
Certifying a Termination Criterion Based on Graphs,
without Graphs�

Pierre Courtieu1, Julien Forest2, and Xavier Urbain2

1 CÉDRIC – CNAM, Paris, France
2 CÉDRIC – ENSIIE, Évry, France

Abstract. Although graphs are very common in computer science, they are still
very difficult to handle for proof assistants as proving properties of graphs may
require heavy computations. This is a problem when it comes to issues such as the
certification of a proof of well-foundedness, since premises of generic theorems
involving graph properties may be at least as difficult to prove as their conclusion.
We define a framework and propose an original approach based on both shallow
and deep embeddings for the mechanical certification of these kinds of proofs
without the help of any graph library. This framework actually avoids concrete
models of graphs and handles those implicitly. We illustrate this approach on a
powerful refinement of the dependency pairs approach for proving termination.
This refinement makes heavy use of graph analysis and our technique is power-
ful enough to deal efficiently –and with full automation– with graphs containing
thousands of arcs, as they may occur in practice.

1 Introduction

The halting problem is a well-known undecidable problem and its related property, ter-
mination, plays a fundamental role at several levels in many proofs and definitions. For
instance the termination of a relation →, i.e. the well-foundedness of its inverse, is cru-
cial for induction proofs with reference to ←; functions which are total, i.e. functions
whose computation always terminates, are often compulsory in some proofs assistants;
some properties like the confluence of a relation become decidable as soon as the re-
lation is proven to be terminating, etc. Termination is also compulsory when proving
total correctness of programs.

Discovering a termination proof is often very tricky. The past decade has been rich
in developments of automated tools dedicated to termination proofs [14, 10, 12, 18, 17],
in particular in the context of first order term/string rewriting systems which we address
here. However, skeptical proof assistants [21, 20] cannot take for granted the answers
of these tools: they need a formal proof of handled properties. Hence, two of the main
concerns are: 1) developing powerful techniques to prove termination of more and more
relations with full automation, and 2) obtaining formal (mechanical) certificates of well-
foundedness for these relations, in order to enable their definition and use in skeptical
proof assistants. We will address here point 2).

Regarding termination criteria, most tools now use the Dependency Pairs (DP) ap-
proach, introduced in 1997 by Arts & Giesl [1,2]. Contrary to the historical Manna and

� Work partially supported by A3PAT project of the French ANR (ANR-05-BLAN-0146-01).

O. Ait Mohamed, C. Muñoz, and S. Tahar (Eds.): TPHOLs 2008, LNCS 5170, pp. 183–198, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 P. Courtieu, J. Forest, and X. Urbain

Ness criterion, the main idea of dependency pairs does not consist in discovering a well-
founded, monotonic (i.e., closed by context) and stable (w.r.t. instantiation) ordering for
which each rule of the system decreases strictly. Roughly speaking, it focuses instead
on the possible inner recursive calls of rules (the so-called dependency pairs). This leads
to constraints on suitable orderings that are much easier to fulfil. For details, see [2].
This approach has been made even more powerful by use of multiple refinements: in
particular it can benefit greatly from the analysis of a dependency graph, especially
when different orderings can be used [13].

Regarding certification of automated proofs, the project A3PAT1 aims at improving
cooperation between automated provers and skeptical proof assistants [9]. The idea is
to get some proof trace from an (efficient) automated prover and translate it into a proof
script which can be certified by a targeted proof assistant (which often lacks automa-
tion), possibly with the help of dedicated libraries. Eventually we obtain automatically a
proof of the wanted theorem. One original point of our approach is that it mixes shallow
and deep embeddings, this may ease the work of the proof assistant significantly. This
work takes place in project A3PAT and focuses on proofs involving graph analysis.

Regarding termination in particular, a few libraries model the base theory of depen-
dency pairs [9,8,7]. However, regarding the use of graphs, some properties may require
heavy computations and particularly involved algorithmics, and may be very difficult to
overcome for a proof assistant (even with the help of dedicated libraries). For instance
the strong version of the enhanced dependency graph theorem [13] states that one has
to find a suitable ordering “for each cycle of the graph”, that is: the property has to be
shown for each cycle separately, and moreover one has to prove that all cycles have
been considered. Applying directly such a theorem is currently out of reach regarding
the size of graphs that occur in the practice of termination proof.

We propose here a method which allows certification of (termination) proofs based
on a graph analysis. Our technique can manage efficiently graphs containing thousands
of arcs; it is implemented in the prototype developed by the A3PAT project [9]. Our
prototype instantiates our approach and generates termination proof scripts that just
have to be compiled and type-checked by the COQ proof assistant2, possibly with the
help of our library COCCINELLE [8].

It is to date the only one able to use the power of the enhanced graph criterion in its
strongest version (yet without the so-called usable rules). We consider enhanced graph
criteria [13] only as they are much more powerful than original ones [2] which they
subsume; for the sake of readability, we will simply write “graph criteria”.

