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Abstract Reasoning about the termination of equational programs in sophisticated equa-
tional languages such as ELAN, MAUDE, OBJ, CAFEOBJ, HASKELL, and so on, re-
quires support for advanced features such as evaluation strategies, rewriting modulo, use
of extra variables in conditions, partiality, and expressive type systems (possibly including
polymorphism and higher-order). However, many of those features are, at best, only par-
tially supported by current term rewriting termination tools (for instance MU-TERM, CiME,
APROVE, TTT, TERMPTATION, etc.) while they may be essential to ensure termination.
We present a sequence of theory transformations that can be used to bridge the gap between
expressive membership equational programs and such termination tools, and prove the cor-
rectness of such transformations. We also discuss a prototype tool performing the transfor-
mations on MAUDE equational programs and sending the resulting transformed theories to
some of the aforementioned standard termination tools.
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1 Introduction

The goal of this work is to study transformational techniques that can help to bridge the gap
between programs in expressive rule-based equational languages such as ASF + SDF [39],
OBJ [19], MAUDE [5], CAFEOBJ [12], HASKELL [21], and modules in suitable equational
subsets of ELAN [1] and CASL [7] on one hand, and termination tools assuming consid-
erably more restrictive specifications (untyped, unconditional term rewriting systems) on
the other. There is a clear tension between the goals of expressiveness and efficiency when
using equational theories as programs, and the considerably simpler assumptions of stan-
dard reasoning techniques for rewrite systems and their associated tools. For example, many
equational programs do not terminate in the usual sense, but do so when evaluated with
suitable types and/or strategies.

Example 1 Consider the MAUDE specification in Fig. 1, where sorts NatList and
NatIList are intended to classify finite and infinite lists of natural numbers, respectively.
The function zeros generates an infinite list of zeros, and length computes the length of
a finite list. Note the overloaded operator cons, which can be used for building both finite
and infinite lists of natural numbers and which is declared with evaluation strategy (1 0).
The interpretation of this strategy annotation is as follows: the evaluation of an expression
cons(h,t) proceeds by first evaluating h and then trying a reduction step at the top posi-
tion (represented by 0). No evaluation is allowed on the second argument t , because index 2
is missing in the annotation. Note also that NatList is a subsort of NatIList.

This system is terminating (i.e., all reduction sequences, for any initial term, are finite),
but both the evaluation strategy (1 0) for cons and the use of sorts and subsorts (especially
for length) are crucial to achieve this terminating behavior. In fact, by removing either the
strategy annotation or the sort information we would get a non-terminating program: on the

fmod LengthOfFiniteLists is
sorts Nat NatList NatIList .
subsort NatList < NatIList .
op 0 : -> Nat .
op s : Nat -> Nat .
op zeros : -> NatIList .
op nil : -> NatList .
op cons : Nat NatIList -> NatIList [strat (1 0)] .
op cons : Nat NatList -> NatList [strat (1 0)] .
op length : NatList -> Nat .
vars M N : Nat .
var IL : NatIList .
var L : NatList .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
eq length(cons(N, L)) = s(length(L)) .

endfm

Fig. 1 A MAUDE program example
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one hand, if reductions were allowed on the second argument of cons, then the evaluation
of zeros would never terminate. On the other hand, an attempt to evaluate length(xs)
will not terminate if length ‘accepts’ infinite lists xs like, e.g., zeros; this is forbidden
by specifying that length only accepts lists of sort NatList, i.e., finite lists.

Current termination tools are not able to deal directly with programs like that in Exam-
ple 1. This is because the programs make use of either types or strategies, or because of
other features such as conditional equations that are not handled by a given tool’s input lan-
guage. As illustrated by Example 1, these features are often essential to prove termination.
Expressive features not handled by some current termination tools include:

1. Sorts, subsorts, overloading, and memberships (see [3, 33]);
2. Conditions, which may introduce extra variables;
3. Fixed evaluation strategies (e.g., leftmost innermost or leftmost outermost);
4. Programmable evaluation strategies, which permit annotating each function symbol with

local strategy information on what arguments to evaluate or not (e.g., context sensitive
rewriting strategies [24], E-strategies [5, 19], etc.);

5. Rewriting modulo axioms like associativity (A), commutativity (C), identity (I), AC,
ACI, and so on.

For example, APROVE [17] supports some form of conditional equations (2), innermost
rewriting (3), context-sensitive rewriting annotations (4), and AC symbols (5); CiME [8]
directly supports part of (5); and MU-TERM [26] directly supports (4). In all cases (and this
is the main focus of this paper), these tools do not support the combination of these features.

1.1 Membership equational logic and operational termination

Equational languages with expressive features are supported by expressive logics, that typi-
cally include less expressive ones as sublogics. In this regard, membership equational logic
(MEL) [3, 33] has proved to be a very expressive logical framework, in which a wide range
of partial and total equational logics can be faithfully embedded [33]. This makes it an attrac-
tive framework logic for our main goal, which is developing termination techniques applica-
ble to equational languages with expressive features. Specifically, modules in equational
programming languages such as OBJ, CAFEOBJ, the equational sublanguage of ELAN,
and a suitable executable fragment of CASL can all be faithfully represented as member-
ship equational theories. Similarly, MAUDE’s equational sublanguage, whose modules are
membership equational theories, has itself a trivial, identity representation into this frame-
work. As a consequence, our termination techniques are not only applicable to MAUDE, but
also to all the above-mentioned languages.

In MEL the two basic types of atomic predicates are equalities t = t ′, and memberships
t : s stating that a term t has sort s. The axioms of a MEL theory are then Horn clauses,
whose head can be either an equation or a membership. There is a basic level of typing by
kinds; and a more sophisticated one by sorts, which is achieved by deduction using theory
axioms (the Horn clauses). Typing by sorts provides a general way to deal with partiality,
in that a term having a kind but lacking a sort is regarded as an undefined or error element.

Operationally, and assuming good executability properties such as the Church-Rosser
property [3] and admissibility in the sense explained in Sect. 3, equalities t = t ′ can be
treated as rewrite rules t → t ′. Rewriting with equations as rules can furthermore be made
context-sensitive by providing a replacement map μ that indicates which argument positions
of a function symbol f must be reduced before equations for f are applied [23, 24]. In this
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way we arrive at the notion of a context-sensitive membership rewrite theory (CS-MRT),
which is the operational form of a membership equational program. Note that in a CS-MRT
rewriting and computation of memberships t : s are recursively intertwined, because appli-
cation of a conditional equation may require satisfying memberships in its conditions, and
application of a conditional memberships may likewise require satisfying equalities in its
condition. In particular, some useful programs may now only involve memberships, without
involving any rewriting. Consider, for example, the following palindrome recognizer pro-
gram PALINDROME, which is a membership equational program expressible in MAUDE as
follows:

fmod PALINDROME is
protecting QID . — Imports sort Qid (quoted identifiers)
sorts List Pal .
subsorts Qid < Pal < List .
op nil : -> Pal .
op __ : List List -> List [assoc id: nil] .
var I : Qid .
var P : Pal .
mb I P I : Pal . — membership axiom

endfm

This program—where list concatenation is expressed with empty syntax and satisfies asso-
ciativity (assoc) and identity (id for nil) axioms—is terminating, that is, given a list
of quoted identifiers the specification can always be used to compute in a finite number of
steps whether it is a palindrome, i.e., has sort Pal, or not. But note that no rewriting at all
is involved. Similarly, the program

fmod INF is
protecting NAT .
sort Inf .
subsort Inf < Nat .
var N : Nat .
cmb s(N) : Inf if s(s(N)) : Inf .

— a conditional membership
endfm

is nonterminating, but again no rewriting is involved in its nontermination. This means that
the standard theoretical framework of term rewriting, and the termination notions that have
been developed for it, including those for Conditional Term Rewriting Systems (CTRSs), are
insufficient for dealing with termination of MEL programs. For this reason, we use in this
paper a proof-theoretic termination notion, called operational termination [29]. This notion
is parametric on the logic: it can be defined not just for MEL, but for many other logics, that
may or may not involve rewriting in their computations. Intuitively, an CS-MRT program
is operationally terminating if all its well-formed proof trees are finite. For example, the
nontermination of the INF program is witnessed by the infinite proof tree,

. . .

s(s(s(N))):Inf

s(s(N)):Inf

s(N):Inf
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The following MAUDE program, involving both equations and memberships, shows how
the recursive interaction between rewriting and membership computations can lead to subtle
nontermination problems

fmod INF2 is
sorts S .
op a : -> [S] .
op f : [S] -> [S] [strat (0)] .
ceq a = f(a) if a : S .

endfm

Note that both a and f do not have a sort, and are only defined at the kind level, using
the kind [S] associated to the sort S (see Sect. 2.2). Note also that f has a strategy (0),
forbidding reductions in the argument of f. MAUDE fails to terminate when trying to reduce
the term a. The problem is that, to compute the sort of a, MAUDE tries to reduce a to
canonical form. This is of course a correct proof attempt in membership rewriting logic that
leads to the infinite proof tree

. . .

a→f(a) f(a):s

a:s

a→f(a)

showing that INF2 fails to be operationally terminating.
What these examples show, most strikingly the PALINDROME and INF specifications,

is that termination of a declarative program may not involve rewriting at all, or, as in the
case of INF2, may involve both rewriting and other computational relations. As we further
explain in Sect. 2.3, one key advantage of the notion of operational termination is that it
is parametric on the logic underlying the given programming language. In particular, it is
useful to clarify termination issues for conditional specifications, even for the special case of
rewriting specifications [29]. Intuitively, and this is for example illustrated by INF2 above,
the problem is that a conditional specification may have a terminating rewriting relation
(INF2 does, since it is the empty relation) and still be nonterminating by “looping” in
evaluating a condition. Where some notions of conditional termination run aground, for
example that of “effective termination” (see [29]), is in failing to give a proper account of
such looping. In operational termination terms, any nonterminating behavior, either in the
rewrite relation, or in a condition, or in any other computational relation, is both detected
and characterized by the existence of an infinite proof tree.

