. Implementation and Experiments

Our method for automatically finding polynomial interpretations that are suitable

for proving termination of a given TRS has been implemented in the CiME

rewrite tool. We deal with strong termination only, but we point out that the

constraints solving part of CiME has also been used by other systems such as

MUTERM [37, 38] for context-sensitive rewriting and CARIBOO [21]. The AProVE

[24] tool also has an implementation of polynomial interpretations based on the

algorithm described in this paper.

For the search for polynomial interpretations, the user may select the class of

polynomial interpretations to look for, giving both the form (linear, simple,

simple-mixed, quadratic) and the bound on coefficients. Here is a sample session

for proving termination of Lankford’s example:

This proof was made by using the standard termination criterion; the user may

nevertheless ask for various dependency pairs criteria: with or without depen-

dency graphs, and with or without marks (i.e., tuple symbols). It is moreover

possible to use an automatic decomposition of TRSs into modules for performing

termination in several parts [56] following an incremental and modular fashion.

Our implementation of dependency graphs considers the approach of Arts &

Giesl [1] only, in particular because the (better) estimated graphs of Middeldorp

et al. [26, 42] are incompatible with this incremental approach, which indeed

requires to prove CE-termination.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 357

We detail now some experiments with CiME on two examples recently

published in the literature, the termination of which was presented as a difficult

task. The first one was presented in 2003 by Rosu & Viswanathan [47]: a TRS of

33 rules for regular language membership, with a termination proof found by

hand. CiME is able to find a proof automatically, using the standard criterion,

simple-mixed polynomials, with bound 2 for coefficients. The second one was

proposed in 2000 by Deplagne [15]: a TRS of 53 rules for sequent calculus

modulo, without any termination proof. CiME is able to find a proof

automatically (indeed the only proof known to date), using the dependency

graph criterion combined with the modular approach, without marks, with simple

polynomials and bound 3 for coefficients (see [11] on how to select this com-

bination with CiME).

Figure 4 summarizes results on these examples, in particular regarding the

variable abstraction strategy. Times are obtained on a Pentium III 933 MHz

processor. Note that Rosu’s example is also solved in less than a second with

dependency pairs criterion and modular approach, with much fewer constraints.

We give the results for the standard criterion because they are more informative

with regard to the abstraction policy. The second column of the table gives the

number of Diophantine constraints to solve and the number of variables. With

the second example there are five nontrivial dependency graph components,

hence five sets of Diophantine constraints to solve, and the numbers are given for

each of them. The remaining columns give the number of finite domain

constraints generated, as well as the number of variables, with reference to three

different ways of conducting abstractions. For Column FD(0), no square or

product abstraction is made before the translation. For Column FD(1), all squares

and products are abstracted. Finally for For Column FD(2), only squares and

products occurring at least twice are abstracted.

These results lead to the following conclusions. First of all, one should notice

that our method allows solving thousands of constraints, over hundreds of

Figure 4. Some experimental results.

358 EVELYNE CONTEJEAN ET AL.

variables, in few seconds. Concerning the abstraction strategy, policy FD(2)

leads obviously to the best results, the numbers of the fifth column are always

better indeed than the ones of the third and fourth. The conclusion is clearly that

abstraction of squares and products is useful, but only for those that occur several

times: this shows how important in practice is the idea of sharing behind these

abstractions. In Section 4.2, we mentioned that one may also consider the

possibility of abstracting additions, and not only products. We indeed made some

experiments, but they were not very successful: the number of generated

variables is already quite large with product abstraction, and adding some more

seems too costly. However, this may be also because we were not able to find a

convenient strategy for those abstractions: performing those efficiently is again a

problem as difficult as addition chain problems.

We tried these different abstraction methods on a large collection of TRSs

from the Termination Problems Data Base,j Figure 5 summarizes the results.

