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Abstract. During the last decade, the impressive advances in tech-
niques for proving termination of rewriting have succeeded in solving
termination problems that were out of reach for a long time. Since incre-
ment in the size of the problems affects directly the possibility of getting
an answer, treating problems in a modular way appears like a key issue.
The use of the notion of dependency among symbols and the notion of
dependency pairs has helped to carry out this task leading to the no-
tion of usable rules. Context-sensitive rewriting (CSR) is a restriction of
rewriting which forbids reductions on selected arguments of functions.
In this paper, we discuss how to use this notion in proofs of termination

of CSR.

1 Introduction

Termination is a fundamental property in programming, which allows us to know
if for every computation the system will return in a finite time. This property is
undecidable,; hence all techniques for proving termination are incomplete. Thus
one looks for sound approaches that are as complete as possible.

During the last decade, the impressive advances in techniques for proving
termination of rewriting (remarkably the dependency pairs approach [1,7,11,
12]) have succeeded in solving termination problems that stood out of reach for
a long time. The increment in size of the problems may affect directly in the time
for getting an answer, or worse: the success of a selected method in discovering
such answer. For that reason, treating problems in a modular way appears like
a key issue. The main problem dealing with termination and unions of systems
is that this property is not modular: the union of two disjoint Term Rewriting
Systems (TRSs [21]) can be a non-terminating TRS [23].

A more restricted notion of termination may be used to solve this problem:
C.-termination [10]. C.-termination is a modular property [10] and, as claimed
by Urbain [24], it is not a very harsh condition in practice. To prove termina-
tion in a modular and incremental way, Urbain relies on the dependency pairs
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approach [1]. Roughly speaking, given a TRS R, the dependency pairs asso-
ciated to R conform a new TRS DP(R) which (together with R) determines
the so-called dependency chains whose finiteness characterizes termination of R.
The dependency pairs can be presented as a dependency graph, where the ab-
sence of infinite (R, P, u*)-chains can be analyzed by considering the cycles in
the graph. Urbain’s idea is using the (explicit or implicit) modular structure of
rewrite systems for proving that all (minimal) infinite rewrite sequences can be
simulated by using a restricted set of rules. This allows us to prune irrelevant
rules and termination constraints. Hirokawa and Middeldorp [13] and (indepen-
denly) Thiemann et al. [22] combined this idea with the idea of usable rules
(originally introduced by Arts and Giesl for proving termination of innermost
rewriting [1]), leading to a more powerful framework for proving termination in
a modular way. In these approaches, usable rules are associated to a given cycle
¢ of the dependency graph. The benefit of using them in proofs of termination
stems from the fact that we take these rules (together with the dependency pairs
in the corresponding cycle €) instead of considering all rules in the TRS. Proofs
of termination often become easier in this way.

Proving termination of context-sensitive rewriting (CSR [16,17]) is an in-
teresting problem with several applications in the fields of term rewriting and
programming languages (see [6,9,17,19] for further motivation). In CSR, a re-
placement map (i.e., a mapping p : F — P(N) satisfying p(f) C {1,... k},
for each k-ary symbol f of a signature F) is used to discriminate the argument
positions on which the rewriting steps are allowed; rewriting at the topmost po-
sition is always possible. In this way, we can achieve a terminating behaviour
by pruning (all) infinite rewrite sequences. In [2], the dependency pairs method
has been adapted to be used in proofs of termination of CSR. In this work we
investigate how to extend the previous ideas to CSR.

After some preliminaries in Section 2, Section 3 introduces the basic notion
of usable rule in CSR. In Section 4 we show how to use this notion for proving
termination of CSR. Section 5 concludes.