1.2 Proving termination of CS-MRTs by program transformation

In proving termination of a CS-MRT, an important goal is to exploit a wide range of stan-
dard termination tools. We achieve this goal by using a sequence of theory transformations
that map the original program into increasingly simpler ones—each having the property
that termination of the transformed program at each step ensures termination of the input
program—until we reach a transformed program that we can enter into a tool. A CS-MRT
may exhibit all the features (1)–(5) mentioned above. We transform it by applying two trans-
formation steps eliminating, successively, features (1) and (2). In this paper we ignore (3),
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Fig. 2 Overview of the methodology

because indeed innermost rewriting with a conditional TRS is not clearly defined at present
(see Sect. 6 for further discussion).

The endpoint of this transformation process is a TRS (Term Rewriting System) together
with a replacement map μ (modulo a set of axioms). A substantial amount of research has
already been devoted to the definition and implementation of techniques for proving termi-
nation of such context-sensitive TRSs (CS-TRSs) [2, 10, 15, 22, 27, 28, 41].

The sequence of theory transformations is summarized in Fig. 2. Transformation A elim-
inates memberships and sorts (feature 1) resulting in an unsorted, context-sensitive and con-
ditional rewrite theory. Transformation B eliminates conditions, possibly with extra vari-
ables (feature 2); it generalizes a known transformation from CTRSs to TRSs [35] in two
ways: (i) by making it aware of context-sensitive rewriting information; and (ii) by allowing
rewriting modulo axioms Ax. In this way we obtain an unsorted and unconditional context-
sensitive rewrite theory.

We have implemented transformations A and B in the MAUDE Termination Tool (MTT,
http://www.lcc.uma.es/~duran/MTT/). At this point, two options are available, leading to
the forking in Fig. 2. On the one hand, we can use a termination tool (such as MU-TERM)
that can directly prove termination of CSR [2, 27] (left branch). On the other hand, we
can use several existing theory transformations, including those proposed by Lucas [22],
Zantema [41], Ferreira and Ribeiro [10], and Giesl and Middeldorp [15] (see also [28]), to
pass from a context-sensitive rewrite theory to an ordinary rewrite theory whose termination
ensures that of the context-sensitive theory. These transformations are also implemented in
MU-TERM and implicitly used in APROVE. The resulting theory can then be sent by MTT
to a number of termination tools (namely CiME, MU-TERM, and all tools supporting the
TPDB syntax (http://www.lri.fr/~marche/termination-competition/): APROVE, TTT [20],
etc.).

This paper is organized as follows: in Sect. 2, we recall basics of CTRSs, Membership
Equational Logic, and operational termination. Section 3 introduces Membership Rewrite

http://www.lcc.uma.es/~duran/MTT/
http://www.lri.fr/~marche/termination-competition/
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Theories, and their operational semantics. In Sect. 4 we describe our theory transforma-
tions and prove their soundness w.r.t. termination: transformation A is defined in Sect. 4.1,
transformation B in Sect. 4.3. The example in Fig. 1 is used as a running example for these
transformations. In Sect. 5, we discuss implementation issues and experiments. We conclude
with Sect. 6.

2 Preliminaries

2.1 Conditional term rewriting systems

We refer the reader to [35] to recall the usual notions and notations regarding term rewriting
and CTRSs. In general, a conditional rule is as follows:

l → r if s1 = t1, . . . , sn = tn

where l, r, s1, t1, . . . , sn, tn are terms. l and r are called the left- and right-hand sides of the
rule, and the sequence s1 = t1, . . . , sn = tn (often denoted c) is the conditional part of the
rule. Rewrite rules l → r if c are classified according to the distribution of variables among l,
r , and c, as follows: type 1, if Var(r) ∪ Var(c) ⊆ Var(l); type 2, if Var(r) ⊆ Var(l); type 3,
if Var(r) ⊆ Var(l) ∪ Var(c); type 4, if no restriction is given. An n-CTRS contains rewrite
rules of type at most n.

It is well-known that the conditions si = ti for 1 ≤ i ≤ n can be interpreted in a number of
different ways. Join CTRSs (often called standard CTRSs) interpret the equality symbol =
as joinability (↓R). We are mainly concerned with oriented CTRSs [35], i.e., those whose
(conditional) rules are written as follows:

l → r if s1 → t1, . . . , sn → tn

indicating that the conditions si → ti for 1 ≤ i ≤ n are intended to express the reachability,
in arbitrary many steps, of (instances of) ti from (instances of) si . A normal CTRS R is
an oriented CTRS such that every ti is a ground normal form (w.r.t. the unconditional TRS
obtained by removing the conditional part from each conditional rule of R) for 1 ≤ i ≤ n. It
is well-known that a join CTRS can be easily simulated by a normal CTRS by introducing
new symbols equal and t t , adding the rule equal(x, x) → t t , and encoding a condition s = t

into equal(s, t) → t t [31]. An oriented 3-CTRS R is called deterministic if for each l → r

if s1 → t1, . . . , sn → tn in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(l) ∪ ⋃i−1
j=1 Var(tj ).

Let R be a CTRS. We inductively define unconditional TRSs Rn for n ∈ N by R0 = ∅
and

Rn+1 = {lσ → rσ | l → r if s1 → t1, . . . , sn → tn ∈ R ∧ ∀i, siσ →∗
Rn

tiσ }
The rewrite relation →R associated with a CTRS R is then →R = ⋃

n∈N
→Rn .

In what follows we will need two further generalizations of the CTRS notion. First,
we want to allow rewriting modulo a set Ax of equational axioms, so that matching of
rules is performed with an Ax-matching algorithm. We therefore view such a CTRS as a
triple R = (Σ,Ax,R) with Σ the signature of function symbols, Ax the equational ax-
ioms we rewrite modulo, and R the set of conditional rewrite rules. A second generalization
is making rewriting context-sensitive [23, 24] so that only certain function arguments are
rewritten, whereas other arguments remain “frozen”. For example, it is natural to restrict
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the evaluation of an if-then-else operator so that rewriting is only allowed on the first argu-
ment. In this way, we can express that the evaluation of the conditions only makes sense
after evaluating the guard of the conditional expression. The simplest way of specifying re-
quirements of this kind is to assume that there is a replacement map [23], i.e., a function
μ : Σ → P(N) associating to each operator f of n arguments a set of argument positions
μ(f ) = {i1, . . . , im}, with 1 ≤ ij ≤ n, which are those under which rewriting is allowed.
For example, μ(if-then-else) = {1}, and in Example 1 μ(cons) = {1}. We then arrive at our
most general CTRS notion, namely a context-sensitive CTRS (CS-CTRS) defined as a pair
(R,μ), with R a CTRS that may involve axioms Ax, and μ a replacement map.

An important advantage of context-sensitive rewriting is that rewrite systems that are
nonterminating if rewriting is allowed on all term positions can often become terminating,
and can also allow one to handle infinite data structures, such as in the example in Fig. 1.

2.2 Membership equational theories

The simplest typed equational logic is many-sorted equational logic [34], in which function
symbols are typed and each term has a sort. Order-sorted equational logic [18] generalizes
this by allowing a subsort inclusion relation s < s ′ between sorts, interpreted as subset inclu-
sion in the models. In this way, some partial functions, hard to handle in a many-sorted set-
ting, can become total. Membership equational logic [3, 33] further generalizes order-sorted
equational logic, by allowing sorts and subsorts that are not defined just syntactically, as in
the order-sorted setting, but whose domains of definition can be characterized by semantic
conditions (see for example the definition of the Pal sort in the PALINDROME example
in Sect. 1.1). This provides a general way of dealing with partial functions in equational
specifications (which become total on appropriate sorts) and yields a logical framework into
which many other equational formalisms, both partial and total, can be faithfully embedded
[33]. As we explain below, by introducing a distinction between kinds and sorts, partiality
can be achieved within a simple total setting.