Since our approach uses shallow embedding, we describe an instantiation of it, on
termination proofs. Thus, in Preliminaries, we will recall some notions and results about
graphs, termination of term rewriting, termination proofs and the DP approach with
graphs refinements. As noted in [9] and pictured as processors in [15] criteria can be
expressed in a uniform setting. We will see in Section 3 that we can even write them as
formal inference rules. For each of the considered graph criteria, we will give the corre-
sponding rule. Then, in Section 4, we will focus on how we model dependency graphs

1 http://a3pat.ensiie.fr
2 http://coq.inria.fr

http://a3pat.ensiie.fr
http://coq.inria.fr

Certifying a Termination Criterion Based on Graphs, without Graphs 185

so as to certify termination proof using a proof assistant like Coq. We will eventually
provide some experiments to illustrate the efficiency of our approach.

2 Preliminaries

We assume the reader to be familiar with basic concepts of graphs [6], and of term
rewriting [11,5] and termination, in particular with the Dependency Pairs approach [2].
We recall the usual notions, and give our notations.

2.1 Graphs

Definition 1 (Graph, Path). A graph G is a pair (N, A) where N is a set of vertices,
and A ⊂ N2 is a set of arcs. We say that an arc a = (n1, n2) goes from vertex n1 to
vertex n2 (noted n1 �→G n2).
A finite path from a vertex u to a vertex v is a sequence of arcs
(u �→ n0, . . . , mi �→ ni, . . . , mk−1 �→ v) such that ∀i, 0 < i < k, ni−1 = mi. In our
case a path is completely determined by the sequence of vertices that it encounters.

Definition 2 (Subgraph). let G = (D , A) be a graph, the subgraph of G generated by
D ′ ⊂ D is the graph GD′ = (D ′, A′) such that A ⊇ A′ = {n �→ n′ | n, n′ ∈ D ′}. We
also note G\d the subgraph GD\d.

Definition 3 (Strongly connected parts of a graph). Let G = (N, A) be a graph. A
strongly connected part (scp) of G is a subset C of N such that for all a, b ∈ C there is
a path from a to b in subgraph GC . We denote SCP(G) the set of all scp of G.

A strongly connected component (scc) of a graph G is a maximal strongly connected
part of G. We denote SCC(G) the set of all scc of G.

In the example below, we see that a scc contains a set of scp:

SCP
(

1 2
)

=
{

1 2 ; 2 ; 1 2
}

Definition 4 (directed acyclic graph of connected components). Let G be a graph.
The directed acyclic graph (DAG) of strongly connected components of G is the graph:
GSCC = (SCC(G), {c1 �→ c2|c1, c2 ∈ SCC(G) and ∃(n1, n2) ∈ c1 × c2, n1 �→G n2}).

It is easy to see that GSCC is the directed acyclic graph of strongly connected compo-
nents of G since components are maximal strongly connected parts. All graphs in this
work are finite, in particular �→+

GSCC is a finite (well-founded) ordering.

2.2 Rewriting

A signature F is a finite set of symbols with arities. Let X be a countable set of vari-
ables; T (F , X) denotes the set of finite terms on F and X . Λ(t) is the symbol at root
position in term t. We write t|p for the subterm of t at position p and t[u]p for term t

186 P. Courtieu, J. Forest, and X. Urbain

where t|p has been replaced by u. Substitutions are mappings from variables to terms
and tσ denotes the application of a substitution σ to a term t.

A term rewriting system (TRS for short) over a signature F is a set R of rewrite
rules l → r with l, r ∈ T (F , X). In this work we restrict to finite systems. A TRS R
defines a monotonic relation →R closed under substitution (aka a rewrite relation) in
the following way: s →R t (s reduces to t) if there is a position p such that s|p = lσ
and t = s[rσ]p for a rule l → r ∈ R and a substitution σ. We shall omit systems and
positions that are clear from the context. We denote the reflexive-transitive closure of a
relation → by →�. Symbols occurring at root position in the left-hand sides of rules in
R are said to be defined, the others are said to be constructors.

A term is R-strongly normalizable (R-SN) if it cannot reduce infinitely many times
for →R. A rewrite relation →R terminates if any term is R-SN, which we denote
SN(→R). In such case we may say that R terminates. This is equivalent to ←R is
well-founded that is, every term is accessible for ←R.

Dependency pairs. In this section, we briefly recall main definitions and results about
dependency pairs, dependency chains and dependency graphs. We introduce some of
our notations.

Definition 5 (Dependency pairs, Dependency chain [2]). The set of un-
marked dependency pairs of a TRS R, denoted DP(R) is defined as
{〈u, v〉 | u → t ∈ R and t|p = v and Λ(v) is defined}. Let D be a set of depen-
dency pairs, a dependency chain in D is a sequence of dependency pairs 〈ui, vi〉 with
a substitution σ such that

∀i, viσ
�=Λ �−−−→

R
ui+1σ

It is worth noticing that distinguishing root symbols of dependency pairs (by means
of marks, or ’tuple-symbols’) enhances significantly this technique. Marking or not
dependency pairs does not interfere with our approach, thus for readability’s sake, we
will restrict to unmarked pairs. Further note that our approach and prototype handle
marks without any problem [9].

