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ABSTRACT
Advanced typing, matching, and evaluation strategy features, as
well as very general conditional rules, are routinely used in equa-
tional programming languages such as, for example, ASF+SDF,
OBJ, CAFEOBJ, MAUDE, and equational subsets of ELAN and
CASL. Proving termination of equational programs having such
expressive features is important but nontrivial, because some of
those features may not be supported by standard termination meth-
ods and tools, such as MU-TERM, CiME, APROVE, TTT, TERMP-
TATION, etc. Yet, use of the features may be essential to ensure ter-
mination. We present a sequence of theory transformations that can
be used to bridge the gap between expressive equational programs
and termination tools, prove the correctness of such transforma-
tions, and discuss a prototype tool performing the transformations
on MAUDE equational programs and sending the resulting trans-
formed theories to some of the aforementioned tools.
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fmod OvConsOS is
sorts Nat NatList NatIList .
subsort NatList < NatIList .
op 0 : -> Nat .
op s : Nat -> Nat .
op zeros : -> NatIList .
op nil : -> NatList .
op cons : Nat NatIList -> NatIList [strat (1 0)] .
op cons : Nat NatList -> NatList [strat (1 0)] .
op take : Nat NatIList -> NatList .
op length : NatList -> Nat .
vars M N : Nat .
var IL : NatIList .
var L : NatList .
eq zeros = cons(0,zeros) .
eq take(0, IL) = nil .
eq take(s(M), cons(N, IL)) = cons(N, take(M, IL)) .
eq length(nil) = 0 .
eq length(cons(N, L)) = s(length(L)) .

endfm

Figure 1: Example of Maude program

1. INTRODUCTION
The goal of this work is to study transformational techniques that

can help to bridge the gap between programs in expressive rule-
based equational languages such as ASF+SDF [30], OBJ [15],
MAUDE [8], CAFEOBJ [12], and modules in suitable equational
subsets of ELAN [3] and CASL [2] on the one hand, and termi-
nation tools assuming considerably more restrictive specifications
(untyped, unconditional, etc.). There is a clear tension between the
goals of expressiveness and efficiency when using equational theo-
ries as programs, and the considerably simpler assumptions of stan-
dard reasoning techniques for rewrite systems and their associated
tools. For example, many equational programs do not terminate in
the usual sense, but do so when evaluated with suitable types and/or
strategies.

EXAMPLE 1. Consider the Maude specification in Figure 1,
where sorts NatList and NatIList are intended to classify fi-
nite and infinite lists of natural numbers, respectively. The function
zeros generates an infinite list of zeros, and take can be used
to obtain an initial segment of a list by giving the number of items
we want to extract. Finally, length computes the length of a fi-
nite list. Note the overloaded operator cons, which can be used
both for building finite and infinite lists of natural numbers and is
declared with evaluation strategy (1 0). The interpretation of this



strategy annotation is as follows: the evaluation of an expression
cons(h,t) proceeds by first evaluating h and then trying a re-
duction step at the top position (represented by 0). No evaluation is
allowed on the second argument t because index 2 is missing in the
annotation. Note also that NatList is a subsort of NatIList,
thus allowing the use of take to extract items both from finite and
infinite lists.

This system is terminating, but both the evaluation strategy
(1 0) for cons and the use of sorts (especially NatList and
NatIList instead of a single one) are crucial to achieve this
terminating behavior. In fact, by either removing the strategy an-
notation or the sort information we would get a non-terminating
program.

Some termination tools are not able to deal directly with such pro-
grams because they make use of either types or strategies, or be-
cause of other features such as conditional equations that are not
handled by a given tool’s input language. As remarked in Exam-
ple 1, forgetting such extra features is often insufficient in order
to prove termination, because termination may crucially depend on
the extra features being erased. Expressive features not handled by
some current termination tools include:

1. Sorts, subsorts, overloading and membership predicates;

2. Conditions, which may introduce extra variables;

3. Fixed evaluation strategies (e.g., leftmost innermost or left-
most outermost);

4. Programmable evaluation strategies which permit annotat-
ing each function symbol with local strategy information on
what arguments to evaluate or not (e.g., context sensitive
rewriting strategies [19], E-strategies [15, 8], etc.);

5. Rewriting modulo axioms like associativity (A), commuta-
tivity (C), identity (I), AC, ACI, and so on.

For example, APROVE [14] supports some form of conditional
equations (2) and innermost rewriting (3), but none of the other
features; CiME [9] directly supports part of (5), but not (1)-(4);
whereas MU-TERM [21] directly supports (4) but not the rest.

Our goal is to leverage a wide range of termination tools, includ-
ing those just mentioned, by using a sequence of theory transforma-
tions that map the original program into increasingly simpler theo-
ries —each having the property that termination of the transformed
theory at each step ensures termination of the input theory— until
we reach a transformed theory that we can enter into a tool. We
first provide a new theoretical framework which allows us to deal
with very expressive programs having all the features (1)–(5) men-
tioned above, so as to make our techniques applicable to as many
equational programming languages as possible. Then, we trans-
form it by a sequence of transformation steps eliminating, succes-
sively, features (1), (2) and (5). In this paper we just ignore (3),
because indeed innermost rewriting with a conditional TRS is not
clearly defined, see Section 5 for further discussion.

The endpoint of this transformation process is a CS-TRS, i.e., a
TRS (Term Rewriting System) together with a replacement map µ
which discriminates, for each symbol of the signature, the argument
positions µ(f) at which replacements are allowed (thus reflecting
item (4) above). The notion of rewriting which deals with such
replacement restrictions is called context-sensitive rewriting (CSR
[18, 19]). Some research effort has already been devoted to the defi-
nition and implementation of techniques for proving termination of
CSR (see, e.g., [4, 10, 13, 17, 22, 32]).

The sequence of theory transformations is summarized in Fig-
ure 2. Transformation A eliminates memberships and sorts (fea-
ture 1) resulting in an unsorted, context-sensitive and conditional
rewrite theory. Transformation B eliminates conditions, possibly
with extra variables (feature 2) in a way that generalizes a known
transformation from Conditional Term Rewriting Systems (CTRS)
to TRS [25] by making it aware of context-sensitive rewriting in-
formation; in this way we obtain an unsorted and unconditional
context-sensitive rewrite theory. At this point, two options are
available, leading to the forking in Figure 2. On the one hand,
we can use a termination tool (such as MU-TERM) that can directly
prove termination of CSR as explained in, e.g., [4, 22] (left branch).
On the other hand, we can use several existing theory transfor-
mations, including those proposed by Lucas [17], Zantema [32],
Ferreira and Ribeiro [10], and Giesl and Middeldorp [13], to pass
from a context-sensitive rewrite theory to an ordinary rewrite the-
ory whose termination ensures that of the context-sensitive theory.
These transformations are also implemented in MU-TERM. The re-
sulting theory can then be sent to a number of termination tools
(e.g., CiME, APROVE, TERMPTATION, TTT, etc.). Our overall
goal is of course to bridge the gap between expressive equational
programs with features (1)–(5), and termination tools all the way
through.