2 Preliminaries

Throughout the paper, X' denotes a countable set of variables and F denotes a
signature i.e., a set of function symbols {f, g, ...}, each having a fixed arity given
by a mapping ar : F — N. The set of terms built from F and X is T (F, X).
Positions p, q, ... are represented by chains of positive natural numbers used to
address subterms of ¢. Given positions p, g, we denote their concatenation as p.q.
If p is a position, and @ is a set of positions, p.Q) = {p.q | ¢ € Q}. We denote
the empty chain by A. The set of positions of a term ¢ is Pos(t). The subterm
at position p of ¢ is denoted as t|, and t[s], is the term ¢ with the subterm at
position p replaced by s. We write ¢ B> s if s = t|, for some p € Pos(t) and
t>sif t > s and t # s. The symbol labelling the root of ¢ is denoted as root(t).
A context is a term C' € T(F U {0}, X) with zero or more ‘holes” O (a fresh
constant symbol).



A rewrite rule is an ordered pair ({,r), written { — r, with {,r € T(F, &),
l ¢ X and Var(r) € Var(l). A TRS is a pair R = (F, R) where R is a set of
rewrite rules. Given R = (F, R), we consider F as the disjoint union F = CwD of
symbols ¢ € C, called constructors and symbols f € D, called defined functions,
where D = {root(l) |l = r € R} and C = F — D. We often write R(F) to make
explicit that R is a TRS over a signature F.

Context-sensitive rewriting. A mapping u : F — P(N) is a replacement map
(or F-map) if Vf € F, u(f) C {1,...,ar(f)} [16]. Let Mx be the set of all
F-maps (or Mg for the F-maps of a TRS (F, R)). A binary relation R on terms
is g-monotonic if ¢ R s implies f(t1,...,t,...,tk) R f(t1,...,s,..., 1) for every
t,8,t1,...,ty € T(F,X). The set of u-replacing positions Pos* (t) of t € T(F, X)
is: Posh(t) = {a}, if t € X and Pos"(t) = {A} UU;eu(rooe(ry) - Pos” (t]i), if
t & X. The set of replacing variables of ¢ is Var#(t) = {x € Var(t) | Ip €
Post(t),t], = «}. The p-replacing subterm relation >, is given by t >, s if
there is p € Pos”(t) such that s = ¢|,. We write t >, sif t >, s and t # s. In
contert-sensitive rewriting (CSR [16]), we (only) contract replacing redexes: ¢
p-rewrites to s, written t <, s (or £ g, s), if ¢ B sand p € Pos”(t). A
TRS R is p-terminating if <, is terminating. A term ¢ is p-terminating if there
is no infinite p-rewrite sequence t =t <, ¢ty <>, ---. A pair (R, 1) where R is
a TRS and p € Mg is often called a CS-TRS.

Dependency pairs. Given a TRS R = (F,R) = (CWD, R) anew TRS DP(R) =
(F' D(R)) of dependency pairs for R is given as follows: if f(t1,...,t) =7 €
R and r = C[g(s1,...,sn)] for some defined symbol ¢ € D and s1,...,s, €
T(F,X), then fH(t1,... . tm) — g"(s1,...,5,) € D(R), where f! and g¢' are
new fresh symbols (called tuple symbols) associated to defined symbols f and g¢
respectively [1]. Let D be the set of tuple symbols associated to symbols in D
and F! = FUD!. Asusual, for t = f(ty,...,tx) € T(F,X), we write t' to denote
the marked term f¥(ty,...,t;). Given T C T(F,X), T¥ denotes {t! | t € T'}.

A reduction pair (=, 1) consists of a stable and weakly monotonic quasi-
ordering >, and a stable and well-founded ordering 7 satisfying either = o JCO
or J o = C J. Note that monotonicity is not required for J.

Let 7o be a set of minimal non-terminating terms: a term ¢t € T, if ¢ 1s
non-terminating and every strict subterm is terminating.

C.-termination. A TRS R(F) is C.-terminating if R W, where 7 = {G(z,y) —
z, G(x,y) = y} (with G ¢ F), is terminating.

This definition has been extended to CSR [8]: A TRS R(F) is C.-p-
terminating if R W 7 is pg-terminating, where pg(f) = p(f) if f € F and
ﬂG(G) = {LQ}

C.-termination 1s modular for unions of

— disjoint TRSs [10,20],
— finitely branching and constructor sharing systems [10],
— finitely branching and composable systems [15].



This work consider finitely branching CS-TRSs where C.-termination
is modular.