We proceeded as follows: we stopped unfinished computations after one minute

and we forced CiME to search for simple polynomials with a bound on

coefficients of 3. These are not the most efficient parameters with reference to

the time spent on proof search; some problems indeed require linear

interpretations only. However, we are concerned here with the efficiency of

constraint solving only and not by the finest tuning of the tool for a given base of

termination problems. Several remarks can be made. First, the differences are

quite small, because the majority of TRSs in the TPDB are either quite simple or

so hard that indeed no polynomial interpretation exist for them. Second, we see

that fewer problems are solved when using policy FD(0), hence using policy

FD(1) or FD(2) provides more termination power in practice. With respect to the

number of problems solved, FD(1) or FD(2) are almost equivalent, indeed FD(1)

solved three problems that FD(2) did not, and FD(2) solved two problems that

FD(1) did not. This can be understood from the well-known fact that in con-

straint solving on finite domains, making more variable abstraction is better for

finding solution, but of course making variable abstraction can take time: indeed,

Figure 5. Some experimental results on 574 TRSs from the TPDB.

j http://www.lri.fr/~marche/wst2004-competition/tpdb.html.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 359

http://www.lri.fr/~marche/wst2004-competition/tpdb.html

it can be noticed that FD(2) answers significantly more quickly. Finally, all

heuristics take approximately the same average time in failing cases, but this is

probably simply a statistical effect of having a one-minute time limit.

6. Conclusion and Future Work

By combining several criteria and transformations (testing positiveness using

absolute positiveness, using �-translation, solving Diophantine constraints by

translation into finite domain constraints, sharing squares and products in a smart

way) we obtained an efficient method for proving termination using polynomial

interpretations.

An interesting extension of this work would be the use of exponential inter-

pretations, as proposed by Lescanne [36]. However, there is a major problem: the

criterion proposed by Lescanne to ensure positiveness of exponential functions is

very different from the absolute positiveness criterion and there is no clear way

to derive a method for automated search for such interpretations. In other words,

an extension to Hong & Jakuš’s work [29] to exponential functions should be

done first.

In an early work on program proofs [43, 54], Turing remarked that complexity

measures for termination could be by transfinite ordinal number. Actually, or-

dinal notations have been considered in fairly recent work on termination [9, 17]

but never used in automated tools. An extension of our technique to ordinal

interpretations is then another interesting future work.

Acknowledgements

We thank Pierre Lescanne for his fruitful remarks, which greatly improved our

description of the state of the art, and the anonymous referees for their detailed

remarks on the first version of this paper.

References

1. Arts, T. and Giesl, J.: Termination of term rewriting using dependency pairs, Theor. Comp.
Sci. 236 (2000), 133-178.

2. Baader, F. and Nipkow, T.: Term Rewriting and All That, Cambridge University Press, 1998.

3. Ben Cherifa, A. and Lescanne, P.: Termination of rewriting systems by polynomial inter-

pretations and its implementation, Sci. Comput. Program. 9 (1987), 137Y159.

4. Bergeron, F., Berstel, J. and Brlek, S.: Efficient computation of addition chains, Journal de
théorie des nombres de Bordeaux 6 (1994), 21Y38.

5. Bergeron, F., Berstel, J., Brlek, S. and Duboc, C.: Addition chains using continued fractions,

J. Algorithms 10(3) (1989), 403Y412.

6. Bleichenbacher, D. and Flammenkamp, A.: An Efficient Algorithm for Computing Shortest

Addition Chains, http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html, 1997.

7. Bonfante, G., Cichon, A., Marion, J.-Y. and Touzet, H.: Algorithms with polynomial

interpretation termination proof, J. Funct. Program. 11(1) (2001), 33Y53.

360 EVELYNE CONTEJEAN ET AL.

http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html

8. Bos, J. and Coster, M.: Addition Chain Heuristics, in G. Brassard (ed.), Advances in
Cryptology Y Proc. Crypto ’89, Vol. 435 of Lecture Notes in Computer Science, Santa

Barbara, California, USA, pp. 400Y407, 1989.