Definition 6. Given a TRS R, we note s →DPR(D) t iff s
�=Λ �−−−→

R
uσ

Λ−−−−−→
〈u,v〉∈D

vσ ≡ t.

The main theorem of dependency pairs of [2] can be rephrased using the DPR relation:

Theorem 1 (Dependency Pairs Criterion). Let R be a TRS, →DPR(DP(R)) terminates
if and only if →R terminates.

Termination of relation →DPR(D) may be directly proved by mean of an ordering pair,
a very general notion of which may be found in [19]. Due to our definition of the DPR
relation, we use a slightly restricted definition of those but it does not interfere with the
topic of this work.

Definition 7 (Ordering pair). An ordering pair is a pair (, >) of relations over
T (F , X) such that: 1) is a quasi-ordering, i.e. reflexive and transitive, 2) > is a
strict ordering, i.e. irreflexive and transitive, and 3) · > = >.
An ordering pair (, >) is well-founded if there is no infinite strictly decreasing se-
quence t1 > t2 > . . . , which we denote WF(, >).

Certifying a Termination Criterion Based on Graphs, without Graphs 187

An effective corollary of Theorem 1 consists in discovering a well-founded ordering
pair (, >) for which →R⊆ and u > v for all 〈u, v〉 ∈ D to prove that →DPR(D)
terminates.

Many efficient termination tools (see for instance [14, 17, 10]) use this criterion as a
first step. Then, one is left with proving that there is no infinite dependency chain. In
the following we describe the graph criterion which allows to split this proof into easier
ones.

Dependency Pairs with graph. Not all DPs can follow another in a dependency chain,
one may consider the graph of possible sequences of DPs. Note that since we restricted
to finite TRSs, this graph is finite. Thus, each dependency chain corresponds to a path
in this graph. Therefore if there is no infinite path corresponding to a dependency chain
in the graph, then there is no infinite dependency chain.

Definition 8 (Dependency graph [2]). Let R be a rewriting system. The dependency
graph of R is the graph G = (DP(R), A) where 〈s, t〉 �→ 〈s′, t′〉 ∈ A if and only if there

exists a substitution σ such that tσ
�=Λ �−−−→ s′σ.

Remark 1. It is worth noticing that this graph (D , A) is not computable, so one uses a
sound approximation i.e., a graph (D , A′ ⊇ A) that contains it. Arts & Giesl proposed
a simple yet efficient approximation, namely connectability (with REN/CAP) [2]. The
approximation we choose to implement in our prototype corresponds to this simple one
(see Section 4.2).

The (enhanced) graph refinement, as stated by Giesl, Arts and Ohlebusch is:

Theorem 2 (Dependency graph refinement [13]). A TRS R terminates if and only if
for each circuit C in the dependency graph there exists no infinite dependency chain of
dependency pairs of C.

Note that it is not sufficient to consider elementary cycles instead of circuits3 (for a
counterexample, see [4]).

Further note that proving in a proof assistant that his theorem can be applied to a
particular termination problem amounts to proving that all cycles have been considered,
which is difficult in practice. We provide hereafter an approach to avoid this problem.

2.3 Modelling Rewriting and Graphs in COQ

The goal of our methodology and prototype is to be able to derive with full automation,
from the definition of a rewrite system R, a proof certified (i.e. checked) by a skeptical
proof assistant. Regarding termination proofs, our tool generates a lemma of the form
well_founded R together with its proof.

We will reuse the model we introduced in [9]. We only recall here the notions and
notations used in this paper.

We illustrate our approach using the COQ proof assistant which is based on type
theory and enjoys in particular the ability to define inductive types to express inductive

3 This is why we use the word ”circuit” instead of the original ”cycle”, cf. [6].

188 P. Courtieu, J. Forest, and X. Urbain

data types and inductive properties, and a very expressive tactic language. Tactics in
COQ unsafely produce proof terms which are safely validated at saving time by type
checking the proof.

If R is the relation modelling a TRS R, we should write R u t (which means u < t)
when a term t rewrites to a term u. For the sake of readability we will use as much as
possible the COQ notation: t -[R]> u (and t -[R]*> u for t →∗ u) instead.

We use in this work a deep embedding for term algebras and shallow em-
bedding for rewriting relations. In COQ scripts below a term f(x, y, z) will
be denoted Term f [x;y;z], and f(x, y, z) →�

R g(a, z) will be denoted
Term f [x;y;z] -[R]*> Term g [a;z].

3 Formalizing Graph Refinements

Our project aims at making skeptical proof assistants and automated provers cooperate.
Hence, our presentation of the graph refinement differs from the original one from Arts
and Giesl [2] in order to fit our general scheme for proving properties on graphs. Such a
general scheme could form a basis for a general trace language, similar to the processors
setting [14]. For example, in our framework, Theorem 1 is expressed formally by the
following inference rule:

SN(→DPR(DP(R)))
SN(→R)

DP

The graph criterion consists in proving that there is no infinite dependency chain by
proving that circuits in the graph cannot be crossed infinitely many times by a depen-
dency chain. For the sake of simplicity, we consider strongly connected parts (finite
sets of vertices) instead of circuits (finite sequences of arcs). In particular, a strongly
connected part corresponds to a set of circuits. This choice is particularly convenient
since our relation DPR is also parameterized by a set of pairs (i.e. vertices).