2.1 Context-sensitive dependency pairs

Let R = (F,R) = (CWD,R) be a TRS and p € Mz. We define DP(R, 1) =
DP#(R, 1) UDPy (R, u) to be the set of contert-sensitive dependency pairs (CS-
DPs) where: DPx(R, pu) = {I* = s* |l = r € R,r >, s,root(s) € D, I}, s} and
DPx(R,pu) ={l' w2 |l —=r¢&R,xzc Vart(r) — Var*(l)}. We extend u € Mr
into it € Mgs by (/) = p(f) if £ € F, and i (f%) = p(f) if £ €D.

Let (R,u) be a CS-TRS. Given P C DP(R,p), an (R, P, u')-chain is a
finite or infinite sequence of pairs u; — v; € P, for ¢ > 1 such that there is a
substitution o satisfying both:

L. o(vi) =5 b o(tiz1), if vy = v; € DP£(R, i), and
2. if u; = v; = u; > &; € DPx (R, p), then there is s; € T(F,X) such that
o(xz;) >, s; and sg =% b o(tigp1).

Context-sensitive dependency graph. The context-sensitive dependency pairs can
be presented as a context-sensitive dependency graph, where the absence of infi-
nite chains can be analyzed by considering the cycles in the graph.

Given a TRS R = (F,R) and u € Mg, we say that f € F is a hidden
symbol [3] if there are [l » r € Rand t € T(F,X) s.t. ri> 4t and root(t) = f. Let
H(R, 1) (or just K, if there is no ambiguity) be the set of all hidden symbols in
(R, ).

Let R be a TRS and p € Mp. The context-sensitive dependency graph
consists of the set DP(R, y) of context-sensitive dependency pairs together with
arcs which connect them as follows:

1. There is an arc from a dependency pair u = v € DP£(R, i) to a dependency
pair v’ — v' € DP(R, ) if there is a substitutions ¢ such that o(v) —
o(u').

2. There is an arc from a dependency pair u — v € DPx (R, i) to a dependency
pair u' — v’ € DP(R, ) if root(u’)t € H(R, ).

*
R, ut

Let M , be a set of minimal non-y-terminating terms: a term ¢ € Mo 4
if ¢ is non-p-terminating and every strict u-replacing subterm is terminating.

3 Usable Rules

In programming, the idea of module comes in a natural way. Programmers usu-
ally set in a module those functions which have common features or properties.
Then, new modules which use these functions are written. This notion arises in
the same way in the term rewriting context: when rules defining some function
symbols f (by means of rules f(l1,...,lx) — r) are collected together and, they



are used by other rules from other modules. Urbain exploits this modular decom-
position approach to prove termination of rewriting in a modular and incremental
way [24]. Although termination is not modular (in general), he suceeds thanks
to imposing a harder termination condition for modules: the C.-termination.

Recent papers improve the modular approach using the notion of usable
rules [12,14]. Usable rules were introduced by Arts and Giesl in [1] in connection
with innermost termination. Hirokawa and Middeldorp [13] and (independenly)
Thiemann et al. [22] showed that they can also be used to prove termination.
Like in Urbain’s approach, dependencies between symbols are used to dismiss
rules in proofs of termination. The notion of usable rules concerns Strongly
Connected Component (SCC) to get only the rules that can be involved in an
infinite chain of dependency pairs included in the SCC. This rules are called
usable (within this SCC).

Definition 1 (Dependency [14]). Given a TRS R over a signature F, we
say that f € F directly depends on g € F, written f >4 g, if there is a rule
l = r eR with f =root(l) and g occurs in r.

The set of defined function symbols in a term ¢ is DFun(t) = {f | Ip €
Pos(t), f = root(t],) € P}. Now we have:

Definition 2 (Usable rules [14]). For a set G of defined function symbols we
denote by R | G the set of rewriting rules | — r € R with root(l) € G. The
set of U(t) of usable rules of a term t is defined as R | {g | f >% g for some
fE€DFun(t)}. If P is a set of dependency pairs then

uPp) = J uw)

l—=reP

Usable rules in Definition 2 can be used instead of R when looking for a reduction
pair which proves termination of R [12,14]. In the following sections we discuss
suitable notions of usable rules for CSR.