This paper is organized as follows: in Section 2, we recall ba-
sics of Membership Equational Logic, Membership Rewrite Theo-
ries, and their operational semantics. In Section 3 we describe our
theory transformations and prove their soundness w.r.t termination:
transformation A is defined in Section 3.1, transformation B in Sec-
tion 3.2. The example in Figure 1 is used as a running example for
these transformations. In Section 4, we discuss implementation is-
sues, and give more examples.

2. REWRITING WITH MEMBERSHIP
EQUATIONAL THEORIES

2.1 Membership Equational Theories
Since membership equational theories generalize both many-

sorted and order-sorted equational theories and can also deal with
partiality [24], they are quite expressive from the typing point of
view and can therefore provide a quite general type theory for
equational programs. We can describe a membership signature
as a triple, Ω = (K, Σ, S), where (K, Σ) is a K-sorted sig-
nature, that is, K is a set, and Σ is an indexed family of sets
Σ = {Σw,k}(w,k)∈K∗×K —that we call “many-kinded” because
the elements of K are called kinds so as to avoid confusion with the
sorts S that are instead treated as predicates—and S =

S
k∈K

Sk is
a disjoint family of unary predicates. Each s ∈ Sk is called a sort,
and is understood as a unary predicate on k, written _ : s, so that el-
ements satisfying the predicate determine the extension of the sort s
in k. Intuitively, elements having some sort s are well-defined ele-
ments, whereas elements having a kind k but no sort are understood
as error elements. A model of Ω, called a membership algebra B is
a (K, Σ)-algebra B together with an interpretation for each unary
predicate s ∈ Sk, whose extension is a subset Bs ⊆ Bk.

Ω-sentences are then universally quantified Horn clauses whose
atomic predicates are either equalities t = t′ between two Σ-terms
of the same kind, or unary membership predicates t : s with t
a Σ-term of kind k and s ∈ Sk. In other words, membership
equational logic is just the sublogic of many-sorted (although we
see it here as “many-kinded”) Horn clause logic with equality in
which all the predicates other than equality are unary. A member-
ship equational theory is just a pair T = (Ω, E) with E a set of
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Figure 2: Overview of the methodology

Ω-sentences. T -algebras are then Ω-algebras satisfying the equa-
tions E in T , according to the usual notion of satisfaction in many-
sorted (again, seen as “many-kinded”) first-order logic with equal-
ity. Given a membership equational theory T , there are free and
initial T -algebras, and sound and complete inference rules [24].
Order-sorted notation s1 < s2 for subsorts can be used to abbrevi-
ate the conditional membership (∀x : k) x : s2 if x : s1. Sim-
ilarly, an operator declaration f : s1 × · · · × sn → s corresponds
to declaring f at the kind level and giving the membership axiom
(∀x1 : k1, . . . , xn : kn) f(x1, . . . , xn) : s if

V
1≤i≤n

xi :

si. We write (∀x1 : s1, . . . , xn : sn) t = t′ in place of
(∀x1 : k1, . . . , xn : kn) t = t′ if

V
1≤i≤n

xi : si. The
above abbreviations make it easy to embed order-sorted specifi-
cations as a special case of the more general membership equa-
tional specifications. Specifically, an order-sorted specification is
one in which: (1) the only memberships are subsort declarations
s1 < s2 and operator declarations f : s1 × · · · × sn → s; and (2)
the only other clauses in E are conditional equations of the form
(∀x1 : s1, . . . , xn : sn) t = t′ if

V
1≤i≤n

ui = vi. The Maude
language [8] supports all the order-sorted abbreviations just men-
tioned; furthermore, kinds do not have to be declared explicitly by
the user: they are inferred by the system, that associates a kind to
each connected component of sorts in the subsort ordering graph.
For example, the specification in Figure 1 is order-sorted and has
two kinds, corresponding to the connected components {Nat} and
{NatList,NatIList}.

Admissible membership equational theories [8] provide a very
general class of equational theories that are executable by equa-
tional rewriting. Their sentences are a union E ∪ Ax, where Ax is
a collection of equational axioms such as, for example, associativ-
ity, commutativity, and identity of some operators in Σ, for which
a matching algorithm modulo Ax exists, and E consists of condi-
tional equations (1) and conditional memberships (2):

t = t′ if A1, . . . , An (1)

t : s if A1, . . . , An (2)

where in (1) the variables in t′ are among those in t or in some
Ai, and where, in both (1) and (2) each Ai is either a membership
wi : si, or an equation ui = vi such that any new variable not in
t or in some Aj with j < i must occur only in ui or in some Aj

with j > i; furthermore, if ui introduces any new variables, then

ui must be a nonvariable term; we then call ui = vi a matching
equation. In MAUDE such matching equations are distinguished
syntactically with the notation ui := vi.

2.2 From Membership Equational Theories to
Membership Rewrite Theories

In the spirit of [6], we can associate to an admissible membership
equational theory T = (Ω, E ∪ Ax) a corresponding conditional
rewrite theory RT defined as follows. The signature of RT adds a
fresh new kind Truth with a constant tt, and for each kind k in T
an operator equal : k k −→ Truth. RT has the same equational
axioms Ax as T , so that rewriting is performed modulo Ax, and
contains rules of the form equal(x, x) → tt for each kind k in T .
Furthermore, for each admissible conditional equation of the form
(1) in E there is a conditional rule of the form

t → t′ if Â1, . . . , Ân (3)

where if Ai is a membership then Âi = Ai, if Ai is a matching
equation ui = vi, then Âi is the rewrite condition vi → ui, and if
Ai is an ordinary equation ui = vi, then Âi is the rewrite condition
equal(ui, vi) → tt. Similarly, for each conditional membership in
T of the form (2) we associate a conditional membership of the
form,

t : s if Â1, . . . , Ân (4)

with the Âi defined exactly as before.