Definition 9. Let P be a strongly connected part of a dependency graph, we denote
by SNG(P) the property that there is no reduction in →DPR(P) such that each vertex
of P is crossed infinitely many times. For X =

⋃
0≤i<k Pi, we denote SNG

{
X

}
≡∧

0≤i<k SNG(Pi).

The main theorem of the graph criterion can be rephrased as follows:

Theorem 3 (graph criterion). Let R be a rewriting system, let G be its dependency
graph. Let P1, . . . , Pk be the k scp of G (the Pi ∈ SCP(G) are the subgraphs of G).

SN(→DPR(DP(R))) if and only if SNG
{⋃k

i=1 Pi

}
.

Remark 2. If G is a sound approximation of the dependency graph of a TRS R, then
only the if direction is true.

This theorem can in turn be expressed by the following inference rule:

SNG
{

SCP(G)
}

SN(→DPR(DP(R)))
GRAPH

Certifying a Termination Criterion Based on Graphs, without Graphs 189

Where G is the (approximated) dependency graph of R. Note that the termination proof
of each scp may be done using a different ordering. In practice this is expensive. Instead,
we will gather scp into subsets of SCP(G), which will be recursively proved to be
terminating separately. Actually, the graph criterion can be completed by the following
rule for recursive splitting:

SNG
{

X1
}

. . . SNG
{

Xk

}
SNG

{
X

} SUBGRAPH

where
⋃

1≤i≤k Xi = X .
Since the set of strongly connected components covers all scp of G, one way to

use the graph criterion is to prove that →DPR(Xi) terminates for all Xi ∈ SCC(G). A
weak version of the graph criterion consists in providing for each strongly connected
component an ordering pair that decreases strictly for all its vertices, and weakly for all
rules of the initial system.

The whole termination proof for a system R by this weak graph criterion may be
represented by a proof tree like:

ORD

WF(≤1, <1) →R⊆ ≤1
→DPR(GC1) ⊆ <1

SNG
{

SCP(C1)
}

. . .

WF(≤k, <k) →R⊆ ≤k

→DPR(GCk
) ⊆ <k

SNG
{

SCP(Ck)
} ORD

SN(→DPR(DP(R)))
SN(→R)

DP

GRAPH

Where G is the (approximated) dependency graph of R, and C1 . . . Ck are the strongly
connected components.

The graph criterion in its strong version consists in partitioning the set of scp of G in
parts smaller than scc. An efficient technique, due to Middledorp and Hirokawa [16], is
to apply recursively the following steps for each scc C of G:

1. choose a node p = 〈t, u〉 of C;
2. prove that each scp D containing p is such that SNG(D);
3. prove (recursively) that each scp of the remaining graph is SNG.

This technique can be formalized by the following application of SUBGRAPH:

SUBGRAPH
SNG

{
SCP(G\〈t, u〉)

}
SNG

{
{P ∈ SCP(G)|〈t, u〉 ∈ P}

}
SNG

{
SCP(G)

}
where 〈t, u〉 ∈ G. Notice that the rule SUBGRAPH is applied correctly since
SCP(G\〈t, u〉) ∪ {P ∈ SCP(G)|〈t, u〉 ∈ P} = SCP(G).

Usually step 3 is done by computing G1 . . . Gn (the scc of G\〈t, u〉), and by applying
recursively the SUBGRAPH rule to each Gi until one of the following happens:

– there is no more scc,
– one finds an ordering pair (≤, <) such that →R⊆ ≤ and →DPR(G)⊆<.

Usually step 2 is done by discovering a well-founded ordering pair (≤, <) such that
→R⊆ ≤, →DPR(C\〈t,u〉)⊆≤ and t < u. This is rule VERTEX.

Finally a typical graph criterion application is illustrated by Figure 1.

190 P. Courtieu, J. Forest, and X. Urbain

SUBGRAPH

SUBGRAPH

...

SNG
˘
SCP(G1)

¯
. . .

...

SNG
˘
SCP(Gk

¯

SNG
˘
SCP(G\〈t, u〉)

¯

WF(≤, <) t < u
→R⊆ ≤ →DPR(G\〈t,u〉)⊆≤

SNG
˘
{P ∈ SCP(G)|〈t, u〉 ∈ P}

¯ VERTEX

SNG
˘
SCP(G)

¯

where G1 . . .Gk are scc of G\〈t, u〉.

Fig. 1. Typical application of strong graph criterion

4 Mechanical Certification of the Graph Refinement

The key point of our approach is that the graph will be defined implicitly. We never
actually model a graph, we just use a set of vertices and a relation between them to build
it implicitly as we prove the relevant property on its parts, in a hierarchical fashion.
Regarding termination proofs: vertices will be dependency pairs, a pair p1 will be in
relation with a pair p2 if p1p2 may occur in a dependency chain.