We now explain in detail the syntax, models, and axioms of membership equational logic.
A membership signature is a triple, Ω = (K,Σ,S), where (K,Σ) is a K-sorted signature,
that is, K is a set, and Σ is an indexed family of sets Σ = {Σw,k}(w,k)∈K∗×K—that we call
“many-kinded” because the elements of K are called kinds so as to avoid confusion with
the sorts S that are instead treated as predicates—and S = {Sk}k∈K is a disjoint family of
unary predicates. Each s ∈ Sk is called a sort, and is understood as a unary predicate on k,
written _ : s, so that elements satisfying the predicate determine the extension of the sort s

in k. Intuitively, elements having some sort s are well-defined elements, whereas elements
having a kind k but no sort are understood as error elements. For example, the term f(a) in
the module INF2 in Sect. 1.1 has kind [S] but has no sort; it should therefore be understood
as an error or undefined element. Similarly, in a number hierarchy including sorts Nat, Int,
and Rat, if we denote by [Rat] the corresponding kind to which all the above sorts belong,
the term 7/0 has kind [Rat], but has no sort and should therefore be understood as an error
or undefined element.

Note that if in Ω = (K,Σ,S) the sets Sk are all empty for each kind k ∈ K , Ω becomes
a standard many-sorted signature, and we obtain many-sorted equational logic as a special,
degenerate case. However, since in this setting we wish to sharply distinguish between kinds
and sorts, instead of calling a (K,Σ)-algebra a “many-sorted” algebra, we will now call it
a many-kinded algebra. A model of Ω , called a membership algebra B is a (K,Σ)-algebra
B together with an interpretation of each unary predicate s ∈ Sk as a subset Bs ⊆ Bk . Ω-
sentences are then universally quantified Horn clauses whose atomic predicates are either
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equalities t = t ′ between two Σ -terms of the same kind, or unary membership predicates t :
s with t a Σ -term of kind k and s ∈ Sk . Therefore, such Horn clauses are either conditional
equations (1) or conditional memberships (2):

t = t ′ if A1, . . . ,An (1)

t : s if A1, . . . ,An (2)

where the Ai are atomic equalities or memberships. In other words, membership equa-
tional logic is just the sublogic of many-sorted (although we see it here as “many-kinded”)
Horn clause logic with equality in which all the predicates other than equality are unary.
A membership equational theory is just a pair T = (Ω,E) with E a set of Ω-sentences.
T -algebras are then Ω-algebras satisfying the clauses of T , according to the usual notion
of satisfaction in many-sorted (again, seen as “many-kinded”) first-order logic with equal-
ity. Given a membership equational theory T , there are free and initial T -algebras, and
sound and complete inference rules [33]. Order-sorted notation s1 < s2 for subsorts can be
used to abbreviate the conditional membership (∀x : k) x : s2 if x : s1. Similarly, an op-
erator declaration f : s1 × · · · × sn → s corresponds to declaring f at the kind level and
giving the membership axiom (∀x1 : k1, . . . , xn : kn) f (x1, . . . , xn) : s if

∧
1≤i≤n xi : si . We

write (∀x1 : s1, . . . , xn : sn) t = t ′ in place of (∀x1 : k1, . . . , xn : kn) t = t ′ if
∧

1≤i≤n xi : si .
The above abbreviations make it easy to embed order-sorted specifications as a special case
of the more general membership equational specifications [33]. Specifically, an order-sorted
specification is one in which: (1) the only memberships are subsort declarations s1 < s2 and
operator declarations f : s1 × · · · × sn → s; and (2) the only other clauses in E are condi-
tional equations of the form (∀x1 : s1, . . . , xn : sn) t = t ′ if

∧
1≤i≤n ui = vi . The Maude lan-

guage [5] supports all the order-sorted abbreviations just mentioned; furthermore, kinds do
not have to be declared explicitly by the user: they are inferred by the system, that associates
a kind to each connected component of sorts in the subsort ordering graph. For example, the
specification in Fig. 1 is order-sorted and has two kinds, corresponding to the connected
components {Nat} and {NatList,NatIList}. The first kind is denoted [Nat], and the
second kind can be equivalently denoted by either [NatList] or [NatILIst]; that is,
we represent kinds as equivalence classes of their corresponding sorts.

Admissible membership equational theories [5] provide a very general class of equational
theories that are executable by equational rewriting. Their sentences are a union E ∪ Ax,
where Ax is a collection of equational axioms such as, for example, associativity, commu-
tativity, and identity of some operators in Σ , for which a matching algorithm modulo Ax

exists; we furthermore assume that the axioms Ax are unconditional and are defined at the
kind level, that is, the variables in such axioms have kinds and do not involve any restrictions
to sorts. The set E consists of conditional equations (1) and conditional memberships (2),
where in (1) the variables in t ′ are among those in t or in some Ai , and where, in both (1)
and (2) each Ai is either a membership wi : si , or an equation ui = vi such that any new
variable not in t or in some Aj with j < i must occur only in ui or in some Aj with j > i;
furthermore, if ui introduces any new variables, then ui must be a nonvariable term; we then
call ui = vi a matching equation. In MAUDE such matching equations are distinguished
syntactically with the notation ui := vi .

2.3 Operational termination

We consider a logic L defined by inference rules, parameterized by a theory S . That is, we
focus on provability, and assume the axiomatic framework of general logics [32], in which
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what we call a logic becomes a particular style of presenting an entailment system. We refer
to [4] for a more detailed account of the axiomatic metalogical background that we assume
in what follows. The notion of operational termination [29] is parametric on the inference
system. We briefly recall the notions we need for our purpose.

Definition 1 The set of (finite) proof trees for a theory S in a logic L and the head of a
proof tree are defined inductively as follows. A proof tree is

– either an open goal, simply denoted as ϕ, where ϕ is a formula for S ; then, we define
head(ϕ) = ϕ.

– or a non-atomic tree with ϕ as its head, denoted as

T1 · · · Tn

ϕ
(Δ)

where ϕ is a formula for S , Δ is an inference rule in L , and T1, . . . , Tn are proof trees
such that

head(T1) · · · head(Tn)

ϕ

is an instance of Δ for the theory S .

We say that a proof tree is closed whenever it is finite and contains no open goals.1

Notice the difference between ϕ, an open goal, and ϕ, a goal closed by a rule without
premises.

Definition 2 A proof tree T is a proper prefix of a proof tree T ′ if there are one or more open
goals ϕ1, . . . , ϕn in T such that T ′ is obtained from T by replacing each ϕi by a non-atomic
proof tree Ti having ϕi as its head. We denote this as T ⊂ T ′.

An infinite proof tree is an infinite increasing chain of finite trees, that is, a sequence
{Ti}i∈N such that for all i, Ti ⊂ Ti+1.

We characterize the proof trees with computational meaning (those which are computed
by an interpreter [29]), by means of the notion of well-formed proof tree.

Definition 3 We say that a proof tree T is well-formed if it is either an open goal, or a closed
proof tree, or a proof tree of the form

T1 · · · Tn

ϕ
(Δ)

where for each j Tj is itself well-formed, and there is i ≤ n such that Ti is not closed,
for any j < i Tj is closed, and each of the Ti+1, . . . , Tn is an open goal. An infinite proof
tree is well-formed if it is an ascending chain of well-formed finite proof trees. S is called
operationally terminating if no infinite well-formed tree for S exists.

1Open goals appear at the leaves of a proof tree; but they can be closed by the application of inference rules
with no premises. For example, an open goal t → t can be closed by applying a Reflexivity inference rule.
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So operational termination intuitively means that, given an initial goal, an interpreter that
solves goals from left to right will either succeed in finite time in producing a closed proof
tree, or will fail in finite time, not being able to close or extend further any of the possible
proof trees, after exhaustively searching all such proof trees.

3 Rewriting with membership equational theories

In the spirit of [3], we can associate to an admissible membership equational theory2 T =
(Ω,E ∪Ax) a corresponding (conditional) membership rewrite theory RT = (Ω ′,Ax,RT )

defined as follows. The signature of Ω ′ adds a fresh new kind Truth with a constant t t

to Ω , and for each kind k in T an operator equal : kk → Truth. RT has the same equa-
tional axioms Ax as T , so that rewriting is performed modulo Ax, and contains rules of the
form equal(x, x) → t t for each kind k in T . Furthermore, for each admissible conditional
equation of the form (1) in E the set RT has a conditional rule of the form

t → t ′ if A•
1, . . . ,A

•
n (3)

where if Ai is a membership then A•
i = Ai , if Ai is a matching equation ui = vi , then A•

i

is the rewrite condition vi →∗ ui , and if Ai is an ordinary equation ui = vi , then A•
i is the

rewrite condition equal(ui, vi) →∗ t t . Similarly, for each conditional membership in T of
the form (2) we associate a conditional membership of the form,

t : s if A•
1, . . . ,A

•
n (4)

with the A•
i defined exactly as before.

The point of associating to an admissible membership equational theory T a correspond-
ing rewrite theory RT is that we can perform equational reasoning by rewriting. Of course,
unless RT satisfies additional properties such as confluence, sort-decreasingness [3], Ax-
coherence [40], and so on, equational reasoning by rewriting will only be sound but not
necessarily complete.