2.3 Computing with Context-Sensitive Mem-
bership Rewrite Theories

The point of associating to an admissible membership equational
theory T a corresponding rewrite theory RT is that we can perform
equational reasoning by rewriting. Of course, unless RT satisfies
additional properties such as confluence, sort-decreasingness, and
so on, equational reasoning by rewriting will only be sound but not
necessarily complete.

Equational reasoning in an equational theory T by rewriting with
the rules in RT modulo the axioms Ax can be made more expres-
sive by requiring that only certain function arguments are rewrit-
ten, whereas other arguments remain “frozen”. For example, it is
natural to restrict the evaluation of an if-then-else operator so that
rewriting is only allowed on the first argument. In this way, we



can express that the evaluation of the conditions only makes sense
after evaluating the guard of the conditional expression. As done
in context-sensitive rewriting (CSR [18, 19]) the simplest way of
specifying requirements of this kind is to assume that there is a
replacement map [18], i.e., a function µ : Σ −→ P(N) associat-
ing to each operator f of n arguments a set of argument positions
µ(f) = {i1, . . . , ik}, with 1 ≤ ij ≤ n, which are those under
which rewriting is allowed. For example, µ(if-then-else) = {1},
and in Example 1 µ(cons) = {1}. An important application of
CSR is that rewrite systems that are nonterminating if rewriting is
allowed on all term positions can often become terminating. As
we show below for the example in Figure 1 (two other examples
are discussed in Section 4), this allows us to handle infinite data
structures. We then call the pair (RT , µ) a context-sensitive mem-
bership rewrite theory (CS-MRT), where the context information is
provided by µ. For instance, the CS-MRT specification (also given
in Maude-like notation) which corresponds to the Maude program
in Figure 1 is given in Figure 3. Here, [Nat] denotes the kind

fmod OvConsOSMRT is
kind [Truth] .
kind [Nat].
kind [NatIList] .
op tt : -> [Truth] .
op 0 : -> [Nat] .
op s : [Nat] -> [Nat] .
op zeros : -> [NatIList] .
op nil : -> [NatList] .
op cons : [Nat] [NatIList] -> [NatIList] [strat (1 0)] .
op take : [Nat] [NatIList] -> [NatIList] .
op length : [NatIList] -> [Nat] .
cmb L : NatIList if L : NatList .
mb tt : Truth .
mb 0 : Nat .
cmb s(N) : Nat if N : Nat .
mb zeros : NatIList .
mb nil : NatList .
cmb cons(N,IL) : NatIList if N : Nat /\ IL : NatIList .
cmb cons(N,L) : NatList if N : Nat /\ L : NatList .
cmb take(N,IL) : NatList if N : Nat /\ IL : NatIList .
cmb length(L) : Nat if L : NatList .
eq zeros = cons(0,zeros) .
ceq take(0,IL) = nil if IL : NatIList .
ceq take(s(M),cons(N,IL)) = cons(N,take(M,IL))

if M : Nat /\ N : Nat /\ IL : NatIList .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))

if N : Nat /\ L : NatList .
endfm

Figure 3: CS-MRT for the program OvConsOS

of sort Nat, and [NatIList] denotes the kind of both sorts
NatList and NatIList. The profile of the operators is given
in terms of these kinds. We omit the operator equal as no con-
ditional rule includes equations in its conditional part. Note also
the first conditional membership (with keyword cmb) which ex-
presses that NatList is a subsort of NatIList. The sort pro-
file for the arguments and result of each operator in the Maude
program OvConsOS are desugared here as memberships in the
CS-MRT specification. In particular, viewing the sort profile of
a function symbol as a shorthand for a kind profile together with a
membership, such as for cons above, allows us to cleanly handle
operator overloading: to each different sort profile corresponds a
different membership. We also allow ad-hoc overloading, that is,
operators with same name and different kind profile, although in
that case we require that if f has kind profiles k1 · · · kn → k and

k1 · · · kn → k′, then k = k′.
We can define the rewriting relation associated to (RT , µ) by

means of the inference rules of Figure 4, which adapt to the context-
sensitive case those in Figure 7 in [6]. Note that all the inferences
are implicitly assumed to happen modulo the equational axioms Ax
in RT . The new relation t → t′ : s combines rewriting and sort
inference; intuitively it means that t can be rewritten to a term t′

for which we can infer the sort s. For each atom B appearing in
a condition of a conditional rule or a conditional membership in
RT we use the meta-notation B• to denote: (1) if B is a rewrite
u −→ v (including the case when u = eq(w, w′) and v = tt),
then B• = B; (2) if B is of the form x : s with x a variable,
then B• = x −→ x : s; and if B is of the form w : s with
w a nonvariable term, then B• = w −→ x : s, with x a fresh
new varible of the kind of s. The inference system in Figure 4 is
context sensitive in a quite detailed way. The most obvious case
is the Congruence rule, which blocks rewriting in argument posi-
tions outside µ(f); further context sensitivity is achieved through
the B• conjuncts in the conditions of the Membership and Replace-
ment rules. The point is that, if unrestricted, these inference rules
could easily undermine context-sensitivity by evaluating subterms
that are supposed to be frozen, thus easily leading to nontermina-
tion. This is prevented by the case when B = x : s, since then
B• = x −→ x : s. This means that if x matches a subterm of the
term whose sort we are computing with the Membership rule —or
that we are trying to rewrite with the Replacement rule— then that
subterm will not be further rewritten in the process of checking its
sort.

Given a context-sensitive membership rewrite theory (RT , µ),
we write (RT , µ) ` t → t′ : s and (RT , µ) ` t →∗ u whenever
t → t′ : s, resp. t → u, are derivable using the rules of Fig-
ure 4 (note that because of reflexivity and transitivity, t → u may
involve zero, one, or more rewrite steps). The relation →∗ is by
definition the reduction relation in 0, 1 or more steps for (RT , µ).
We write (RT , µ) ` t →+ u whenever t → u is derivable us-
ing the rules above, with at least one application of (Replacement)
which does not appear just in proofs of premises of (Subject reduc-
tion) or (Membership) (that is, not just as a subproof of a relation
t′ → t′′ : s) but contributes directly to the proof of t → u. In the
special case of a standard rewrite theory without any memberships,
without context-sensitive restrictions, and with only unconditional
rules, the definition above for →∗ (resp. →+) corresponds to the
usual definition of the reflexive-transitive (resp. transitive) closure
of the one step rewrite relation. As in [6], it is easy to prove by
translating each rewriting step into an equational inference step the
following soundness theorem.