In the formal proof that is generated automatically by our technique, each rule ap-
plied corresponds to an independent lemma. We described the proof techniques rele-
vant to some of these rules in a previous work [9]. Some of these lemmas are proved
using generic theorems previously formalized in a deep embedding, some others are
proved by generating directly a shallow embedded proof. Graph refinement rules are
of the latter category. As explained in the introduction, the reason is that the premises
of rules GRAPH and SUBGRAPH are computationally hard to deal with. For exam-
ple to prove an application of rule SUBGRAPH one has not only to prove recursively
SNG

{
X1

}
. . . SNG

{
Xk

}
but also to prove that

⋃
1≤i≤k Xi = X . Such complete-

ness properties are known to be difficult to prove.
Instead of relying on a generic proof of GRAPH and SUBGRAPH, we generate a

direct proof for each application of these rules. This proof is done by induction on the
possible dependency chains in the initial graph X . In particular this induction follows a
graph that is now implicit.

Suppose we have to prove an application of a graph refinement as shown in Figure 1.
The goal of our methodology is to build from this tree (output by an automated tool), a
formal proof of the property SNG

{
SCP(G)

}
. To that purpose, we4 will generate two

lemmas proved by different techniques:

– SNG
{

SCP(G\〈t, u〉)
}

⇒ SNG
{

SCP(G)
}

proved by induction on the well-
founded ordering <, and

– SNG
{

SCP(G\〈t, u〉)
}

proved by a hierarchical decomposition of G\〈t, u〉.
We describe this hierarchical decomposition in more details in the next section.

4.1 Hierarchical Decomposition of SCC(G)

In order to prove SNG
{

SCP(G\〈t, u〉)
}

in a shallow embedded way, we proceed as
follows:

4 More precisely “the tool in which this approach is implemented”, since all this is done without
any human interaction.

Certifying a Termination Criterion Based on Graphs, without Graphs 191

– Compute the DAG (G\〈t, u〉)SCC .
– Prove successively, for each sub-DAG Si (rooted by Gi) and in a bottom-up fashion:(∧

S⊂Si
SNG

{
SCP(S)

})
⇒ SNG

{
SCP(Si)

}
(See Figure 3 for an example).

Therefore we can formalize this part of the proof as follows:

SUBGRAPH

∧
Si

((∧
S⊂Si

SNG
{

SCP(S)
})

⇒ SNG
{

SCP(Si)
})

SNG
{

SCP(G\〈t, u〉)
}

Each proof of
(∧

S⊂Si
SNG

{
SCP(S)

})
⇒ SNG

{
SCP(Si)

}
is done by pro-

ceeding the same way recursively with the proofs of SNG
{

SCP(Gi)
}

from Figure 1.

4.2 Formalization of Hierarchical Decomposition

Dependency chains. In our methodology dependency graphs and sub-graphs are not
concrete. Instead, we will work directly on dependency chains which we model by
inductive relations. Using inductive types, reasoning on all possible dependency chains
can be done by induction on the definition of the relation.

For example suppose we have a scc SCC defined by the set of pairs:

SCC = {〈plus(s x,y), plus(x,y)〉, 〈plus(x,s y), plus(x,y)〉}

The corresponding dependency chain relation is generated as follows:

Inductive SCC : term → term → term:=
SCC0: ∀V0 V1, x -[R]*> S(V0) → y -[R]*> V1

→ plus(x,y) -[SCC]> plus(V0,V1)
| SCC1: ∀V0 V1, x -[R]*> V0 → y -[R]*> s(V1)

→ plus(x,y) -[SCC]> plus(V0,V1)

Note that SCC y x is exactly equivalent to x →DPR(SCC) y, in particular notice how
head reduction by R is disallowed by construction. Further note that this relation is not
constructively defined: for instance the set of terms x such that x -[R]*> S(V0) is
not defined explicitly and actually, it cannot be computed in general. There are several
possible approximations of this set as noted in Remark 1. In our methodology the ap-
proximation lies, during reasoning, in the way we discard terms t that cannot reduce to
u. Currently our generated proofs implement the simple connectability relation of Arts
& Giesl [2].

Sub-DAGs of the dependency chains. A scp Gi of the graph G implicitly modelled
by DPR is built by restraining the constructors of SCC to the set of pairs inside Gi.
For example let us consider the following graph corresponding to the relation above:

0 1 . The scp of SCC containing only pair 〈plus(s x,y), plus(x,y)〉 is

modelled by the following relation, which corresponds to 0 :

Inductive SCP0 : term → term → term:=
SCP00: ∀V0 V1, x -[R]*> S(V0) → y -[R]*> V1

→ plus(x,y) -[SCP0]> plus(V0,V1)

192 P. Courtieu, J. Forest, and X. Urbain

Finally, to prove
∧

Si

((∧
S⊂Si

SNG
{

SCP(S)
})

⇒ SNG
{

SCP(Si)
})

as ex-
plained above, we prove the following equivalent lemmas:

Lemma Acc_S0: ∀x y, SCC0 x y → Acc SCC x.
...
Lemma Acc_Sn: ∀x y, SCCn x y → Acc SCC x.