Equational reasoning in a membership equational theory T by rewriting with the rules in
RT modulo the axioms Ax can be made more expressive by making the rewriting context-
sensitive in the sense explained in Sect. 2.1. Therefore, we define a context-sensitive mem-
bership rewrite theory (CS-MRT) as a pair (RT ,μ), where RT is a membership rewrite
theory, say, RT = (Ω ′,Ax,RT ), and the context information is provided by a replacement
map μ. For instance, the CS-MRT specification (also given in MAUDE-like notation) which
corresponds to the MAUDE program in Fig. 1 is given in Fig. 3. Here, [Nat] denotes
the kind of sort Nat, and [NatIList] denotes the kind of both sorts NatList and
NatIList. The profile of the operators is given in terms of these kinds. We omit the op-
erator equal as no conditional rule includes equations in its conditional part. Note also
the first conditional membership (with keyword cmb) which expresses that NatList is
a subsort of NatIList. The sort profile for the arguments and result of each operator in
the MAUDE program LengthOfFiniteLists are desugared here as memberships in
the CS-MRT specification. In particular, viewing the sort profile of a function symbol as a
shorthand for a kind profile together with a membership, such as for cons above, allows us

2As in [3], admissible theories T = (Ω,E ∪ Ax) will always be assumed to have non-empty kinds, that is,
for each kind k in Ω there is always a ground term of kind k.
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fmod LengthOfFiniteListsMRT is
kind [Nat].
kind [NatIList] .
op 0 : -> [Nat] .
op s : [Nat] -> [Nat] .
op zeros : -> [NatIList] .
op nil : -> [NatList] .
op cons : [Nat] [NatIList] -> [NatIList] [strat (1)] .
op length : [NatIList] -> [Nat] .
cmb L : NatIList if L : NatList .
mb 0 : Nat .
cmb s(N) : Nat if N : Nat .
mb zeros : NatIList .
mb nil : NatList .
cmb cons(N,IL) : NatIList if N : Nat /\ IL : NatIList .
cmb cons(N,L) : NatList if N : Nat /\ L : NatList .
cmb length(L) : Nat if L : NatList .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))

if N : Nat /\ L : NatList .
endfm

Fig. 3 CS-MRT (in MAUDE syntax) for the program LengthOfFiniteLists

to cleanly handle operator overloading: to each different sort profile corresponds a different
membership. We also allow ad-hoc overloading, that is, operators with same name and dif-
ferent kind profile, although in that case we require that if f has kind profiles k1 · · ·kn → k

and k1 · · ·kn → k′, then k = k′.
We can define the rewriting relation associated to a CS-MRT by means of the inference

rules of Fig. 4, which3 generalize to rewriting modulo Ax and adapt to the context-sensitive
case those in Fig. 7 in [3]. Note that inferences can now happen modulo the equational ax-
ioms Ax in the theory: matching with a conditional equation in the Replacement inference
rule, and with a conditional membership in the Membership-1 rule, is performed modulo
Ax; and Reflexivity also includes equality modulo Ax. Note also that the relation t : s has
a subrelation t :: s, corresponding to the special case of a membership in which the term t

is not further rewritten before computing its sort. For each atom A appearing in a condition
of a conditional rule or a conditional membership in (RT ,μ) we extend our previous meta-
notation A• to memberships as follows: (1) if A is of the form x : s with x a variable, then
A• = x :: s; and if A is of the form w : s with w a nonvariable term, then A• = w : s . The
obtained inference system is context sensitive in a quite detailed way. The most obvious case
is the restriction on the Congruence rule, which blocks rewriting in frozen argument posi-
tions; further context sensitivity is achieved through the A• conjuncts in the conditions of

3Strictly speaking, the (Congruence) rule should be generalized, as done for (Replacement), to allow one-
step rewrites from any term u such that u =Ax f (u1, . . . , ui , . . . , un). However, this extra generality can
be avoided by assuming that either: (i) the implementation performs Ax-matching with extension (as done,
e.g., in Maude: see [6], Sect. 4.8); or (ii) the rules in our CS-MRT have been completed to be coherent with
the axioms Ax (see [40]). Under either of these two assumptions, the simpler inference rules in Fig. 4 are
complete.
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(Subject reduction)

t →1 t ′ t ′ : s
t : s

(Membership-1)

A•
1σ · · · A•

nσ

u :: s
where t : s if A1 · · ·An in RT and u =Ax tσ

(Membership-2)

t :: s
t : s

(Reflexivity) t →∗ t ′ if t =Ax t ′

(Transitivity)

t →1 t ′ t ′ →∗ t ′′

t →∗ t ′′

(Congruence)

ui →1 u′
i

f (u1, . . . , ui, . . . un) →1 f (u1, . . . , u
′
i , . . . , un)

where i ∈ μ(f )

(Replacement)

A•
1σ . . . A•

nσ

u →1 t ′σ
where t → t ′ if A1 · · ·An in RT and u =Ax tσ

Fig. 4 Inference rules for context-sensitive membership rewriting

the Membership-1 and Replacement rules. The point is that, if unrestricted, these inference
rules could easily undermine context-sensitivity by evaluating subterms that are supposed to
be frozen, thus easily leading to nontermination (see [9] for an example). This is prevented
by the case when A = x : s, since then A• = x :: s. This means that if x matches a subterm
of the term whose sort we are computing with the Membership-1 rule—or that we are trying
to rewrite with the Replacement rule—then that subterm will not be further rewritten in the
process of checking its sort.

We can use the notion of operational termination to explain the behavior of the non-
terminating examples in Sect. 1.1. Note that, because of the distinction between t : s and
t :: s, the infinite proof tree for the INF module has to be expanded, alternating applications
of (Membership-1) and (Membership-2) rules. In this way, we indeed obtain a well-formed
infinite proof tree. Note that this example does not involve any rewriting. The given infinite
proof tree for module INF2 does not require any modification and is indeed well-formed.

The notion of CS-MRT just defined and its associated inference rules capture in partic-
ular the case of MAUDE functional modules. Indeed, a MAUDE functional module, after
explicitly importing all its submodules and desugaring its subsort declarations and operator
declarations as explicit conditional memberships (see Sect. 2.2 and the example in Fig. 3),
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defines a membership equational theory T = (Σ,E ∪ Ax) which is required and checked
to be admissible. In MAUDE, the axioms Ax are not explicitly declared by equations; they
are instead declared as operator attributes of associativity, commutativity, and identity with
the assoc, comm, and id: keywords. Furthermore, a MAUDE functional module defines
a replacement map μ by means of the strat operator attribute, where if f has been de-
clared with the strategy (i1, . . . , ik) then μ(f ) = {(i1, . . . , ik)} − {0}, and if no such strategy
has been declared for an n-ary f , then μ(f ) = {1, . . . , n}. By the general transformation
defined in this section, the admissible MEL theory T and the replacement map μ defined
by the MAUDE functional module are then transformed into the CS-MRT (RT ,μ). The
MAUDE interpreter then provides a sequential strategy to apply the inference rules in Fig. 4
in a specific order. Therefore, MAUDE’s computations for a functional module of the form
(T ,μ) are a subset of those permitted by the inference system in Fig. 4 for the CS-MRT
(RT ,μ).

4 Operational termination of CS-MRT programs

To close the gap between MEL programs and current termination tools, we define and prove
correct two theory transformations, namely transformation A, mapping a CS-MRT to a cor-
responding CS-CTRS in such a way that operational termination of the CS-CTRS implies
that of the original CS-MRT, and transformation B, mapping CS-CTRSs to CS-TRSs such
that termination of the CS-TRS implies operational termination of the CS-CTRSs.

4.1 Transformation A: From CS-MRT modulo to CS-CTRS modulo

Given a CS-MRT (RT ,μ), say with RT = (K,Σ,S,Ax,RT ), we associate to it a CS-
CTRS (R̃T , μ̃) over a signature Σ̃ , modulo axioms Ãx as follows: Σ̃ contains, for each
operator f : w → k where w = k1 · · · kn in Σ , an operator f w of arity n. We furthermore
add a truth-value constant tt, plus unary operators isk ∈ Σ̃ for each k ∈ K , and iss, is

′
s ∈ Σ̃

for each s ∈ S, where iss(t) encodes t :: s and is ′
s(t) encodes t : s. The role of operators f w is

to disambiguate ad-hoc overloading: for each Σ -term t , the Σ̃-term t̃ is obtained by making
its variables unsorted, and by replacing each f : w → k by f w . We assume that there is only
one k for each w, so this operation is well-defined. The axioms Ãx are just the equations
t̃ = t̃ ′ for each t = t ′ in Ax. The set of rules R̃ is given by R̃ = RK ∪ RS ∪ RC ∪ RM , where
RK contains rules of the form

isk(f
w(x1, . . . , xn)) → t t if {iski

(xi) → t t}1≤i≤n (5)

for each f : w → k in Σ , with w = k1 · · ·kn. The set RS contains rewrite rules of the form
is ′

s(x) → iss(x) for each sort s ∈ S (to encode the (Membership-2) rule). The set RC con-
tains a conditional rule of the form,

t̃ → t̃ ′ if {iski
(xi) → t t}1≤i≤m, Ã1, . . . , Ãn (6)

for each conditional rule t → t ′ if A1, . . . ,An in RT involving variables x1 : k1, . . . , xm : km;
here if Ai is a membership ui : si , then: (i) if ui is a nonvariable term, then Ãi is the rewrite
condition is ′

si
(ũi ) → t t , and (ii) if ui ≡ x is a variable, then Ãi is the rewrite condition

issi (x) → t t ; otherwise, if Ai is a rewrite condition ui → vi , then Ãi is the rewrite condition
ũi → ṽi . Finally, RM contains a conditional rule of the form,

iss( t̃ ) → t t if {iski
(xi) → t t}1≤i≤m, Ã1, . . . , Ãn (7)
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for each conditional membership t : s if A1, . . . ,An in RT involving variables x1 :
k1, . . . , xm : km.