THEOREM 1 (SOUNDNESS). Let T be such that all kinds are
nonempty. Then, (RT , µ) ` t →∗ u implies T ` t = u. Similarly,
(RT , µ) ` t → t′ : s implies T ` t : s, T ` t′ : s, and T ` t = t′

.

DEFINITION 1. We say that a membership equational program
is terminating whenever the relation →+ is well-founded.

3. THEORY TRANSFORMATIONS

3.1 Transformation A: From Membership
Theories to Unsorted Rewrite Theories

Let T be an admissible membership rewrite theory
((K, Σ, S), E ∪ Ax), we define an unsorted conditional rewrite
theory eT = (eΣ, fAx, R(K, Σ, S) ∪ eE) as follows. eΣ = {eΣi}i≥0

consists of the constant tt, the binary operator equal, and for



(Subject reduction)
t → t′ t′ → t′ : s

t → t′ : s

(Membership)
A•

1σ · · · A•
nσ

tσ → tσ : s
where t : s if A1 · · ·An in RT

(Reflexivity)
t → t

(Transitivity)
t → t′ t′ → t′′

t → t′′

(Congruence)
ui1 → u′

i1
· · · uik

→ u′
ik

f(u1, . . . , un) → f(u1, . . . , u
′
i1

, . . . , u′
ik

, . . . , un)
where µ(f) = {i1, . . . , ik}

(Replacement)
A•

1σ . . . A•
nσ

tσ → t′σ
where t → t′ if A1 · · ·An in RT

Figure 4: Inference rules for membership rewriting

each operator f : w → k where w = k1 . . . kn in Σ, a new
operator name fw ∈ eΣn. We furthermore add unary operators
isk ∈ eΣ1 for each k ∈ K, and iss ∈ eΣ1 for each s ∈ S. The
role of operators fw is to disambiguate ad-hoc overloading: for
each Σ-term t, the eΣ-term et is obtained by making its variables
unsorted, and by replacing each f : w → k by fw . As said at
end of Section 2.1, there should be only one k for each w, so this
operation is well-defined. The axioms fAx are just the equations
et = et′ for each t = t′ in Ax. The rules in R(K, Σ, S) include the
rule equal(x, x) → tt, plus conditional rules of the form

isk(fw(x1, . . . , xn)) → tt if {iski
(xi) → tt}1≤i≤n(5)

for each f : w −→ k in Σ, with w = k1 . . . kn. The set of
conditional rules eE contains for each conditional rule of the form
(3) and involving variables x1 : k1, . . . , xm : km a conditional
rule of the form,

et → et′ if {iski
(xi) → tt}1≤i≤m, eA1, . . . , eAn (6)

where if Âi is a membership ui : si, then eAi is the rewrite condi-
tion issi

( eui) → tt; and if Âi is a rewrite condition ui → vi, then
eAi is the rewrite condition eui → evi, and leaving the symbol equal

unchanged. Likewise, eE contains for each conditional member-
ship of the form (4) and involving variables x1 : k1, . . . xm : km a
conditional rule for the form,

iss(et) → tt if {iski
(xi) → tt}1≤i≤m, eA1, . . . , eAn (7)

The above translation extends in a straightforward way to a
translation (RT , µ) 7→ ( eT , eµ) of context-sensitive rewrite the-
ories, where eµ(fw) = µ(f) for each f : w −→ k in Σ,
eµ(equal) = {1, 2}, and for each k ∈ K and each s ∈ S we
define eµ(isk) = ∅ and eµ(iss) = ∅ (this choice avoids unexpected
reductions during the kind- and sort-checking phases implemented
by these functions).

EXAMPLE 2. For our running example, we would get the trans-
formed system in Figure 5. We have omitted the disambiguation of
operators, since no ambiguity is involved in this example; also,
equal has been omitted.

3.1.1 Preservation of termination
We first have the following lemma, proved by straightforward

structural induction, making use of rules of type (5).

LEMMA 1. For any term t, substitution σ, condition c, etσ =
et eσ and g(cσ) = ec eσ. If t is a ground term, well-kinded of kind k

w.r.t T , then ( eT , eµ) ` isk(et) →+ tt.

LEMMA 2. For any ground terms t and u, and any sort s:

• if (RT , µ) ` t → u : s then ( eT , eµ) ` et → eu and ( eT , eµ) `
iss(eu) →+ tt, and

• if (RT , µ) ` t →∗ u then ( eT , eµ) ` et →∗ eu

Moreover if (RT , µ) ` t →+ u then ( eT , eµ) ` et →+ eu .

PROOF. We prove both assertions simultaneously, by induction
on the proof trees of (RT , µ) ` t → u : s and (RT , µ) ` t →∗ u
respectively. If (RT , µ) ` t → u : s, it is derived either

• By rule (Subject reduction): we have (RT , µ) ` t →∗ u and
(RT , µ) ` u →∗ u : s. By induction, we have ( eT , eµ) `
et →∗ eu and ( eT , eµ) ` iss(eu) →+ tt, hence ( eT , eµ) ` et →∗

eu.

• By rule (Membership): there is a membership rule l : s if c
in RT and a substitution σ such that t = lσ, and (RT , µ) `

cσ. By induction, we have ( eT , eµ) ` fcσ = ec eσ. In eT
there is the rule iss(el) → tt if {iski

(xi) → tt}1≤i≤m, ec.
To apply (Replacement) with substitution eσ to get ( eT , eµ) `
iss(et) → tt, we need to show that the iski

conditions are
satisfied, that is for each i, iski

(xieσ) → tt: this is a conse-
quence of Lemma 1.

If (RT , µ) ` t →∗ u, it was derived either

• By rule (Reflexivity) that is t = u, hence ( eT , eµ) ` et →∗ eu
also by (Reflexivity).

• By rule (Transitivity): there is a term w such that (RT , µ) `
t →∗ w and (RT , µ) ` w →∗ u. By induction, we have
( eT , eµ) ` et →∗ ew and ( eT , eµ) ` ew →∗ eu, hence ( eT , eµ) `
et →∗ eu again by (Transitivity).