3.1 Basic usable rules for CSR
A conservative system is a CS-TRS having only conservative rules [19].

Definition 3 (Conservative rule [19]). Let R = (F, R) be a TRS and p €
Mr. A rulel — r € R is conservative if Var*(r) C Var#(l).

Dealing with conservative CS-TRSs, symbols below a non-p-replacing position
cannot be involved in any infinite (R, P, u#)-chain. Starting with this idea, we
are going to use the knowledge about non-replacing positions to dismiss certain
rules from the set of usable rules in Definition 2. We can relax the previous
dependency relation for some symbols thanks to the replacement map. Then,
the p-dependency relation is:



Definition 4. Given a CS-TRS (R(F),p), f € F directly p-depends on g € F,
written f w4, g, if there is | — r € R with f = root(l) and g occurs in 7 in a
p-replacing position.

This leads to a straightforward extension of Definition 2. The set of replacing
defined fuction symbols in a term ¢ is DFun®(t) = {f | Ip € Pos(t),f =
root(t|,) € D}. Then, we have:

Definition 5. The set Uy(t, i) of basic context-sensitive usable rules of a term
t is defined as R | {g | f w3, g for some f € DFunt(t)}. If P is a set of
dependency pairs then:

uO(Paﬂ): U UQ(T,/,L)

l—=reP

The following example illustrates how Definition 5 allows us to obtain a better
set of usable rules.

Ezample 1. Consider the following TRS R:

f(a,X,X) — £(X,b,b)

b— a
together with wp(f) = @. We have the following SCC: F(a,X,X) —
F(X,b,b). Since b is in non-u-replacing positions in the rhs of CS-DP,
there i1s no usable rule.

However, Definition 4 does not lead to a correct approach for proving termination
of CSR, even for conservative TRSs.

Ezample 2. Consider the following TRS R:
f(c(X),X) —» £(X,X)
b = c(b)

together with p(f) = {1,2} and p(c) = @. Note that R is p-conservative. We
have only one cycle: F(c(X),X) — F(X,X).

According to Definition 5, we have no usable rule because F(X,X) has no
defined symbol. We would be tempted to conclude termination of R, but we
have the following infinite p-rewriting sequence:

f(c(b),b) — f(b,b) — £f(c(b),b) —

3.2 Strongly conservative TRSs

According to the discussion in the previous section, we are going to consider
a more restrictive kind of conservative CS-TRSs: the strongly conservative CS-
TRSs, in which the problem illustrated by Example 2 is not possible.

Definition 6. Let F be a signature, p € My, and t € T(F,X). We denote
NVart(t) the set of all ® € Var(t) such thatt |>/ x.



Definition 7 (Strongly conservative TRS). Let F be a signature and p €
Mz. A rule l — r is strongly conservative if it is conservative and Var*(l) N
NVart(l) = @. A TRS R = (F, R) is strongly conservative if all rules in R are
strongly conservative.

Left-linear CS-TRSs trivially satisfy Var*(l) N NVar#(l) = @. Hence, left-linear
conservative CS-TRSs are strongly conservative. The CS-TRS R in Example 1
is strongly conservative, but R in Example 2 is not.

4 Proving termination of strongly conservative CS-TRSs

Theorem 1 below is the main result in this paper. It shows that basic usable rules
in Definition 5 can be used to improve proofs of termination of CSR for strongly
conservative CS-TRSs. In order to prove this theorem, we are going to provide
an interpretation of terms like Hirokawa and Middeldorp’s [13]. The difference
between both representations is that we are going to treat M, , terms instead
of T terms. For that reason, we have to pay special attention to non-p-replacing
positions because we don’t know if there is a possible infinite p-rewrite sequence
in them.