The proof of Acc_Si may use any Acc_Sj for j<i. Note that the conclusion is about
accessibility in the current graph instead of the well-foundedness of the sub-DAG Si.
Since all dependency chains starting in SCC_i can only stay in Si, those lemmas are
equivalent to

∧
Si

((∧
S⊂Si

SNG
{

SCP(S)
})

⇒ SNG
{

SCP(Si)
})

.

5 Examples

5.1 A Weak Graph Criterion Example

The example R1 below is due to Arts and Giesl [1] and computes the sum of the ele-
ments of a list:

app(nil, k) → k
app(l, nil) → l
app(cons(x,l), k) → cons(x, app(l, k))
sum(cons(x,nil)) → cons(x,nil)
sum(cons(x,cons(y,l))) → sum(cons(plus(x,y),l))
sum(app(l,cons(x,cons(y,k)))) → sum(app(l,sum(cons(x,cons(y,k)))))
plus(0,y) → y
plus(s(x),y) →s(plus(x,y)))

The dependency pairs of this system are the following:

1 : 〈plus(s(x),y),plus(x,y)〉
2 : 〈sum(app(l,cons(x,cons(y,k)))),sum(cons(x, cons(y,k)))〉
3 : 〈sum(app(l,cons(x,cons(y,k)))),app(l,sum(cons(x,cons(y,k))))〉
4 : 〈sum(app(l,cons(x,cons(y,k)))),sum(app(l,sum(cons(x,cons(y,k)))))〉
5 : 〈sum(cons(x,cons(y,l))),plus(x,y)〉
6 : 〈sum(cons(x,cons(y,l))),sum(cons(plus(x,y),l))〉
7 : 〈app(cons(x,l),k),app(l,k)〉

The (approximated) dependency graph, the induced DAG of scc and corresponding sub-
DAGs may be found Figure 2 and Figure 3. Each scc is modelled by the corresponding
sub-relation of DPR:

Inductive SCC0 : term → term → Prop :=
| SCC00 : ∀x0 x1 V2 V3,

x0 -[R]*> Term s [V2] → x1 -[R]*> V3

→ Term plus [x0;x1] -[SCC0]> Term plus [V2;V3].

Certifying a Termination Criterion Based on Graphs, without Graphs 193

156

7

2

3

4

SCC0: 1

SCC1: 6

SCC2: 7

SCC3: 4

Fig. 2. Dependency graph of R1 and its scc

SCC0SCC1

SCC2

SCC3 SCC0SCC1

SCC2

SCC3

S0S1

S2S3

Fig. 3. DAG of scc of R1 and corresponding sub-DAGs

Inductive SCC1 : term → term → Prop :=
| SCC10 : ∀x0 V1 V2 V3,

x0 -[R]*> (Term cons [V2; (Term cons (V3;V1))])
→ (Term sum [x0])

-[SCC1]> Term sum [Term cons [Term plus [V2; V3];V1]].

Inductive SCC2 : term → term → Prop :=
| SCC20 : ∀x0 x1 V0 V1 V2, x0 -[R]*> (Term cons [V2;V1])

→ x1 -[R]*> V0
→ Term app [x0;x1] -[SCC2]> Term app [V1;V0].

Inductive SCC3 : term → term → Prop :=
| SCC30 : ∀x0 V0 V1 V2 V3,

x0 -[R]*> Term app [V1;Term cons [V2;Term cons [V3;V0])]] →
Term sum [x0] -[SCC3]>
Term sum [Term app

[V1;Term sum [Term cons [V2;term cons [V3;V0]]]]].

Each scc is proved to be terminating using a different ordering by classical induction
(see [9]). Then the final proof of SNG(G) (well_founded DPR below) must be built.
We show below how this is done by composing results on sub-DAGs in a bottom-up
fashion as described in Section 4.2.

194 P. Courtieu, J. Forest, and X. Urbain

(*Now suppose scc are SNG and prove that then DPR is well-founded.*)
Hypothesis Well_Founded_SCC0 : well_founded SCC0.
Hypothesis Well_Founded_SCC1 : well_founded SCC1.
Hypothesis Well_Founded_SCC2 : well_founded SCC2.
Hypothesis Well_Founded_SCC3 : well_founded SCC3.

Lemma Acc_SCC0 : ∀x y, SCC0 x y → Acc DPR x.
Proof. (*well-founded induction on SCC0.*) Qed.

Lemma Acc_SCC1 : ∀x y, SCC1 x y → Acc DPR x.
Proof. (*well-founded induction on SCC1 + Acc_SCC0.*) Qed.

Lemma Acc_SCC2 : ∀x y, SCC2 x y → Acc DPR x.
Proof. (*well-founded induction on SCC2. *) Qed.

Lemma Acc_SCC3 : ∀x y, SCC3 x y → Acc DPR x.
Proof. (*well-founded induction on SCC3 + Acc_SCC1 + Acc_SCC2.*) Qed.

Lemma Well_Founded_DPR : well_founded DPR.
Proof. (*case analysis on DPR + Acc_SCC3.*) Qed.