• By rule (Congruence) that is t = f(t1, . . . , tk), u =
f(u1, . . . , uk), µ(f) = {i1 . . . ik} and for each j,
(RT , µ) ` tij

→∗ uij
. By induction, ( eT , eµ) ` ftij

→∗ fuij

and since in the new strategy map eµ(fs) = µ(f), we con-
clude again by (Congruence).



fmod OvConsOSMRT_TA is
sort S .
op isKNat : S -> S [strat (0)] .
op isKNatIList : S -> S [strat (0)] .
op isNat : S -> S [strat (0)] .
op isNatIList : S -> S [strat (0)] .
op isNatList : S -> S [strat (0)] .
op tt : -> S .
op and : S S -> S .
op 0 : -> S .
op s : S -> S .
op zeros : -> S .
op nil : -> S .
op cons : S S -> S [strat (1 0)] .
op take : S S -> S .
op length : S -> S .
vars T M N IL L : S .
eq isKNat(0) = tt .
ceq isKNat(s(N)) = tt if isKNat(N) = tt .
ceq isKNat(length(L)) = tt if isKNatIList(L) = tt .
eq isKNatIList(nil) = tt .
eq isKNatIList(zeros) = tt .
ceq isKNatIList(cons(N,IL)) = tt

if isKNat(N) = tt /\ isKNatIList(IL) = tt .
ceq isKNatIList(take(N,IL)) = tt

if isKNat(N) = tt /\ isKNatIList(IL) = tt .
ceq isNatIList(IL) = tt if isNatList(IL) = tt .
eq isNat(0) = tt .
ceq isNat(s(N)) = tt if isNat(N) = tt .
ceq isNat(length(L)) = tt if isNatList(L) = tt .
eq isNatIList(zeros) = tt .
ceq isNatIList(cons(N,IL)) = tt

if isNat(N) = tt /\ isNatIList(IL) = tt .
eq isNatList(nil) = tt .
ceq isNatList(cons(N,L)) = tt

if isNat(N) = tt /\ isNatList(L) = tt .
ceq isNatList(take(N,IL)) = tt

if isNat(N) = tt /\ isNatIList(IL) = tt .
eq zeros = cons(0,zeros) .
ceq take(0,IL) = nil

if isKNatIList(IL) = tt /\ isNatIList(IL) = tt .
ceq take(s(M),cons(N,IL)) = cons(N,take(M,IL))

if isKNat(M) = tt /\ isKNat(N) = tt /\
isKNatIList(IL) = tt /\ isNat(M) = tt /\
isNat(N) = tt /\ isNatIList(IL) = tt .

ceq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))

if isKNat(N) = tt /\ isKNatList(L) = tt /\
isNat(N) = tt /\ isNatList(L) = tt .

endfm

Figure 5: Use of transformation A

• by rule (Replacement): there exists a rule l → r if c in
RT and a substitution σ such that t = lσ, u = rσ, and
(RT , µ) ` cσ. By induction, ( eT , eµ) ` fcσ = ec eσ. In eT ,
there is the rule el → er if {iski

(xi) → tt}1≤i≤m, ec. We
again conclude by (Replacement), as in the (Membership)
case above.

If (RT , µ) ` t →+ u, then it is straightforward to see that ( eT , eµ) `
et →+ eu by examining each of the four cases above.

THEOREM 2. If the system ( eT , eµ) resulting from the transfor-
mation of (RT , µ) is terminating, then (RT , µ) is also terminating.

PROOF. Any infinite reduction for (RT , µ) could be lifted into
an infinite reduction for ( eT , eµ), using the above lemma.

3.1.2 Optimizations
In order to provide the simplest input for the next transforma-

tion which removes conditions from rules (see Section 3.2), we can
apply some obvious optimizations on the previous transformation
which do not change the termination behavior of the program.

1. In a first variant, the isk predicates for kinds are omitted;
this simplifies the resulting theory with minimal loss in its
expressiveness, particularly for specifications in which, as it
is usually the case, all variables of a conditional equation or
rule are required to have a sort in the condition.

2. If all operator profiles involve only sorts, and all variables ap-
pearing in equations and memberships have a declared sort,
then if k is the kind of a sort s, then iss(x) → tt implies
isk(x) → tt. Therefore, we can safely use iss(x) → tt in-
stead of isk(x) → tt ∧ iss(x) → tt in the conditional part
of the rules computed by the transformation.

3. A conditional part like

iss1
(x1) → tt ∧ · · · ∧ issk

(xk) → tt

in a conditional rule can be collapsed into a single expression

and(iss1
(x1), and(· · · , issk

(xk)) · · · ) → tt

at the end of the conditional part by introducing a binary
‘and’ operator defined by

op and : S S -> S .

eq and(tt,T) = T .

Moreover, if the right hand side of the conditional rule is tt,
we can use the previous expression with and as the new right
hand-side of the rule: the conditional rule

l → tt if iss1
(x1) → tt ∧ · · · ∧ issk

(xk) → tt

eventually collapses into the unconditional one

l → and(iss1
(x1), and(· · · , issk

(xk)) · · · )

For instance, after implementing these optimizations, the equa-
tions of the previous system become as shown in Figure 6. Note
that many conditional rules become unconditional now, and that
the conditional parts of the remaining conditional rules have been
greatly compressed.

On the other hand, there is a much simpler variant of the trans-
formation (RT , µ) 7→ ( eT , µ̃) just defined. For order-sorted rewrite
theories, in which the only memberships involved in conditions are
variables, and the only membership axioms correspond to subsort



and operator declarations, a second variant drops also the iss pred-
icates for sorts. Obviously, since these simpler variants yield less
restrictive conditions in the translated rules in eT , these variants al-
low more rewrites and therefore our results apply a fortiori to these
simpler transformations, in the sense that a termination proof for
the transformed theory ensures termination of the original theory.
These variants afford simpler transformations at the cost of looser
simulations of the rewrites. For instance, it is not possible to use
this variant to prove termination of program OvConsOS in Figure
1. in fact, the obtained CS-TRS:

with µ(cons) = {1} and µ(f) = {1, . . . , ar(f)} for all other
symbols f , is non-terminating:

length(zeros) ↪→ length(cons(0,zeros))
↪→ s(length(zeros))
↪→ · · ·

where ↪→ means context-sensitive rewriting, i.e., rewriting re-
stricted to those positions on which reductions are allowed by
the replacement map ([18, 19]) Here, the information about
sorts is essential for ensuring termination. In fact, reducing
length(cons(0,zeros)) into s(length(zeros)) is not
possible in OvConsOS because zeros does not belong to the sort
NatList. In Section 4, however, we give an interesting and suc-
cessful example of the use of this simpler transformation variant as
part of our transformation process.