Regarding the replacement map μ̃, we define μ̃(f w) = μ(f ) for each f : w → k in Σ ,
and for each k ∈ K and each s ∈ S we define μ̃(isk) = ∅, μ̃(iss) = ∅, and μ̃(is ′

s) = {1}
(because one may reduce t in t : s but not in t :: s).

The following theorem connects operational termination in the CS-MRT logic, given
by the inference rules in Fig. 4, and operational termination in the CS-CTRS logic, whose
inference system consists of the inference rules of Reflexivity, Transitivity, Congruence and
Replacement in Fig. 4 above.

Theorem 1 If the CS-CTRS (R̃T , μ̃) is operationally terminating, then the CS-MRT
(RT ,μ) is operationally terminating.

The proof is as follows: we show that any well-formed infinite ground4 proof tree for
(RT ,μ) can be transformed into a well-formed infinite proof tree for (R̃T , μ̃), using the
following lemma.

Lemma 1 For any well-formed ground proof tree Q for (RT ,μ), there exists a well-formed
ground proof tree α(Q) for (R̃T , μ̃) whose head goal is

– is ′
s( t̃ ) →∗ t t if the head goal of Q was t : s

– iss( t̃ ) →1 t t if the head goal of Q was t :: s
– t̃ →∗ ũ if the head goal of Q was t →∗ u

– t̃ →1 ũ if the head goal of Q was t →1 u

Moreover, if Q ⊂ Q′ then α(Q) ⊂ α(Q′), so that for any infinite proof tree Q, α(Q) is
infinite.

So we are left to prove the lemma above. For this, we need an auxiliary lemma about
substitutions, well-kinded terms, and equality modulo axioms. The first two statements in
this lemma can be proved by straightforward structural induction, making use of rules of
type (5). The proof of the last statement follows easily by induction on the length of proofs
from the first statement, observing that, as pointed out in Sect. 2.2, the axioms Ax are given
at the kind level.

Lemma 2 For any term t , substitution σ , and condition c, we have t̃σ = t̃ σ̃ and (̃cσ ) = c̃ σ̃ .
Furthermore, if t is a well-kinded ground term of kind k w.r.t. (RT ,μ), then (R̃T , μ̃) �
isk( t̃ ) →1 t t . Finally, for t, t ′ terms t =Ax t ′ implies t̃ =Ãx t̃ ′.

Proof of Theorem 1 Obvious.
Transformation A is a map α defined by induction on the structure of well-formed ground

trees. The base case corresponds to ground proof trees consisting of a single atom, for which
α is defined according to the translation of head goals stated in Lemma 1. We now have to
consider each of the inference rules and define α by cases. Suppose a well-formed ground

4Since admissible membership equational theories have nonempty kinds, the operational termination of a
CS-MRT is equivalent to the operational termination of its ground proofs. This is because, given an infinite
proof tree T , we can always find a ground substituition σ yielding an infinite ground proof tree σ(T ) obtained
by applying σ to all terms in T . Therefore, in what follows we reason in terms of ground proof trees.
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proof tree Q where the fist inference step is an application of the Membership-1 inference
rule, then this tree looks as follows:

T1

A•
1σ

· · · Tn

A•
nσ

u :: s
where t : s if A1 · · ·An in RT and u =Ax tσ . Therefore, in (R̃T , μ̃) we have a conditional
rewrite rule iss( t̃ ) → t t if {iski

(xi) → t t}1≤i≤m, Ã1, . . . , Ãn. Then the ground proof tree
α(Q) has the following form:

Q1

isk1(x̃1σ) →1 t t
· · · Qm

iskm(x̃mσ ) →1 t t

α(T1)

α(A•
1σ)

· · · α(Tn)

α(A•
nσ )

iss (̃u) →1 t t

where the Replacement rule is correctly applied since iss (̃u) =Ãx iss (̃t σ̃ ) by Lemma 2, the
Q1, . . . ,Qm are closed proof trees that exist by Lemma 2, and it is easy to show that they
are unique, due to the assumptions making well-kinded terms unambiguous.

The case where the first inference step is the application of the Replacement inference
rule is entirely analogous to the above case, except that the root goal u →1 t ′σ is now
translated into the root goal ũ →1 t̃ ′σ̃ .

When the first inference step is the application of the Membership-2 inference rule, we
have a well-formed ground proof tree Q of the form

T ′

t :: s
t : s

and then α(Q) is of the form

is ′
s( t̃ ) →1 iss (̃t)

α(T ′)

iss( t̃ ) →1 t t t t →∗ t t

iss( t̃ ) →∗ t t

is ′
s( t̃ ) →∗ t t

where we have applied the Transitivity rule to the root goal iss( t̃ ) →∗ t t , and the Replace-
ment rule to close the goal is ′

s( t̃ ) →1 iss( t̃ ).
When the first inference step is the application of the Subject Reduction inference rule,

we have a well-formed ground proof tree Q of the form

T1

t →1 t ′
T2

t ′ : s
t : s

and then α(Q) is of the form

α(T1)

t̃ →1 t̃ ′
is ′

s( t̃ ) →1 is ′
s (̃t

′)
α(T2)

is ′
s (̃t

′) →∗ t t

is ′
s( t̃ ) →∗ t t
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where we have applied the Transitivity rule to the root goal is ′
s( t̃ ) →∗ t t , and the Congru-

ence rule to the goal is ′
s( t̃ ) →1 is ′

s (̃t
′).

The translations α(Q) of a well-formed ground proof tree Q where the first inference step
is the application of any of the remaining inference rules, namely, Reflexivity, Transitivity,
or Congruence, all follow a very simple pattern, namely, if the proof tree Q is of the form

T1 · · · Tn

G

then α(Q) is of the form

α(T1) · · · α(Tn)

α(G)

Note that in the case of Reflexivity, we use again Lemma 2 to replace equality modulo Ax

by equality modulo Ãx.
It is also easy to check that α maps well-formed ground proof trees to well-formed ones,

and that if T ⊂ T ′, then α(T ) ⊂ α(T ′). To check this last property, we may assume without
loss of generality, that T ⊆ T ′ is the extension of T associated to the application of an
inference rule. The result then follows easily by case analysis on the inference rule used
and the definition of the corresponding tree extensions given above for each of the inference
rules.

This ends the proof of Lemma 1 and therefore finishes the proof of Theorem 1. �

For purposes of proving termination, the implication in Theorem 1 is all we need. How-
ever, it is natural to ask whether Transformation A is complete, that is, is the implication in
Theorem 1 actually an equivalence? We conjecture that it is an equivalence, and therefore
that Transformation A is complete, but leave a detailed investigation of this problem for
future research.

Example 2 For our running example, we would get the transformed system in Fig. 5. We
have omitted the disambiguation of operators, since no ambiguity is involved in this exam-
ple; also, equal has been omitted.

4.2 Variants of transformation A

In order to provide the simplest input for the next transformation which removes conditions
from rules (see Sect. 4.3), we can apply some obvious optimizations on the previous trans-
formation which do not change the termination behavior of the program. The benefits of
using these optimizations can be experimentally justified from the benchmarks discussed in
Sect. 5.2 below.

4.2.1 Removal of kinds

In a first variant, the isk predicates for kinds are omitted. This simplifies the resulting the-
ory with minimal loss in its expressiveness, particularly for specifications in which, as it is
usually the case, all variables of a conditional equation or rule are required to have a sort in
the condition.