5.2 A Strong Graph Criterion Example

The example below is also due to Arts and Giesl [3] and checks whether the first argu-
ment of evenodd is even or not.

not(true) →false
not(false) →true
evenodd(x,0) →not(evenodd(x,s(0)))
evenodd(0,s(0)) →false
evenodd(s(x),s(0)) →evenodd(x,0)

The dependency pairs of this new system is:

1 : 〈evenodd(x,0), evenodd(x,s(0))〉
2 : 〈evenodd(s(x),s(0)), evenodd(x,0)〉
3 : 〈evenodd(x,0), not(evenodd(x,s(0)))〉

The corresponding (approximated) dependency graph is : 2 13 and

its only scc is SCC0 : 2 1

The first step of the graph proof is very similar to the previous example one:

Inductive SCC0 : term →term →Prop :=
| SCC01 : ∀x0 x1 V0,

x0 -[R]*> V0 →x1 -[R]*> Term 0 [] →
Term evenodd [x0;x1] -[SCC0]>
Term evenodd [V0;Term s [Term 0 []]]

Certifying a Termination Criterion Based on Graphs, without Graphs 195

| SCC02 : ∀x0 x1 V0,
x0 -[R]*> Term s [V0] →x1 -[R]*> Term s [Term 0 []] →
Term evenodd [x0;x1] -[SCC0]> Term evenodd [V0;Term 0 []]

Variable Well_Founded_SCC0 : well_founded SCC0.

Lemma Acc_SCC0 : ∀x y, SCC0 x y →Acc DPR x.
Proof. (*well-founded induction on SCC0.*) Qed.

Lemma Well_Founded_DPR : well_founded DPR.
Proof. (*case analysis on DPR + Well_Founded_SCC0.*) Qed.

Despite the simplicity of this graph, our automated (termination) prover does use the
enhanced version of the graph criterion in order to split the single component SCC0. The
pair 2 is strictly oriented by the discovered ordering pair while the pair 1 is only weakly
oriented.

The proof of SNG
{

SCP(SCC0)
}

is obtained as follows :

Inductive SCC0_large : term →term →Prop :=
| SCC0_large1 : ∀x0 x1 V0,

x0 -[R]*> V0 →x1 -[R]*> Term 0 [] →
Term evenodd [x0;x1] -[SCC0]>
Term evenodd [V0;Term s [Term 0 []]]

Variable Well_Founded_SCC0_large : well_founded SCC0_large.

Inductive SCC0_strict : term →term →Prop :=
| SCC0_strict1 : ∀x0 x1 V0,

x0 -[R]*> Term s [V0] →x1 -[R]*> Term s [Term 0 []] →
Term evenodd [x0;x1] -[SCC0]> Term evenodd [V0;Term 0 []]

Variable lt le : term →term →Prop.
Hypothesis lt_le_compat : ∀x y z, lt x y →le y z →lt x z.
Hypothesis wf_lt : well_founded lt.
Hypothesis SCC0_strict_in_lt :
Relation_Definitions.inclusion _ SCC0_strict lt.

Hypothesis SCC_large_in_le :
Relation_Definitions.inclusion _ SCC0_large le.

Lemma Well_Founded_SCC0 : well_founded SCC0.
Proof. (*well-founded induction on lt and SCC0_large+

case analysis on SCC0*) Qed.

6 Experiments

Our approach is implemented in a prototype which is an automated prover dedicated to
termination, based on a restricted version of the termination engine of CiME 2.04 [10].
We ran experiments using this technique on a 3GHz, 8GB, Debian-linux machine. Up

196 P. Courtieu, J. Forest, and X. Urbain

to now it gives termination certificates for more than 550 problems of the Termination
Problems DataBase (TPDB) 4.05 (i.e. ∼27% of the standard category, some problems
of which being non-terminating). It is important to notice that the limiting factor in
these results is not the certification process itself but the termination techniques used by
the prototype! Actually, all proofs found by the prototype are certified by COQ.

Some interesting proofs should be highlighted here. We can certify prob-
lems with 159 nodes (TRS/TRCSR/PALINDROME complete-noand FR.trs, cer-
tified in 568.77 s), with 1015 edges (TRS/TRCSR/ExSec11 1 Luc02a iGM.trs,
certified in 113.49s), with 10 strongly connected components at top level
(TRS/TRCSR/inn/Ex26 Luc03b C.trs, certified in 78.80s) or even using 6 times
graph splitting (TRS/TRCSR/Ex9 BLR02 iGM.trs.v, certified in 64.15s).

Of course, the certification time for those examples is not representative of the av-
erage certification time. It emphasizes what we are able to certify in the TPDB’s worst
cases. Further note that the certification time takes all the certification process into ac-
count (orderings, etc.) and not only the graph management. Yet, those times are still
reasonable for such tricky examples.

The average certification time on all certified problems is 14s (83% of them are
certified in less than 15s and 58% in less than 5s). This makes our approach exploitable
in practice, for developments where (involved) proofs of well-foundedness are required.