As related work, we want to mention the property of persistence
introduced by Zantema [31]: a property P of a many-sorted TRS
R is persistent if P is true on R iff it is true on T (R), where T
is the simpler, sort-removing transformation just mentioned above.
Zantema proved that termination is persistent for restricted classes
of TRS. Note, however, that we are using a different notion of ter-
mination, namely termination of CSR. Persistence of termination
of CSR has not been studied yet. On the other hand, we do not need
persistence: we only need preservation of termination, i.e., we need
that if T (R) terminates, then R terminates and do not need the op-
posite to hold.

3.2 Transformation B: from Unsorted Condi-
tional to Unconditional

The next step is to define a transformation associating to an ad-
missible and unsorted conditional and context-sensitive rewrite the-
ory (T, µ) an unconditional one (T ∗, µ∗). We extend Ohlebusch’s
transformation [25] so as to handle the context-sensitive restrictions
imposed by the replacement map µ.

eq isNatIList(IL) = isNatList(IL) .
eq isNat(0) = tt .
eq isNat(s(N)) = isNat(N) .
eq isNat(length(L)) = isNatList(L) .
eq isNatIList(zeros) = tt .
eq isNatIList(cons(N,IL)) = and(isNat(N),isNatIList(IL)) .
eq isNatList(nil) = tt .
eq isNatList(cons(N,L)) = and(isNat(N),isNatList(L)) .
eq isNatList(take(N,IL)) = and(isNat(N),isNatIList(IL)) .
eq zeros = cons(0,zeros) .
ceq take(0,IL) = nil

if isNatIList(IL) = tt .
ceq take(s(M),cons(N,IL)) = cons(N,take(M,IL))

if and(isNat(M),and(isNat(N),isNatIList(IL)))))) = tt .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))

if and(isNat(N),isNatList(L)))) = tt .

Figure 6: Optimized transformation A

zeros → cons(0,zeros)
take(0,IL) → nil
take(s(M),cons(N,IL)) → cons(N,take(M,IL))
length(nil) → 0
length(cons(N,L)) → s(length(L))

Let T = (Σ, Ax,R) be an unsorted conditional rewrite theory,
then T ∗ = (Σ∗, Ax,R∗) where Σ∗ extends Σ, and µ∗ extends
µ by introducing a set of new operators Ui as defined below, and
R∗ is the set of rules obtained from R as follows: for each condi-
tional rule l → r if a1 → b1, . . . , an → bn we introduce n + 1
unconditional rules

l → U1(a1, ~x1)

Ui−1(bi−1, ~xi−1) → Ui(ai, ~xi) 2 ≤ i ≤ n

Un(bn, ~xn) → r

where the Ui are fresh new symbols added to Σ∗, with the context-
sensitive strategy µ∗(Ui) = {1}. That is, only the first argument
may be evaluated. The ~xi are vectors of variables defined as ~xi =
Var(l) ∪ Var(b1) ∪ · · · ∪ Var(bi−1) for 1 ≤ i ≤ n, which, by
admissibility, ensures that in the above rules each of right-hand side
variable occurs in the left-hand side; or, in a clever way so as to
avoid keeping track of unused variables:

~xi = (Var(l) ∪ Var(b1) ∪ · · · ∪ Var(bi−1))

∩ (Var(bi) ∪ Var(ai+1) ∪ Var(bi+1) ∪ · · ·

∪ Var(an) ∪ Var(bn) ∪ Var(r))

EXAMPLE 3. For our running example (take the optimized ver-
sion in Section 3.1.2), the corresponding unconditional translation
includes (we only show the rules stemming from conditional rules):

op uTake1 : S -> S [strat (1 0)] .
op uTake2 : S S S S -> S [strat (1 0)] .
op uLength : S S -> S [strat (1 0)] .
eq take(0,IL) = uTake1(isNatIList(IL)) .
eq uTake1(tt) = nil .
eq take(s(M),cons(N,IL)) =

uTake2(and(isNat(M),and(isNat(N),isNatIList(IL))),
M,N,IL) .

eq uTake2(tt,M,N,IL) = cons(N,take(M,IL)) .
eq length(cons(N,L)) =

uLength(and(isNat(N),isNatList(L)),L) .
eq uLength(tt,L) = s(length(L)) .

LEMMA 3. For any ground terms t and u: if (T, µ) ` t →∗ u
then (T ∗, µ∗) ` t →∗ u. Moreover if (T, µ) ` t →+ u then
(T ∗, µ∗) ` t →+ u.

PROOF. By induction on the size of the proof tree of (T, µ) `
t →∗ u the last proof step was either

• By (Reflexivity) or (Transitivity): we conclude (T ∗, µ∗) `
t →∗ u also by (Reflexivity) or (Transitivity).

• By (Congruence) that is t = f(t1, . . . , tk), u =
f(u1, . . . , uk), µ(f) = {i1 . . . ik} and for each j, (T, µ) `
tij

→∗ uij
. By induction, (T ∗, µ∗) ` tij

→∗ uij
and since

in the replacement map for f is kept the same, we conclude
again by (Congruence).

• By (Replacement): there exists a rule l → r if a1 →
b1, . . . , an → bn in T and a substitution σ such that t = lσ,



u = rσ, and (T, µ) ` aiσ →∗ biσ. By induction,
(T ∗, µ∗) ` aiσ →∗ biσ. In T ∗, there are the necessary
rules to perform the reduction

t = lσ → U1(a1σ, ~x1σ) (Replacement)
→∗ U1(b1σ, ~x1σ) (Congruence)
→ U2(a2σ, ~x2σ) (Replacement)
...

→∗ Un(bnσ, ~xnσ) (Congruence)
→ rσ (Replacement)

Notice that the (Congruence) steps above are allowed be-
cause 1 ∈ µ∗(Ui).

If (T, µ) ` t →+ u, then it is straightforward to see that
(T ∗, µ∗) ` t →+ u by examining each of the four cases
above.

THEOREM 3. If the system (T ∗, µ∗) resulting from transforma-
tion of (T, µ) is terminating, then (T, µ) is also terminating.

PROOF. Any infinite reduction for (T, µ) could be lifted into an
infinite reduction for (T ∗, µ∗), using the above lemma.