If all operator profiles involve only sorts, and all variables appearing in equations and
memberships have a declared sort, then if k is the kind of a sort s, then iss(x) → t t implies
isk(x) → t t . Therefore, we can safely use iss(x) → t t instead of isk(x) → t t ∧ iss(x) → t t

in the conditional part of the rules computed by the transformation.
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fmod LengthOfFiniteListsMRT_TA is
sort S .
op isKNat : S -> S [strat (0)] .
op isKNatIList : S -> S [strat (0)] .
op isNat : S -> S [strat (0)] .
op isNatIList : S -> S [strat (0)] .
op isNatList : S -> S [strat (0)] .
op tt : -> S .
op 0 : -> S .
op s : S -> S .
op zeros : -> S .
op nil : -> S .
op cons : S S -> S [strat (1 0)] .
op length : S -> S .
vars T M N IL L : S .
eq isKNat(0) = tt .
ceq isKNat(s(N)) = tt if isKNat(N) = tt .
ceq isKNat(length(L)) = tt if isKNatIList(L) = tt .
eq isKNatIList(nil) = tt .
eq isKNatIList(zeros) = tt .
ceq isKNatIList(cons(N,IL)) = tt

if isKNat(N) = tt /\ isKNatIList(IL) = tt .
ceq isNatIList(IL) = tt if isNatList(IL) = tt .
eq isNat(0) = tt .
ceq isNat(s(N)) = tt if isNat(N) = tt .
ceq isNat(length(L)) = tt if isNatList(L) = tt .
eq isNatIList(zeros) = tt .
ceq isNatIList(cons(N,IL)) = tt

if isNat(N) = tt /\ isNatIList(IL) = tt .
eq isNatList(nil) = tt .
ceq isNatList(cons(N,L)) = tt

if isNat(N) = tt /\ isNatList(L) = tt .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))

if isKNat(N) = tt /\ isKNatList(L) = tt /\
isNat(N) = tt /\ isNatList(L) = tt .

endfm

Fig. 5 Use of transformation A

4.2.2 Simplifying conditions

A conditional fragment without extra variables like

iss1(x1) → t t ∧ · · · ∧ issk (xk) → t t

in a conditional rule can be collapsed into a single expression

and(iss1(x1),and(. . . , issk (xk)), . . .) → t t

by introducing a binary ‘and’ operator defined by
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eq and(tt,T) = T .
eq isNatIList(IL) = isNatList(IL) .
eq isNat(0) = tt .
eq isNat(s(N)) = isNat(N) .
eq isNat(length(L)) = isNatList(L) .
eq isNatIList(zeros) = tt .
eq isNatIList(cons(N,IL)) = and(isNat(N),isNatIList(IL)) .
eq isNatList(nil) = tt .
eq isNatList(cons(N,L)) = and(isNat(N),isNatList(L)) .
eq zeros = cons(0,zeros) .
eq length(nil) = 0 .
ceq length(cons(N,L)) = s(length(L))

if and(isNat(N),isNatList(L)))) = tt .

Fig. 6 Optimized transformation A

op and : S S -> S .
eq and(tt,T) = T .

Moreover, if the right-hand side of the conditional rule is t t , we can use the previous expres-
sion with and as the new right hand-side of the rule: the conditional rule

l → t t if iss1(x1) → t t ∧ · · · ∧ issk (xk) → t t

eventually collapses into the unconditional one

l → and(iss1(x1),and(. . . , issk (xk)), . . .)

This ends up with less symbols to be processed, and only one added rule instead of
(potentially) several mutually recursive rules, thus easing the task of the termination tool.

For instance, with the two previous variants, the equations of the system in Fig. 3 become
the ones shown in Fig. 6.

4.2.3 A variant for order-sorted theories

In this section we consider a much simpler variant of the transformation (R,μ) �→ (R̃, μ̃)

just defined. For order-sorted rewrite theories, which are the special case where the only
memberships involved in conditions are variables, and the only membership axioms cor-
respond to subsort and operator declarations (see Sect. 2.2), this variant drops also the iss

predicates for sorts. This variant is correct only for order-sorted theories, for example it
would be invalid for the INF program of Sect. 1 which contains a membership but no rule,
since one would get an empty TRS.

4.2.4 Incompleteness

Obviously, since these simpler variants yield less restrictive conditions in the translated rules
in R̃, these variants allow more rewrites and therefore our results apply to these simpler
transformations, in the sense that a proof of operational termination for the transformed the-
ory ensures operational termination of the original theory. But of course, these variants are
incomplete. For instance, it is not possible to use variant 3 to prove termination of program
LengthOfFiniteLists in Fig. 1. In fact, the obtained CS-TRS:
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zeros → cons(0,zeros)
length(nil) → 0
length(cons(N,L)) → s(length(L))

with μ(cons) = {1} is not (operationally) terminating

length(zeros)→ length(cons(0,zeros))→ s(length(zeros))→ ·· ·

4.3 Transformation B: From CS-CTRS modulo to CS-TRS modulo

To check operational termination with respect to the CS-CTRS logic, we propose a transfor-
mation associating to a CS-CTRS (R,μ) an unconditional CS-TRS (U (R),U (μ)). We
generalize the classical transformation for proving operational termination of a 3-CTRS R
as termination of a TRS U (R) [35, Definition 7.2.48], so as to handle both rewriting mod-
ulo axioms Ax, and the context-sensitive restrictions imposed by the replacement map μ.
The classical transformation for proving termination of a deterministic 3-CTRS R yields a
TRS U (R) given as follows: each conditional rule

l → r if s1 → t1, . . . , sn → tn

is transformed into the n + 1 unconditional rules

l → U1(s1,x1) (8)

Ui−1(ti−1,xi−1) → Ui(si,xi ), 2 ≤ i ≤ n (9)

Un(tn,xn) → r (10)

where the Ui are fresh new symbols added to the signature. The xi are vectors of variables
defined as follows: assume a given ordering on the set of variables X . Then, xi contains the
ordered sequence of the variables in the set Var(l) ∪ Var(t1) ∪ · · · ∪ Var(ti−1) for 1 ≤ i ≤ n,
which, by determinism, ensures that in the above rules each right-hand side variable occurs
in the left-hand side; or, in a clever way so as to avoid keeping track of unused variables:

xi = (Var(l) ∪ Var(t1) ∪ · · · ∪ Var(ti−1))

∩ (Var(ti) ∪ Var(si+1) ∪ Var(ti+1) ∪ · · ·
∪ Var(sn) ∪ Var(tn) ∪ Var(r))

In our approach, we allow rewriting modulo Ax and also transform the replacement map
into a new replacement map U (μ) as follows: U (μ)(U) = {1} for all new symbols U that
are introduced to deal with the equations in the conditional part of each rule in R (that
is, only the first argument of U can be evaluated), and U (μ)(f ) = μ(f ) for all symbols
f ∈ F .

Example 3 For our running example (in the optimized version given in Fig. 6), the corre-
sponding unconditional translation of the only conditional rule consists of the rules:

length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)
uLength(tt,L) -> s(length(L))

where we also have U (μ)(uLength) = {1}.
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Theorem 2 If U (R) is U (μ)-terminating modulo Ax, then (R,μ) is operationally ter-
minating modulo Ax.

Note that in [29], we showed that for CTRSs, operational termination is equivalent to
the so-called quasi-decreasingness property; and it is already known that for a standard
CTRS R, termination of U (R) implies quasi-decreasingness of R [35, Proposition 7.2.50
and Lemma 7.2.40]. So our theorem above is a generalization of this result to the case of
context-sensitive rewriting modulo Ax. However, the proof we give below is completely dif-
ferent: the reason is that, although the proof of the result based on the quasi-decreasingness
property can be extended to the context-sensitive case, it is however not clear how to further
extend it to the modulo Ax case, because it would require the subterm modulo Ax relation
to be well-founded, which is not necessarily the case, for example modulo identity.

Since U (R) is unconditional, U (μ)-termination modulo Ax of U (R) is equivalent to
its operational termination. So, as for Theorem 1, our proof of Theorem 2 is done by proving
that any infinite well-formed proof tree for (R,μ) can be transformed into an infinite, well-
formed proof tree for (U (R),U (μ)). This is a consequence of the following lemma.

Lemma 3 For any well-formed proof tree T for (R,μ) whose head goal is either t →∗ u

or t →1 u, there exists a well-formed proof tree β(T ) for (U (R),U (μ)) whose head goal
is t →∗ u. Moreover, if T ⊂ T ′ then β(T ) ⊂ β(T ′).

Proof We start by two preliminary remarks. If a proof tree T for (R,μ) has a head goal of
the form t →1 u, then T has the shape

T1

v1 →∗ w1 · · ·
Tk

vk →∗ wk
(Repl)

tn →1 un
(Congr)

...
(Congr)

t1 →1 u1
(Congr)

t →1 u

(11)

If the head goal is t →∗ u, then T has the shape

T1

t0 →1 t1

T2

t1 →1 t2

Tn

tn−1 →1 tn
(Refl)

tn →∗ u
(Trans)

...
(Trans)

t1 →∗ u
(Trans)

t →∗ u

(12)

where t0 = t and tn =Ax u. So globally, a proof tree is made by alternation of the previous
two shapes.

Second remark: if we have a proof tree T whose head goal is t →∗ u, then for any context
C admissible for μ (that is the path to the hole follows only allowed positions) it is possible
to build a proof tree for goal C[t] →∗ C[u] by “pushing” the context into the transitivity and
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reflexivity steps:

T1

t0 →1 t1

.