9. Cichon, E. A. and Touzet:, H.: An Ordinal Calculus for Proving Termination in Term

Rewriting, in H. Kirchner (ed.), Proceedings 21st International Colloquium on Trees in
Algebra and Programming, Vol. 1059 of Lecture Notes in Computer Science, Linköping

(Sweden), pp. 226Y240, 1996.

10. Codognet, P. and Diaz, D.: Compiling constraints in clp(FD), J. Log. Program. 27(3) (1996),

185Y226.

11. Contejean, E., Marché, C. Monate, B. and Urbain, X.: Proving Termination of Rewriting with

CiME, in A. Rubio (ed.), Extended Abstracts of the 6th International Workshop on
Termination, WST’03, 2003, pp. 71-73, http://cime.lri.fr.

12. Contejean, E., Marché, C., Tomás, A.-P. and Urbain, X.: Mechanically proving termination

using polynomial interpretations, Research Report 1382, LRI, 2004.

13. Courcelle, B.: Recursive Applicative Program Schemes, in J. van Leeuwen (ed.), Handbook
of Theoretical Computer Science, Vol. B., North-Holland, Chapt. 9, 1990, pp. 459Y492.

14. de Rooij, P.: Efficient exponentiation using precomputation and vector addition chains, in A.

D. Santis (ed.), Advances in Cryptology Y EUROCRYPT ’94, Vol. 950 of Lecture Notes in
Computer Science, Perugia, Italy, 1995, pp. 389Y399.

15. Deplagne, É.: Sequent Calculus Viewed Modulo, in Catherine Pilière (ed.), Proceedings of
the Fifth ESSLLI Student Session, University of Birmingham, 2000, pp. 66Y76.

16. Dershowitz, N.: Orderings for term rewriting systems, Theor. Comp. Sci. 17(3) (1982),

279Y301.

17. Dershowitz, N.: Trees, Ordinals, and Termination, in M. C. Gaudel and J.-P. Jouannaud

(eds.), 4th International Joint Conference on Theory and Practice of Software Development,
Vol. 668 of Lecture Notes in Computer Science, Orsay, France, pp. 243Y250.

18. Dershowitz, N. and Jouannaud, J.-P.: Rewrite Systems, in J. van Leeuwen (ed.), Handbook of
Theoretical Computer Science, Vol. B., North-Holland, 1990, pp. 243Y320.

19. Dobkin, D. and Lipton, R. J.: Addition chain methods for the evaluation of specific

polynomials, SIAM J. Comput. 9(1) (1980), 121Y125.

20. Downey, P. J., Leong, B. L. and Sethi, R.: Computing sequences with addition chains, SIAM
J. Comput. 10(3) (1981), 638Y646.

21. Fissore, O., Gnaedig, I. and Kirchner, H.: CARIBOO: An Induction Based Proof Tool for

Termination with Strategies, in Proc. Fourth International Conference on Principles and
Practice of Declarative Programming (PPDP), Pittsburgh, USA, 2002, pp. 62Y73, http://

www.loria.fr/~fissore/CARIBOO.

22. Giesl, J.: Generating Polynomial Orderings for Termination Proofs, in J. Hsiang (ed.), 6th
International Conference on Rewriting Techniques and Applications, Vol. 914 of Lecture
Notes in Computer Science, Kaiserslautern, Germany, 1995, pp. 426Y431.

23. Giesl, J., Arts, T. and Ohlebusch, E.: Modular termination proofs for rewriting using

dependency Pairs, J. Symb. Comput. 34(2) (2002), 21Y58.

24. Giesl, J., Thiemann, R., Schneider-Kamp, P. and Falke, S.: AProVE: A System for Proving

Termination, in A. Rubio (ed.), Extended Abstracts of the 6th International Workshop on
Termination, WST’03, 2003, pp. 68Y70, http://www-i2.informatik.rwth-aachen.de/AProVE.

