
Journal of Automated Reasoning 32: 315-355, 2004.
© 2004 Ktuwer Academic Publishers. Printed in the Netherlands.

315

Modular and Incremental Automated
Termination Proofs

XAVIER URBAIN
Laboratoire de Recherche en Informatique (LRI), CNRS UMR 8623, B~t. 490, Universit(Paris-Sud,
Centre d'Orsay, 91405 Orsay Cedex, France. e-mail: urbain@lri.fr

(Received: 16 January 2002; accepted: April 2004)

Abstract. We propose a modular approach of term rewriting systems, making the best of their
hierarchical structure. We define rewriting modules and then provide a new method to prove ter-
mination incrementally. We obtain new and powerful termination criteria for standard rewriting,
thanks to the combination of dependency pairs and C G-termination. Taking benefit of the generality
of the module approach while restraining the notion of termination itself (thus relaxing constraints
over hierarchies components), we can easily express previous results and methods the premises of
which either include restrictions over unions or make a particular reduction strategy compulsory. We
describe our implementation of the modular approach. Proofs are fully automated and performed
incrementally. Since convenient orderings are simpler, we observe a dramatic speedup in the finding
of the proof.

Key words: termination, term rewriting systems.

1. Introduction

Termination is the property of a program any execution of which terminates after
a finite amount of time. It deserves its status of fundamental property because it
is indissociable from the very existence of any calculus defined by a program.
Without termination there is no result, at least in finite time. The termination prop-
erty arises in various domains. It also acts as a preliminary for proofs of other
properties.

We focus in this paper on termination of term rewriting systems (TRSs).
Rewriting is used for specification, in automated proofs, and also for program-

ming. Yet, while programs are (should be) developed in an incremental way, a TRS
is still considered in practice as a single set of rules. Termination proofs are made
on the whole system without benefiting from its possible hierarchical structure.

Termination is undecidable. In particular, methods for proving termination are
incomplete. Thus, most efforts focus on defining techniques devoted to proving
termination of as many programs as possible. Lately, new methods have induced
breakthroughs in automated termination proof, namely, Borralleras, Ferreira, and
Rubio's M S P O [3] and Arts and Giesl's dependency pairs approach [2].

316 XAVIER URBA1N

Nevertheless, proving termination of a term rewriting system still remains hard,
especially when the system consists of many rules. The reason is that a divide-
and-conquer strategy cannot be applied directly, thus making automation of proofs
for systems with many rules a difficult task (see below). To provide a significant
improvement in proving termination automatically, we focus on two critical points:
automating termination proofs and computing them incrementally, so as to deal
with systems of hundreds of rules (common in practice) efficiently.

Even if it allows a splitting up of a termination proof in several easier-to-solve
subproblems, the incremental approach has not yet changed the way one deals with
term rewriting systems, nor (even if numerous works on that subject can be found)
the way one deals with the process itself of proving termination.

The great difficulty in guaranteeing termination of a union from termination of
its components has actually too often been avoided by putting hard restrictions on
relations between components (see, for instance, Krishna Rao's restricted proper
extensions [21, 22] or Dershowitz's constructor-based extensions [9]), that is, with-
out referencing to the problem within the notion of termination itself. Such strong
requirements exclude most of the unions naturally occurring in programming prac-
tice.

Indeed, as shown by Toyama [32], termination is not even modular for systems
with disjoint signatures.

EXAMPLE 1. Let us consider Toyama's example.

G(x, y) --+ x
R ' { f (O , l , x) --+ f (x , x , x) 7r" G(x ,y) --+ y

Both systems R and 7r terminate. But if we consider their union,

G(x, y) --+ x
G(x, y) ~ y
f(O, 1, x) --+ f (x , x, x),

we may find an infinite reduction sequence, for instance,

f (G(O, 1), G(0, 1), G(0, 1)) ~ f (0 , G(0, 1), G(0, 1))
--~ f(O, 1, G(O, 1))

f (G(O, 1), G(0, 1), G(0, 1)) --+ - . - .