.

. (Congr)

C[t0] →1 C[t1]

T2

t1 →1 t2

.

.

. (Congr)

C[t1] →1 C[t2]

Tn

tn−1 →1 tn

.

.

. (Congr)

C[tn−1] →1 C[tn] (Refl)
C[tn] →∗ C[u]

(Trans)
.
.
.

(Trans)
C[t1] →∗ C[u]

(Trans)
C[t] →∗ C[u]

To prove the lemma, for each proof tree T we construct a corresponding β(T ) by induc-
tion on tree structure. We have two cases, depending on whether the head goal of T has the
form t →∗ u or t →1 u.

Case 1: the head goal is t →∗ u

Then T has the shape (12). By structural induction on trees, we may assume that each subtree

Ui = Ti

ti−1 →1 ti

has a transformed tree β(Ui) of the form

T 1
i

ti−1 →1 t1
i

T 2
i

t1
i →1 t2

i

T
ki

i

t
ki−1
i →1 t

ki

i

(Refl)
t
ki

i →∗ ti
(Trans)

...
(Trans)

t1
i →∗ ti

(Trans)
ti−1 →∗ ti

then β(T ) is built as follows.

T 1
1

t0 →1 t1
1

T 2
1

t1
1 →1 t2

1

T
k1
1

t
k1−1
1 →1 t1

T 1
2

t1 →1 t1
2

T 1
n

tn−1 →1 t1
n

T 2
n

t1
n →1 t2

n

T
kn
n

t
kn−1
n →1 tn

(Refl)
tn →∗ u

(Trans)
t
kn−1
n →∗ u

.

.

.

.

.

.
(Trans)

t1
n →∗ u

(Trans)
tn−1 →∗ u

.

.

.

.

.

.
(Trans)

t1 →∗ u
(Trans)

t
k1−1
1 →∗ u

.

.

.
(Trans)

t1
1 →∗ u

(Trans)
t0 →∗ u



Higher-Order Symb Comput (2008) 21: 59–88 81

The transformed tree above assumes that T is closed. If T is not closed, because some
leftmost T

j

i is not closed, then β(T ) has to be “cut” at the level of T
j

i . In both cases, β(T )

is a well-formed tree if T is well-formed.

Case 2: the head goal is t →1 u

Then T has the shape (11).

Case 2.1: if there is at least one (Congruence) step

Then T has the shape

T ′
(Congr)

t →1 u

By induction on tree structure, we have a transformed tree β(T ′) for T ′, so we can build
β(T ) by “pushing” the congruence step into β(T ′), as described above.

Case 2.2: if there is no congruence step

Then T has the shape

T1

s1σ →∗ t1σ · · ·
Tn

snσ →∗ tnσ
(Repl)

u →1 rσ

for some conditional rule l → r if s1 → t1, . . . , sn → tn with u =Ax lσ . In the transformed
TRS, we have the rules (8), (9), (10), from which we are now going to build successively
trees for goals

Un(tn,xn)σ →∗ rσ (Gn)

Un(sn,xn)σ →∗ rσ (Hn)

Un−1(tn−1,xn−1)σ →∗ rσ (Gn−1)

Un−1(sn−1,xn−1)σ →∗ rσ (Hn−1)

...

U1(t1,x1)σ →∗ rσ (G1)

U1(s1,x1)σ →∗ rσ (H1)

u →∗ rσ (K)

Indeed, we need to be slightly more general, in order to take care of the axioms Ax: goals
(Gk) are v →∗ rσ for any v =Ax Uk(tk,xk)σ .

1. Tree for goal (Gn): in the transformed TRS, we have the proof tree

(Repl)
v →1 rσ

(Refl)
rσ →∗ rσ

(Trans)
v →∗ rσ
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for any term v such that v =Ax Un(tn,xn)σ , using rule (10).
2. Tree for goal (Hk) from tree for goal (Gk): if we assume that, for 1 ≤ k ≤ n we have

a proof tree Tk for any goal v →∗ rσ with v =Ax Uk(tk,xk)σ . By induction, we may
assume that the subtree

T ′

skσ →∗ tkσ

has a transformed tree, of the form

T ′
0

u0 →1 u1

T ′
1

u1 →1 u2

T ′
i−1

ui−1 →1 ui

(Refl)
ui →∗ tkσ

(Trans)
.
.
.

(Trans)
u1 →∗ tkσ

(Trans)
u0 →∗ tkσ

with u0 = skσ and ui =Ax tkσ . Then we build a proof tree for the goal Uk(skσ,xkσ ) →∗
rσ as:

T ′
1

u0 →1 u1 (Congr)

Uk(u0,xkσ ) →1 Uk(u1,xkσ )

T ′
2

u1 →1 u2 (Congr)

Uk(u1,xkσ ) →1 Uk(u2,xkσ )

Tk

U(ui ,xkσ ) → rσ

.

.

.

.

.

.
(Trans)

Uk(u1,xkσ ) →∗ rσ
(Trans)

Uk(u0,xkσ ) →∗ rσ

where the proof tree Tk exists since U(ui,xkσ ) =Ax Uk(tk,xk)σ . Note that the congru-
ence steps above are valid with respect to the replacement map μ(Uk) = {1}.

3. Tree for goal (Gk−1) from tree for goal (Hk): if we assume that, for 2 ≤ k ≤ n we have
a proof tree T ′

k for the goal Uk(sk,xk)σ →∗ rσ , then we build a proof tree for any goal
v →∗ rσ with v =Ax Uk−1(tk−1,xk−1)σ as:

(Repl)
v →1 Uk(skσ,xkσ ) T ′

k (Trans)
v →∗ rσ

using rule (9) in the application of (Replacement), and the fact that v =Ax Uk−1(tk−1,

xk−1)σ .
4. Tree for goal (K) from tree for goal (H1): we have a proof tree T ′

1 for the goal
U(s1σ,x1σ) →∗ rσ , and then we build the proof tree

(Repl)
u →1 U1(s1,x1)σ T ′

1 (Trans)
u →∗ rσ

using rule (8) in the application of (Replacement), and the fact that u =Ax lσ .

As for case 1, if the original proof tree is not closed, then some cut must be done in the
transformed tree. In either cases, β(T ) is well-formed if T is so. In all cases, β(T ) ⊂ β(T ′)
if T ⊂ T ′. �



Higher-Order Symb Comput (2008) 21: 59–88 83

Example 4 According to Theorems 2 and 1, termination of program
LengthOfFiniteLists in Example 1 can be guaranteed by proving the μ-termination
of the following TRS:

and(tt,T) -> T
isNatIList(IL) -> isNatList(IL)
isNat(0) -> tt
isNat(s(N)) -> isNat(N)
isNat(length(L)) -> isNatList(L)
isNatIList(zeros) -> tt
isNatIList(cons(N,IL)) -> and(isNat(N),isNatIList(IL))
isNatList(nil) -> tt
isNatList(cons(N,L)) -> and(isNat(N),isNatList(L))
zeros -> cons(0,zeros)
length(nil) -> 0
length(cons(N,L)) -> uLength(and(isNat(N),isNatList(L)),L)
uLength(tt,L) -> s(length(L))

where μ(isNat) = μ(isNatList) = μ(isNatIList) = ∅, μ(and) = μ(cons) =
μ(uLength) = {1} and μ(f ) = {1, . . . , ar(f )} for all other symbols f .

The μ-termination of this system can be automatically proved with APROVE, see
Sect. 5.2 below for further details about the proof.

4.4 Improvements on the classical transformation

The following example shows that the use of replacement restrictions makes our transfor-
mation simulate more faithfully the original CTRS than the classical transformation does.

Example 5 Consider the following CTRS R in [13, Sect. 3]:

a → b, f (a) → b, g(X) → g(a) if f (X) → X

As noticed by Giesl and Arts [13], this CTRS is quasi-decreasing, hence operationally ter-
minating [29, Theorem 2]. However, the classical transformation yields a TRS U (R):

a → b, f (a) → b, g(X) → U(f (X),X), U(X,X) → g(a)

which is not terminating:

g(a) → U(f (a), a) → U(b,a) → U(b,b) → g(a) → ·· ·

In our version of the transformation, we consider R given with the top replacement map
μ�(f ) = {1, . . . , k} for all k-ary symbols f ∈ F . In this case, CSR and ordinary rewriting
coincide. In our version of the classical transformation, U (μ�)(U) = {1}. It is not difficult
to see that U (R) is U (μ�)-terminating. By Theorem 2, (R,μ�) (equivalently the CTRS
R) is operationally terminating.