25. Gramlich, B. and Lucas, S.: Simple Termination of Context-Sensitive Rewriting, in B.

Fischer and E. Visser (eds.), in Proc. 3rd ACM Sigplan Workshop on Rule-Based
Programming, RULE’02, Pittsburgh, USA, 2002, pp. 29Y41.

26. Hirokawa, N. and Middeldorp, A.: Approximating Dependency Graphs without using Tree

Automata Techniques, in A. Rubio (ed.), Extended Abstracts of the 6th International
Workshop on Termination, WST’03, 2003, pp. 8Y10, Technical Report DSIC II/15/03,

Universidad Politécnica de Valencia, Spain.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 361

http://cime.lri.fr
http://www.loria.fr/~fissore/CARIBOO
http://www.loria.fr/~fissore/CARIBOO
http://www-i2.informatik.rwth-aachen.de/AProVE

27. Hirokawa, N. and Middeldorp, A.: Tsukuba Termination Tool, in R. Nieuwenhuis (ed.), 14th
International Conference on Rewriting Techniques and Applications, Vol. 2706 of Lecture
Notes in Computer Science, Valencia, Spain, 2003, pp. 311Y320.

28. Hofbauer, D. and Lautermann, C.: Termination Proofs and the Length of Derivations, in N.

Dershowitz (ed.), Rewriting Techniques and Applications, Vol. 355 of Lecture Notes in
Computer Science, Chapel Hill, USA, 1989, pp. 167Y177.

29. Hong, H. and Jakuš, D.: Testing positiveness of polynomials, J. Autom. Reason. 21(1) (1998),

23Y38.

30. Jaffar, J. and Lassez, J.-L.: Constraint Logic Programming, in Proceedings of the 14th
ACM Conference on Principles of Programming Languages, Munich, Germany, 1987,

pp. 111Y119.

31. Klop, J. W.: Term rewriting systems, in S. Abramsky, D. Gabbay, and T. Maibaum (eds.),

Handbook of Logic in Computer Science, Vol. 2., Clarendon, 1992, pp. 1Y116.

32. Knuth, D. E.: The art of computer programming, 2nd edn, Vol. 2., Addison-Wesley, 1981.

33. Kusakari, K., Nakamura, M. and Toyama, Y.: Argument Filtering Transformation, in G.

Nadathur (ed.), Principles and Practice of Declarative Programming, International
Conference PPDP’99, Vol. 1702 of Lecture Notes in Computer Science, Paris, 1999,

pp. 47Y61.

34. Lang, S.: Algebra, 3rd edn, Addison-Wesley, 1993.

35. Lankford, D. S.: On proving term rewriting systems are Noetherian, Technical Report MTP-3,

Mathematics Department, Louisiana Tech. Univ., 1979. Available at http://perso.ens-lyon.fr/

pierre.lescanne/not_accessible.html.

36. Lescanne, P.: Elementary interpretations in proofs of termination, Form. Asp. Comput.
7 (1995), 77Y90.

37. Lucas, S.: Termination of (Canonical) Context-Sensitive Rewriting, in S. Tison (ed.), 13th
International Conference on Rewriting Techniques and Applications, Vol. 2378 of Lecture
Notes in Computer Science, Copenhagen, Denmark, 2002, pp. 296Y310.

38. Lucas, S.: 2003, Mu-term, A Tool for Proving Termination of Rewriting with Replacement

Restrictions, 2002, Available at http://www.dsic.upv.es/~slucas/csr/termination/muterm/.

39. Manna, Z. and Ness, S.: On the termination of Markov algorithms, in Proc. Third Hawaii
International Conference on Systems Sciences, Honolulu, HI, 1970, pp. 789Y792. http://

perso.ens-lyon.fr/pierre.lescanne/not_accessible.html.