EXAMPLE 4. According to Theorems 3 and 2, termination of
program OvConsOS in Example 1 can be proved by proving the
µ-termination of the following Term Rewriting System:

and(tt,T) -> T
isNatIList(IL) -> isNatList(IL)
isNat(0) -> tt
isNat(s(N)) -> isNat(N)
isNat(length(L)) -> isNatList(L)
isNatIList(zeros) -> tt
isNatIList(cons(N,IL)) -> and(isNat(N),isNatIList(IL))
isNatList(nil) -> tt
isNatList(cons(N,L)) -> and(isNat(N),isNatList(L))
isNatList(take(N,IL)) -> and(isNat(N),isNatIList(IL))
zeros -> cons(0,zeros)
take(0,IL) -> uTake1(isNatIList(IL))
uTake1(tt) -> nil
take(s(M),cons(N,IL)) ->

uTake2(and(isNat(M),and(isNat(N),isNatIList(IL))),
M,N,IL)

uTake2(tt,M,N,IL) -> cons(N,take(M,IL))
length(cons(N,L)) ->

uLength(and(isNat(N),isNatList(L)),L)
uLength(tt,L) -> s(length(L))

where µ(isNat) = µ(isNatList) = µ(isNatIList) =
∅, µ(cons) = µ(uTake1) = µ(uTake2) = µ(uLength) =
{1} and µ(f) = {1, . . . , ar(f)} for all other symbols f .

4. FROM THEORY TO PRACTICE
As remarked in the introduction, once we have obtained a CS-

TRS (i.e., a TRS R together with a replacement map µ), we can
just try a proof of µ-termination of R (i.e., termination of CSR for
R and the replacement map µ). Fortunately, several methods have
been developed for this purpose. There exist some direct methods
for proving termination of CSR. These are orderings > on terms
which can be used to directly compare the left-hand sides and right-
hand sides of the rules in order to conclude the µ-termination of
the TRS [4, 22]. The MU-TERM tool is able to give a direct and
automatic proof of termination of CSR by using the polynomial
interpretations of [22].

EXAMPLE 5. The TRS R in Figure 7 can be used to approxi-

take(s(N),cons(X,XS)) → cons(X,take(N,XS))
take(0,XS) → nil
incr(cons(X,XS)) → cons(s(X),incr(XS))
pairNs → cons(0,incr(oddNs))
oddNs → incr(pairNs)
zip(nil,XS) → nil
zip(X,nil) → nil
zip(cons(X,XS),cons(Y,YS)) → cons(pair(X,Y),zip(XS,YS))
tail(cons(X,XS)) → XS
repItems(cons(X,XS)) → cons(X,cons(X,repItems(XS)))
repItems(nil) → nil

Figure 7: Computing Wallis’ approximation

mate the value of π/2 by means of the so-called Wallis’ product:
π
2

= limn→∞
2
1

2
3

4
3

4
5
· · · 2n

2n−1
2n

2n+1
. The expression

zip(repItems(tail(pairNs)),tail(repItems(oddNs)))

produces the previous fractions and the function take in Example
1 can be used to obtain appropriate approximations.

Let µ(cons) = {1} and µ(f) = {1, . . . , ar(f)} for all other
symbols f . The µ-termination of R can also be proved by the fol-
lowing polynomial interpretation (computed by MU-TERM with the
help of CiME):

[nil] = 1 [tail](X) = 4.X
[pairNs] = 3 [repItems](X) = 2.X
[cons](X1,X2) = X1 + 1/4.X2 + 1 [0] = 0
[pair](X1,X2) = X1 + X2 [oddNs] = 5
[zip](X1,X2) = 2.X1 + 2.X2 [s](X) = X
[take](X1,X2) = X1 + X2 + 2 [incr](X) = X + 1

Unfortunately, regarding our running example, it is not difficult
to see that no polynomial interpretation can be used to prove ter-
mination of the TRS R in Example 4. However, it is not dif-
ficult to see that a potentially non-terminating expression like
length(zeros) will not cause an infinite rewriting sequence in
R due to the (unsuccessful) sort check performed for the expression
zeros by the function isNatList.

On the other hand, [10, 13, 17, 32] describe a number of trans-
formations Θ from TRSs R and replacement maps µ that produce
TRSs Rµ

Θ. Then, if we are able to prove termination of Rµ
Θ (using

the standard methods), termination of CSR under µ (i.e., the µ-
termination of R) is ensured (see Section 4.2 below for a concrete
example). MU-TERM also implements all the aforementioned trans-
formations and provides interfaces for the external use of existing
tools for proving termination (of Rµ

Θ): APROVE [14], CiME [9],
TERMPTATION [5], and TTT [16].

4.1 A Prototype Implementation
Our current prototype tool takes MAUDE equational programs

as inputs and implements the transformations A and B described in
Section 3. The tool implementation clearly distinguishes two parts:
(1) the theory transformations described in the paper, which are
performed inside MAUDE, and (2) a Java application connecting
MAUDE and MU-TERM and providing a GUI. The Java application
is in charge of sending the MAUDE specification introduced by the
user to MAUDE to perform transformations; it then receives the
result of the transformations and sends it to MU-TERM.

MAUDE’s design and implementation systematically exploit the
reflective capabilities of rewriting logic [8] through its built-
in META-LEVEL module. This allows meta-representing the-
ories as data, so that theory transformations become equation-
ally defined functions on such meta-representations built on top of



(fmod MYNAT is
sort Nat .
op 0 : -> Nat .
op s : Nat -> Nat .
endfm)

(fmod LazyLNat is
pr NAT .
sort LNat .
sort PLNat .
op nil : -> LNat .
op cons : Nat LNat -> LNat [strat (1 0)] .
op pair : LNat LNat -> PLNat .
op natsFrom : Nat -> LNat .
op fst : PLNat -> LNat .
op snd : PLNat -> LNat .
var N : Nat .
vars X Y : LNat .
eq natsFrom(N) =

cons(N, natsFrom(s(N))) .
eq fst(pair(X, Y)) = X .
eq snd(pair(X, Y)) = Y .
endfm)

(fmod SplitAt is
pr LazyLNat .
op splitAt : Nat LNat -> PLNat .
vars N X : Nat .
vars XS YS ZS : LNat .
eq splitAt(0, XS) = pair(nil, XS) .
ceq splitAt(s(N), cons(X, XS)) =

pair(cons(X, YS), ZS)
if pair(YS, ZS) := splitAt(N, XS) .

endfm)

(fmod ListUtilities is
pr SplitAt .
op head : LNat -> Nat .
op tail : LNat -> LNat .
op sel : Nat LNat -> Nat .
op take : Nat LNat -> LNat .
op afterNth : Nat LNat -> LNat .
vars N : Nat .
vars XS : LNat .
eq head(cons(N, XS)) = N .
eq tail(cons(N, XS)) = XS .
eq sel(N, XS) = head(afterNth(N, XS)) .
eq take(N, XS) = fst(splitAt(N, XS)) .
eq afterNth(N, XS) = snd(splitAt(N, XS)) .
endfm)

Figure 8: Lazy lists example

META-LEVEL. The very abstract level at which the transforma-
tions are thus specified allows us to keep their implementation very
close to their mathematical definitions, affording a greater flexi-
bility, maintainability, and extensibility. The transformations have
been developed as an extension of FULL MAUDE which, in addi-
tion to providing some significant infrastructure that facilitates the
development, make it possible to access the transformations from
other applications while using the power of the FULL MAUDE spec-
ifications. FULL MAUDE is a language extension of MAUDE writ-
ten in MAUDE, that endows MAUDE with a powerful and exten-
sible module algebra in which MAUDE modules can be combined
together to build more complex modules [8].