Unfortunately, the use of replacement maps for the auxiliary symbols U improves but
does not make the classical transformation complete for proving operational termination of
deterministic 3-CTRS. The following example illustrates this point:
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Example 6 Consider the following CTRS R [35, Example 7.2.51]:

h(d) → c(a)

h(d) → c(b)

f (k(a), k(b),X) → f (X,X,X)

g(X) → k(Y ) if h(X) → d,h(X) → c(Y )

As shown by Ohlebusch, this CTRS is quasi-decreasing hence operationally terminating.
However, the transformed TRS U (R):

g(X) → U1(h(X),X) f (k(a), k(b),X) → f (X,X,X)

U1(d,X) → U2(h(X),X) h(d) → c(a)

U2(c(Y ),X) → k(Y ) h(d) → c(b)

is not μ-terminating (where μ(U1) = μ(U2) = {1} and μ(f ) = {1, . . . , ar(f )} for any other
symbols f ):

f (k(a), k(b),U2(h(d), d)) → f (U2(h(d), d),U2(h(d), d),U2(h(d), d))

→+ f (U2(c(a), d),U2(c(b), d),U2(h(d), d))

→+ f (k(a), k(b),U2(h(d), d))

It is interesting to note that the counter-example given above is not Collapse-Extended-
terminating, that is, its termination is lost whenever one adds projection rules π(x, y) → x

and π(x, y) → y for some new symbol π . CE-termination is known to be a nice notion
of termination, because in practice terminating systems are indeed CE-terminating, and in
contrast to standard termination it enjoys better modularity properties [38]. So an interesting
open question is whether the U transformation is complete for CE-termination.

Further note that, regarding the classical transformation and innermost termination, Ohle-
busch proved that quasi-decreasingness of a 3-CTRS implied innermost termination of the
transformed unconditional TRS [35, Definition 7.2.52]. We conjecture that this holds for
innermost-CS-termination, where innermost-CS-rewriting is the relation allowing rewriting
steps only when the subterms at non-frozen positions are in μ-innermost normal form.

5 From theory to practice

As remarked in the introduction, once we have obtained a CS-TRS (i.e., a TRS R together
with a replacement map μ), we can just try a proof of μ-termination of R (i.e., termina-
tion of CSR for R and the replacement map μ). Fortunately, several methods have been
developed for this purpose. In the following section, we describe a tool which is able to deal
automatically with CS-MRT specifications given as MAUDE programs.

5.1 MTT: A Prototype implementation

Our current MAUDE Termination Tool (MTT) prototype is freely available for experimen-
tation at http://www.lcc.uma.es/~duran/MTT/. It has a graphical interface which allows the
user to input membership equational programs in the MAUDE syntax. The user may se-
lect different variants of transformations A and B, ask for the transformed program, and

http://www.lcc.uma.es/~duran/MTT/
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finally try to prove its termination by calling existing termination tools. Currently, it in-
teracts with CiME, MU-TERM and APROVE, but indeed it supports the TPDB syntax as
output (http://www.lri.fr/~marche/termination-competition) and therefore hence any other
tool supporting this syntax could be used as well. In the future, we plan to develop trans-
lations from other equational languages into MTT making these techniques available for
those languages as well.

The tool implementation clearly distinguishes two parts: (1) a reflective MAUDE spec-
ification implements the theory transformations A and B (including optimized variants)
described in Sect. 4, and (2) a Java application connects MAUDE, CiME, MU-TERM and
APROVE; and provides a graphical user interface. The Java application is in charge of
sending the MAUDE specification introduced by the user to MAUDE to perform transfor-
mations; depending on the selections made by the user, one transformation or another will
be accomplished. The resulting unsorted unconditional rewriting system may be proved ter-
minating by using either CiME, APROVE or MU-TERM. It is also possible to ask MU-TERM

to perform a transformation from a CS-TRS to a TRS, and ask for a termination proof of the
resulting TRS to the other back-end tools, as explained in Fig. 2.

5.2 Experiments

In order to validate our approach in practice, we have used our implementation to (try to)
prove termination of a number of (small) MAUDE programs. For these experiments we per-
formed a fully automated proof search, attempting all possible transformations on each ex-
ample, and all possible back-end tools. The results are presented on the web page:

http://www.lri.fr/~marche/MTT/

which is currently under continuous development as part of the development of the MTT
tool itself. We have observed that:

1. For a majority of the programs we have tried (around 80%), there is at least one back-end
tool that leads to a termination proof on the CS-TRS obtained by some combination of the
transformations described in Sects. 4.1 and 4.3 above (possibly involving the refinements
in Sect. 4.2).

2. The ‘and’ optimization of Sect. 4.2.2 is clearly helpful: the proof always takes less time
when the optimization is activated; furthermore, it often avoids timeouts (e.g., when deal-
ing with bags of natural numbers or booleans, in the setting of AC theories).

3. As expected, dealing with large programs is difficult. This clearly shows that there is a
scaling-up issue in proving termination of programs. This means that modular techniques
should be investigated further (see below).

6 Conclusions and further work

Proving termination of equational programs having expressive features such as conditions,
typing, memberships, and evaluation strategies is important but nontrivial, because some of
those features may not be supported by standard termination methods and tools. Yet, use of
such features may be essential to ensure termination.

Sometimes a crucial issue may even be how to define the reduction relation. For exam-
ple, with the two rules f (a) → f (b) and a → b if f (a) → f (b), do we have f (a) →∗ f (b)

with innermost strategy? In an interpreter like MAUDE, asking normalization of a loops for-
ever, because it tries to apply the second rule, hence tries to reduce f (a) with innermost

http://www.lri.fr/~marche/termination-competition
http://www.lri.fr/~marche/MTT/
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strategy, hence tries to normalize a again. Therefore, we have focused on the recently intro-
duced notion of operational termination [29] which closely corresponds to the termination of
an interpreter. In fact, in this paper we have shown that, as claimed in [29], such a notion is
flexible enough to provide a suitable notion of termination for languages and systems whose
operational semantics is described by means of inference systems involving a variety of re-
lations which are not necessarily rewrite relations (e.g., the memberships in the CS-MRT
logic). In this sense, this paper provides a more satisfactory termination framework than the
earlier version [9].

We have presented theory transformations that can be used to bridge the gap between
equational programs and termination tools, have proved their correctness, and have dis-
cussed a prototype implementation in a tool taking MAUDE functional modules as in-
puts, performing the transformations, and mapping the resulting transformed theories to
MU-TERM and from there to CiME, APROVE, and other termination tools. Moreover, we
have proposed variants and optimizations of our theory transformations that are also well
suited for proving operational termination of MAUDE programs. Much work remains ahead,
both in theoretical aspects and in experimentation. Theoretical issues that need to be further
investigated include the following.

Firstly, our methods could be extended to prove termination of equational programs with
innermost context-sensitive rewriting in the case of unconditional rules. For unconditional
specifications, methods for such termination already exist and have been shown useful for
proving termination of programs with elementary E-strategies in the OBJ sense [25]. There
are also tools like APROVE or TERMPTATION which permit proving termination of inner-
most rewriting; and there are also tools like CARIBOO [11] which are specialized to deal
with termination of rewriting under strategies (in particular, a class of innermost context-
sensitive strategies for unconditional systems).

Secondly, our methods should be extended to take advantage of existing modu-
lar/incremental termination proof techniques [14, 30, 35–38] in our setting. Since MAUDE

programs are built by composition of modules, termination should be proven incremen-
tally: each time a new module is added, a proof of termination should be obtained by using
the knowledge of termination of previous ones. However, further investigation is required,
since MAUDE module hierarchies do not necessarily respect the usual hierarchical property
required for hierarchical TRSs, namely that for each rule added, the left-hand side’s root
symbol is a new symbol. Furthermore, even if this were to hold for some MAUDE programs,
the transformations we have defined do not preserve that property, in particular because of
sort elimination: if a new symbol f declares an old sort S as its codomain, then a new rule
isS(f (. . .)) → ·· · has to be added, whereas isS is an old symbol. A closely related topic is
the development of techniques for proving termination of parameterized modules, as those
definable in Full MAUDE and in MAUDE 2.2. This is the first-order analogue of termination
techniques for polymorphic higher-order functions [16]. This problem is closely related to
modularity, because one wants to investigate conditions under which a terminating parame-
terized module, when instantiated by a view to a terminating target instance module, results
in an instantiation that can be guaranteed to be terminating.

Thirdly, completeness issues should be further investigated. We have shown in Sect. 4.4
that transformation B is not complete. We conjecture that transformation A is complete,
and that transformation B is also complete if the transformed theory is evaluated with an
innermost context-sensitive strategy. Completeness of transformation B when termination
of the transformed theory is replaced by CE-termination should also be investigated.

Fourthly, intrinsic proof methods directly based on operational termination, and not re-
quiring transformational approaches such as those presented in this work, should be inves-
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tigated. In this regard, a future investigation of how operational termination and ordering-
based termination approaches can be combined together, leading to intrinsic proof methods,
for example for CS-MRTs, seems very worthwhile. The relationship between operational
termination and quasi-decreasingness studied in detail in [29] can serve as a basis for a
more general investigation of this kind.

More experimentation is needed to further extend and refine our methods. The current
prototype provides a first basis for such experimentation; it should be extended and im-
proved in several directions, including adding interfaces to other equational languages and
termination tools, and adding support for the theoretical extensions mentioned above.
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