40. Matiyasevich, Y. V.: Enumerable sets are diophantine, Sov. Math. (Dokladi) 11(2) (1970),

354Y357.

41. Matiyasevich, Y. V.: Hilbert’s Tenth Problem, MIT Press, 1993.

42. Middeldorp, A.: Approximating Dependency Graphs using Tree Automata Techniques, in R.

Goré, A. Leitsch, and T. Nipkow (eds.), International Joint Conference on Automated
Reasoning, Vol. 2083 of Lecture Notes in Artificial Intelligence, Siena, Italy, 2001, pp. 593Y
610.

43. Morris, F. L. and Jones, C. B.: An early program proof by Alan Turing, Ann. Hist. Comput.
6(2) (1984), 139Y143.

44. Olivos, J.: On vectorial addition chains, J. Algorithms 2(1) (1981), 13Y21.

45. Papadimitriou, C. and Knuth, D.: Duality in addition chains, Bulletin of the EACTS 13

(1981), 2Y3.

46. Pippenger, N.: On the evaluation of powers and monomials, SIAM J. Comput. 9(2) (1980),

230Y250.

47. Rosu, G. and Viswanathan, M.: Testing Extended Regular Language Membership In-

crementally by Rewriting, in R. Nieuwenhuis (ed.), 14th International Conference on Re-
writing Techniques and Applications, Vol. 2706 of Lecture Notes in Computer Science, 2003,

Valencia, Spain.

362 EVELYNE CONTEJEAN ET AL.

http://perso.ens-lyon.�fr/pierre.lescanne/not_accessible.html
http://perso.ens-lyon.�fr/pierre.lescanne/not_accessible.html
http://www.dsic.upv.es/~slucas/csr/termination/muterm/
http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html
http://perso.ens-lyon.fr/pierre.lescanne/not_accessible.html

48. Rouyer, J.: A method to decide whether a multivariate integral polynomial admits roots in a

product of closed intervals of R, Research Report 91-R-183, Centre de Recherche en In-

formatique de Nancy, 1991.

49. Rouyer, J.: Preuves de terminaison de systèmes de réécriture fondées sur les interprétations

polynomiales. Une méthode basée sur le théorème de Sturm, R.A.I.R.O. 25(2) (1991),

157Y169.

50. Sauerbrey, J. and Dietel, A.: Resource Requirements for the Application of Addition Chains

in Modulo Exponentiation, in R. Rueppel (ed.), Advances in Cryptology Y EUROCRYPT ’92,

Vol. 658 of Lecture Notes in Computer Science, Balatonfüred, Hungary, 1993, pp. 174Y182.

51. Schonhage, A.: A lower bound for the length of addition chains, Theor. Comp. Sci. 1(1)

(1975), 1Y12.

52. Steinbach, J.: Proving Polynomials Positive, in R. Shyamasundar (ed.), Foundations of
Software Technology and Theoretical Computer Science, Vol. 652 of Lecture Notes in
Computer Science, New Delhi, India, 1992, pp. 191Y202.

53. Terese, Bezem, M., Klop, J.W. and de Vrijer, R. (eds.) (2003) Term Rewriting Systems, Vol.

55 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1992,

http://www.cs.vu.nl/~terese/.

54. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, University of

California Press, Berkeley, CA, 1951.

55. Turing, A. M.: Checking a large routine, in Report of a Conference on High Speed Automatic
Calculing Machines, Cambridge, 1949, pp. 67Y69.

56. Urbain, X.: Modular and incremental automated termination proofs, J. Autom. Reason.
32, (2004) 315Y355.

57. Zantema, H.: Minimizing Sums of Addition Chains, J. Algorithms 12 (1991), 281Y307.

MECHANICALLY PROVING TERMINATION USING POLYNOMIAL INTERPRETATIONS 363

http://www.loria.fr/~fissore/CARIBOO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