4.2 Another example
We illustrate our techniques on the MAUDE program of Fig-

ure 8, which provides support for the use of ‘lazy’ lists of nat-

ural numbers. The local strategy (1 0) for the list constructor
‘cons’ (in module LazyLNat) freezes the second argument, thus
allowing dealing with infinite lists such as the infinite sequence
of natural numbers 0, 1, 2, . . . which is obtained by evaluating
natsFrom(0). In module ListUtilities, we use the func-
tion splitAt for defining several functions for list manipulation.
The function is defined in module SplitAt by using a conditional
equation (borrowing the current definition in the prelude of the lazy
functional language Haskell).

In this case, we use the simpler variant of transformation A that
forgets sort information (see Section 3.1.2) which turns out to be
very useful. Then, after collapsing all sorts into a single one and ap-
plying transformation B, we obtain the following CS-TRS (which
we call SplitAtTR):

natsFrom(N) → cons(N, natsFrom(s(N)))
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, XS), X)
u(pair(YS, ZS), X) → pair(cons(X, YS), ZS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
head(cons(N, XS)) → N
tail(cons(N, XS)) → XS

where µ(cons) = µ(u) = {1} and µ(f) = {1, . . . , ar(f)} for
all other symbols f in the signature.

This CS-TRS is proved µ-terminating by using Zantema’s trans-
formation. Zantema’s transformation marks the non-replacing ar-
guments of function symbols (disregarding their positions within
the term) [32]. New function symbols are used to block further
reductions at this position. In addition, if a variable x occurs in a
non-replacing position in the lhs l of a rewrite rule l → r, then
all occurrences of x in r are replaced by activate(x). Here,
activate is a new unary function symbol which is used to acti-
vate blocked function symbols again. New rewrite rules are added
for blocking and unblocking function symbols. For instance, if we
apply Zantema’s transformation1 to SplitAtTR, we obtain the
following TRS SplitAtTR_Z (which has been obtained by using
MU-TERM):

natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) →

u(splitAt(N, activate(XS)), X)
u(pair(YS, ZS), X) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X

This is a standard TRS which can be proved terminating by CiME.
MU-TERM sends the system to CiME to obtain the proof (see Fig-
ure 9).

Hence, by Theorem 3, the original program consisting of mod-
ules LazyLNat, SplitAt and ListUtilities is also termi-
nating.
1We use the simple description of Zantema’s transformation as
given in [13].



Figure 9: Termination of SplitAtTR Z with MU-TERM and CiME

5. CONCLUSIONS AND FURTHER WORK
Proving termination of equational programs having expressive

features such as matching, typing, and evaluation strategies is im-
portant but nontrivial, because some of those features may not be
supported by standard termination methods and tools. Yet, use of
the features may be essential to ensure termination. We have pre-
sented a sequence of theory transformations that can be used to
bridge the gap between equational programs and termination tools,
have proved their correctness, and have discussed a prototype im-
plementation in a tool taking MAUDE functional modules as inputs,
performing the transformations, and mapping the resulting trans-
formed theories to MU-TERM and from there to CiME, and other
termination tools. Much work remains ahead, both in theoretical
aspects and in experimentation. Theoretical issues that need to be
further investigated include the following.

First, extending our methods to prove termination of equational
programs with innermost contextual rewriting in the case of con-
ditional rules. For unconditional specifications, methods for such
termination already exists and have been shown equivalent to prov-
ing termination of programs with elementary E-strategies in the
OBJ sense [20]. There are also tools like APROVE or TERMP-
TATION which permit to prove termination of innermost rewriting;
and there are also tools like CARIBOO [11] which are specialized in
dealing with termination of rewriting under strategies (in particular,

a class of innermost context-sensitive strategies). The main issue
here is in fact how to define the reduction relation: for example,
with the two rules f(a) → f(b) and a → b if f(a) → f(b), do
we have f(a) →∗ f(b) with innermost strategy? In an interpreter
like MAUDE, asking normalization of a loops forever because it
tries to apply the second rule, hence tries to reduce f(a) innermost,
hence tries to normalize a again. This issue is indeed a particular
case of the more general issue of dealing with effective termination,
that is termination of the computation on all queries given to an in-
terpreter. For example, the one-rule CTRS a → b if a → c is
terminating in the sense given in this paper, since the relation →+

is empty, but asking normalization of a would again loop forever.
Second, extending existing modular/incremental termination

proof techniques [1, 23, 25, 26, 28, 29] to our setting. Since
MAUDE programs are built by composition of modules, termina-
tion should be proven incrementally: each time a new module
is added, a proof of termination should be obtained by using the
knowledge of termination of previous ones. However, further in-
vestigation is required, since MAUDE module hierarchies do not
necessarily respect the usual hierarchical property required for hier-
archical TRSs, namely that for each rule added, the left-hand side’s
root symbol is a new symbol. Furthermore, even if this were to hold
for some MAUDE programs, the transformations we have defined
do not preserve that property, in particular because of sort elimi-
nation: if a new symbol f declares an old sort S as its codomain,



then a new rule isS(f(. . .)) → . . . is added, whereas isS is an old
symbol.

Third, extending the methods of this paper from equational theo-
ries to theories in rewriting logic that allow frozen arguments when
rewriting with rules [7]. This amounts to considering two levels
of contextual rewriting: one for rewriting with equational rules ac-
cording to some strategy µ, and another for rewriting with nonequa-
tional rules with another strategy µ′. In practice this will allow
proving termination of concurrent systems specified as rewrite the-
ories.

More experimentation is needed to further extend and refine our
methods. The current prototype provides a first basis for such ex-
perimentation; it should be extended and improved in several di-
rections, including, adding interfaces to other equational languages
and termination tools, and adding support for the theoretical exten-
sions mentioned above.
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