Definition 8. Let (R, pu) be a CS-TRS over a signature F, let G C F. Let >
be an arbitrary total ordering over T (F" U {L,G}, X) where L is a new constant
symbol and G is a new binary symbol. The interpretation Ig , is a mapping from
p-terminating terms in T4(F, X) into T(FP U{L,G}, X) defined as follows:

; ifteX
Ig w(t) = S fllg uri(ti), - Ig upn(tn)) =gl dn)and 1.6 G
&g (t2)s o Lo pn(tn))s ) if 1= St tn)and | € G
where
I L
Ig pu,pi(t) = {tg,u(t) Zzz ; ZEQ
= order({fg,u(u) |t TR,p u})
Order(T) J_, ZfT =

- G(t,order(T —{t}) ift is the minimum element of T

Red(t, 1) denotes the set of interpreted one-step-p-reducts of t. We assume a
fixed and total ordering on 7 (F" U {L,G}, X). The difference between interpreta-
tions in [10,13,24] and our is that we do not interpret non-p-replacing positions.
The idea behind is that we don’t need to interpret terms below non-p-replacing
positions when we are treating strongly conservative CS-TRSs.

The interpretation of a term ¢t = f(t1,...,%¢,), where f € G, is a sequence of
its interpreted one-step-reducts. It is possible to reach any of them by using a

suitable %;Q’NG 0 “my ug-Sequence. In particular, we have:



Proposition 1. Let (R, u) be a CS-TRS over a signature F and let G C F. For

all terms t € T(F,X), Ig u(t) c%:Fr,u(; L.

Proof. By structural induction.
Lemma 1. For each p-terminating term t, Ig ,(t) is finite.

Proof. By well-founded induction based on the fact that u-replacing subterms
are terminating. the interpretation of non-pu-replacing positions is always finite
(they are not developed). p-replacing positions generate finite interpretations
since there is no infinite g-reduction for these subterms. Hence Ig ,(t) is finite.

Definition 9. Let (R, p) be a CS-TRS and o be a substitution. We denote by
015, the function from terms to terms that, given a term t and x € Var(t)
replaces a variable occurrence x at position p in t by either Ig ,(o(z)) if p €

Pos(t), or o(x) if p & Pos”(t).
The following result is obvious from Definition 9 and will be used later.

Proposition 2. Let (R,p) be a CS-TRS and o be a substitution. Let t be a
term such that Var®(t) " NVart(t) = @ and 1, , be a substitution given by

- [ Igu(o(@)) if e € Vark(t)
Tl (%) = {U(x) if & € NVart(t)

Then, 61, ,(t) = 01, ,(1).

Lemma 2. Let (R, u) be a CS-TRS over a signature F and let G C F. Let
be a term and o be a substitution. If o(t) is terminating, then Ig ,(o(t)) —%

N( TG
015, (). Ift does not contain G-symbols, then Ig ,(o(t)) = o, ,(1).

Proof. By structural induction on t:

— If ¢ is a variable then Ig ,(o(t)) = o1, , (1).
— Ift=f(t1,...,tn) then
o If f &G then Ig ,(c(t)) = flig,ps1(o(tr)), ... Ig utn(o(ts))). Terms
o(t;) are p-terminating for ¢ € p(f). By the induction hypothesis,
for all terms t; such that ¢ € u(f), we conclude Ig , ¢i(o(ti)) =
Ig u(o(t:)) %;VNG 015, (t;). And for all terms ¢; such that i ¢
p(f), we have Ig , ¢i(c(t;)) = o(t;). By definition of o7, ,, we have
o1, (ftr, ... tn)) = f(t), ... 1), where t; = Ig ,(t;) if i € p(f) and
t; =o(t;) if ¢ € p(f). Therefore, Ig ,(o(t)) %;VNG 015, (1)
olf f € G Igule@®) = G(fUguraila(tr)),. . Igurn(o
tn))),t")) for some . Using one step of ((_>77qu
Fflg usi(o(t1)), ..., Ig usn(o(tn)))) and the preceding result we
get Ig u(o(t)) %;VNG o1, (t).



Then we conclude Ig (o (%)) %T““G 015, (t). The second part of the lemma

is easily proved by structural induction and using Definition 8.