7 Conclusion

We described an approach to deal efficiently with some graph analysis in skeptical proof
assistants. This approach is based on proof scripts generation and uses well-founded
induction and dependent inductive types. One of the key points is that induction on the
paths in the graph can be simulated by judicious generation of intermediate lemmas
that propagate the desired property along the arcs. It benefits from shallow embedding
by handling the graph implicitly, without any concrete model. Thus, some premises
that would be difficult to prove in a full deep embedding setting (like completeness, for
instance) are avoided.

Regarding termination proofs, this technique is fully implemented in a prototype in
the context of the A3PAT project; the prototype is available and can be tried online from
the web-page of the project: http://a3pat.ensiie.fr. Note that our implementa-
tion takes benefit of the expressive tactic language of Coq. Experiments with our proto-
type illustrate the power of this approach, in particular it allows us to certify in COQ, in
a few seconds, (scripts of) termination proofs that rely on the circuit analysis of graphs
consisting of more than a thousand arcs. Another approach for certifying termination
proofs is the Rainbow+Color approach [7], which is based on deep embedding only.
Restricted to termination problems, the Color library models several orderings, among
which powerful orderings induced by matrix interpretations. However it cannot handle
graph criteria as involved as Theorem 2.

Although we illustrate our approach through its instantiation for termination proofs
in COQ, it is general enough to adapt to other skeptical proof assistant (e.g. Is-
abelle/HOL [20]), provided that the targeted assistant is powerful enough to handle

5 http://www.lri.fr/∼marche/tpdb

http://www.lri.fr/~marche/tpdb

Certifying a Termination Criterion Based on Graphs, without Graphs 197

inductive relations and associated reasoning tools, provides a mechanism to deal with
well-founded induction and enjoys an expressive enough tactic language. Among the
perspectives, a first one could be to implement this approach in other assistants than
COQ. A second one could be to generalize this shallow model + external prover tech-
nique to deal with generic graph analysis and other properties that rely on it.

Acknowledgments

The authors would like to thank Christiane Goaziou for her help in improving the read-
ability of this paper, and the anonymous referees for their comments.

References

1. Arts, T., Giesl, J.: Automatically Proving Termination Where Simplification Orderings Fail.
In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS,
vol. 1214. Springer, Heidelberg (1997)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science 236, 133–178 (2000)

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using depen-
dency pairs. Technical report, RWTH Aachen (September 2001)

4. Arts, T., Giesl, J.: Verification of Erlang Processes by Dependency Pairs. Application Algebra
in Engineering, Communication and Computing 12(1,2), 39–72 (2001)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cam-
bridge (1998)

6. Berge, C.: Graphs, 3rd edn. North-Holland mathematical library, vol. 6. North-Holland, Am-
sterdam (1991)

7. Blanqui, F., Coupet-Grimal, S., Delobel, W., Hinderer, S., Koprowski, A.: Color, a coq library
on rewriting and termination. In: Geser, A., Sondergaard, H. (eds.) Extended Abstracts of the
8th International Workshop on Termination, WST 2006 (August 2006)

8. Contejean, É.: The Coccinelle library for rewriting,
http://www.lri.fr/∼contejea/Coccinelle/coccinelle.html

9. Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of automated ter-
mination proofs. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp.
148–162. Springer, Heidelberg (2007)

10. Contejean, É., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with
CiME. In: Rubio, A. (ed.) Extended Abstracts of the 6th International Workshop on Termina-
tion, WST 2003, June 2003, pp. 71–73 (2003), http://cime.lri.fr

11. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)

12. Endrullis, J.: Jambox, http://joerg.endrullis.de/index.html
13. Giesl, J.: Thomas Arts, and Enno Ohlebusch. Modular Termination Proofs for Rewriting

Using Dependency Pairs 34, 21–58 (2002)
14. Giesl, J., Schneider-Kamp, P., Thiemann, R.: Aprove 1.2: Automatic termination proofs in

the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS
(LNAI), vol. 4130. Springer, Heidelberg (2006)

15. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and Improving Depen-
dency Pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

16. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 32–46. Springer, Heidelberg (2003)

http://www.lri.fr/~contejea/Coccinelle/coccinelle.html
http://cime.lri.fr
http://joerg.endrullis.de/index.html

198 P. Courtieu, J. Forest, and X. Urbain

17. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005.
LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)

18. Koprowski, A.: TPA., http://www.win.tue.nl/tpa
19. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In: Nadathur,

G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg (1999)
20. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-

berg (2002)
21. The Coq Development Team. The Coq Proof Assistant Documentation – Version V8.1 (Feb-

ruary 2007), http://coq.inria.fr

http://www.win.tue.nl/tpa
http://coq.inria.fr

	Certifying a Termination Criterion Based on Graphs, without Graphs
	Introduction
	Preliminaries
	Graphs
	Rewriting
	Modelling Rewriting and Graphs in Coq

	Formalizing Graph Refinements
	Mechanical Certification of the Graph Refinement
	Hierarchical Decomposition of ${mathcal SCC(G)}$
	Formalization of Hierarchical Decomposition

	Examples
	A Weak Graph Criterion Example
	A Strong Graph Criterion Example

	Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