Lemma 3. Let (R,u) be a CS-TRS over a signature F, let G C F and C a
context with n replacing holes. If t = C[ty, ..., 1,] is terminating and the context
C' contains no G-symbols then

Ig W (Clta, .., t0]) = Clg u(th), .., Ig u(tn)].

Proof. By structural induction on t:

— If C has not holes then Iy ,(C[]) = C.

— If the context C' = f(Ci[ti1,..-,tinly -, Cm[tmis .-, tmn]) then f & G
and if we interpret the term Ig ,(f(Ci[t11, ..., tinl, - - -, Cmltm1, - tmnl)) =
Flg w(Ciltin, .- tinl)s -, Ig u(Cmltma, - - -, tmn])), by induction hypothe-
sis we have f(Ci[lg u(t11),. .., Ig u(t1n)], -, CmlIg u(tm1), - -, Lg u(tmn)]).
Our {; terms are ones of the ¢;; in one context Cj where k € [1..m] and
J € [1..n], for that reason we can conclude saying that Ig ,(C[t1,...,t5]) =

C[Ig,u(tl)a R Ig,u(tn)]

Lemma 4. Let (R, p) be a strongly conservative CS-TRS and P € CSDP(R, ).
Let G C F. If s and t are p-terminating terms and s —g , t then Ig ,(s)

+
“lto(P uyum g 16 (1)-
Proof. Let p the position of the rewrite step s —x , t. There are two cases.

— If there is a function symbol from G at a position above p, then we can
write s = C[s1,...,8;,...,85] and t = Cs1,...,t;, ..., s,], with s, —r ,
t;, where s; and t; are in a replacing hole, root(s;) € G and the context
contains no G-symbols. We have Ig ,(s;) g Comb(lJ,._,, Ig u(u)). Since
8;i (R, li, we can extract Ig ,(t;) from the term Comb(Usl_}u Ig . (u))
by appropiate m-steps, so Ig ,(s;) %jf—yu(; Ig ,(t;). Using Lemma 3 we get

Ig u(s) %ZD('PVN)UTFVNUNG Ig,u(1).
— Otherwise, we can write s = C[s1,..., 8, ..., s, and t = C[s1, ..., t;, ..., S,]
with s; ci)R,u t;, where root(s;) ¢ G and the context C' contains no G-
symbols. Since root(s;) € G, the applied rewriting rule [ — r actually belongs
to Uy(P, ). Using lemma 2 we obtain Ig ,(s;) = Ig (o (1)) %;VNG o1, (1)
Because right-hand sides of rules in Uy(P, ) do not contain G-symbols, the
same lemma yields Ig ,({;) = o1, ,(r). By strong conservativity of the rule
[ = r and Proposition 2, o1, (1) = 71, , (1) =ue(P,u),u 15, (7). By Propo-
(r) and thus Ig ,(s;) f—)Z['D(

sition 1, &, , (1) —

* .
TG Olg,p. P,N)Uﬂ',uUuG Igyﬂ(tl)'

~ +
Using Lemma 3 we get Ig ,(s) T Uo(P )T wUnG Ig . (1).

Theorem 1. Let (R, p) be a CS-TRS and P be a cycle in CSDP(R, u). If P U
Up(P, i) is strongly conservative and there exists a triple (2,>,>) such that
Us(P,p) U (m,pug) €2, P C>, and PN ># &, then there are no infinite
(R, P, ut)-chains.



Proof. By contradiction. Assume that there is a P-minimal g-rewriting sequence:
1 %%# up —p o %%# Uy —p -+

Let G be the set of defined symbols of R\Uy(P, ). We show that af-
ter applying the interpretation Ig , we obtain an infinite rewrite sequence in
Uy(P, 1) Um UP in which every rule of P is used infinitely often. Since all terms
in the infinite y-rewriting sequence belong to M, ,, they are terminating with
respect to (R, p) and hence we can indeed apply the interpretation Ig ,. Let
i>1.

— First consider the dependency pair step u; —p t;41. There is a context-
sensitive dependency pair ! — r € P and a substitution ¢ such that u; = o({)
and t;41 = o(r). We may assume that Dom(o) C Var(l). Since u; € nga,u’
o(x) is terminating for every variable € Var#(l). Since right-hand sides
of rules in Uo(P, u) lack G-symbols, we have Ig ,(o(r)) = oy, ,(r) using
Lemma 2. The same lemma also yield Ig ,(o (1)) %:'VNG 015, (1). Hence, by

strong conservativity of pair { — » and Propositions 2 and 1,
Ig (i) =7 e 010, (1) = T15, (1) =P 15, (1) =7 g 010, (1) = Ig u(tig)

— Next consider the rewrite sequence t; =% , u;. Because all terms in this se-

quence are terminating, we obtain Ig ,(t;) ‘—)Z[DU, WU I . (u;) by repeated
applications of Lemma 4.

So we obtain the infinite p-rewrite sequence
Ig,u(tl) %Z[D(pVN)Uﬂ'yNUNG Ig,ﬂ(ul) %::',MG o —=p Ig,u(t2) %Z[D(pVN)Uﬂ',NUNG T

in which all rules in P are infinitely ofen applied. Using the assumption of the
theorem, the latter sequence is transformed into a infinite sequence consisting of
2,>, and infinitely many > steps. Using the compatibility condition, we obtain
a contradiction with the well-foundedness of >.

Ezample 3. Consider the following TRS R [5, Example 4.7.37]:

from(X) -> cons(X,from(s(X)))

sel(0,cons(X,XS)) —> X

sel(s(N),cons(X,XS)) -> sel(N,XS)

minus(X,0) -> 0

minus (s (X),s(Y)) -> minus(X,Y)

quot (0,s(Y)) -> 0

quot (s (X) ,s(Y)) -> s(quot(minus(X,Y),s(Y)))

zilquot (XS,nil) -> nil

zlquot (nil,XS) -> nil

zilquot (cons (X,XS) ,cons (Y,YS)) —> cons(quot (X,Y),zWquot (X5,YS))

together with p(cons) = {1} and u(f) = {1,...,ar(f)} for all other symbols f.
Note that R is not p-conservative (due to the third rule). There are three cycles
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in the context-sensitive dependency graph:

(C1) {SEL(s(N),cons(X,XS)) -> SEL(N,XS)}
(C2) {MINUS(s(X),s(Y)) -> MINUS(X,Y)}
(C3) {QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y))}

Whereas cycles C1 and C2 are easily shown harmless by using the subterm
criterion (see [2, Section 5]), this is not possible with cycle C3. Since this cycle
is conservative and left-linear, it is strongly conservative. Furthermore, the set
Us(C3, pub) of basic usable rules for C3 contains the following rules

minus(X,0) -> 0
minus(s(X),s(Y)) -> minus(X,Y)

which are strongly conservative as well. The following polynomial interpretation:
[minus](z,y) =0 [0]=0 [s](z) =1 [QUOT](z,y) =«

proves the absence of infinite (R,C3, u!)-chains. Thus, R is proved pu-
terminating.

5 Conclusions

We have investigated how usable rules can be used to improve termination proofs
of CSR by dismissing certain rules when the (context-sensitive) dependency pairs
approach is used to achieve the proof. The straightforward extension of the
standard notion of usable rule (that we have called basic usable rules, see Defini-
tion 5) does not work for C'SR even for the quite restrictive class of conservative
CS-TRSs. We have introduced the notion of strongly conservative CS-TRS (Def-
inition 7) to fix this problem. Theorem 1 shows that basic usable rules can be
used in proofs of termination of strongly conservative CS-TRSs.

We have implemented the techniques described in this paper as part of the
tool MU-TERM [4, 18]. Our first experience shows that, even for the restricted
framework investigated in this paper, basic usable rules are helpful to improve
proofs of termination of C'SR. For instance, the p-termination of R in Example
3 could not be proved by using the previous version of MU-TERM which did not
implement any notion of usable rules. The new version of MU-TERM, however,
is able to give a simple proof of termination of the example; in fact the proof
reported in Example 3 has been automatically obtained by MU-TERM.

An extensive evaluation of them will be obtained after the participation of
MU-TERM in the 2007 Termination Competition® which will be held soon.
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