Instead of restraining the scope of our study by putting strong constraints on
unions, we allow weakly constrained unions (so-called hierarchical) and consider
a (slightly) restricted notion of termination that is preserved under nondetermin-
istic collapse, ee-termination. From a historical point of view, Rusinowitch [30]
remarked that the infinite reduction of Example 1 was due to the projective be-
havior of system 7r. In fact, similar counterexamples may arise when one deals
with systems with a nondeterministic projective behavior, more precisely when a

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 317

term t may be reduced to two distinct variables. Gramlich [17] then defined the
notion of termination preserved under nondeterministic collapse, for which he had
results. This is the property of terminating TRSs that remain terminating when one
adds rules {C[x, y] --+ x; C[x, y] --+ y} for a context C (which express exactly
that some term t containing variables x and y can be reduced to one of those).
This is equivalent to adding system Jr where G is fresh. That property was later
renamed collapse extended termination (Ce-termination, for short) and studied by
Ohlebusch [27]: a system R is said to be Ce-terminating if R ~ 7r (where G is a
fresh symbol) is terminating.

We claim that focusing on Cs-termination is not too much of a restriction
in practice. Actually, virtually all automated techniques for proving termination
lead to Ce-termination, and among those, the powerful dependency pairs approach
in particular (when used in conjunction with simplification orderings). In other
words, ee-termination'provides means for controlling the zr-projection's possibly
unproper behavior - illustrated by Toyama's example - with reference to termina-
tion of most systems occurring in practice and for which we want an automated
proof.

System R of Example 1 is not Cs-terminating and so does not enter the scope
of our study anymore: we simply will not try to prove its termination automati-
cally. That system may be considered as "pathological," and such rules barely (if
not never) occur in practical applications. The motivation of our work is to prove
termination of systems with many rules that may be encountered in practice.

Hierarchical Structure

The common presentation of TRSs is based on the union of sets of rules (over
some signatures) that are TRSs by themselves. This is not well suited to the ex-
pression of their inner hierarchical structure for at least the following two reasons:
it brings redundancy at the common subsystem definition level when symbols or
rules are shared, and it does not keep track of the actual sequential construction
and thus does not enhance any incremental process (say, a termination proof). Both
contribute to separating rewriting from actual programming.

To give a general framework bringing the hierarchical structure of TRSs to the
fore, and thus provide automated methods to prove termination incrementally, we
first recall some generalities. Then, in Section 3 we introduce rewriting modules.
We show how the intrinsic hierarchical structure of TRSs naturally emerges from
their formalization in terms of modules.

In particular, this approach allows one to build TRSs the same way programs are
built: modules after modules. It is also possible to split a whole TRS into several
modules. Termination criteria based on these modules and leading to incremental
and modular termination proofs would constitute a major breakthrough with ref-
erence to the study of large TRSs, as well as in the (incremental) development of
specifications or applications.

318 XAVIER URBAIN

To that purpose, dependency pairs of modules as well as relative dependency
chains are defined in Section 4. These powerful tools lead us to new criteria for
incremental and modular termination (Theorem 1 and Theorem 2).

Indeed, these criteria enjoy the full benefit of a really modular and incremen-
tal approach together with the advantages of a dependency pairs approach: prov-
ing termination with modules amounts to solving fewer and simpler termination
constraints than in a global approach.

Section 5 provides a class of orderings with good properties with respect to
projection, hence to es-termination (the so-called :r-expandable orderings).

Those results provide an incremental proof method illustrated with the complete
example of Section 6.1 and a new notion of termination directly related to the
incremental process hierarchical simple termination (Section 7).

An Incremental and Modular Termination Tool

All those results were developed with a constant thought for automation. Thanks
to their generality as well as the purely syntactical tests provided, they are now
part of the C/ME 2 rewriting tool [5]. With our incremental and modular criteria,
C/ME 2 gives its user the possibility of searching termination proofs in a totally
automated fashion. Section 6.2 provides benchmarks showing how important the
obtained gain is (with our tool) compared to some other techniques. We also tested
C/ME 2 on TRSs of approximately 400 rules with success: a termination proof is
found in a few seconds. Examples came from a #-CRL specification of communi-
cating processes by Thomas Arts,* which means they occur in practice. Their huge
number of rules is not a problem for our termination tool because the incremental
approach reduces termination constraints dramatically.

We discuss in Section 8 how this work compares to that of others, especially to
results of Arts and Giesl [1] and Dershowitz [9].

2. Preliminaries

We recall usual notions about rewriting [10] and give our notation.
A signature ~ is a finite set of symbols with arities. Let X be a countable

set of variables; T (Y , X) denotes the set of finite terms on Y" and X. Terms
can be seen as trees: root position is then denoted by A, symbol at root position
in a term t by A(t), t[p denotes the subterm of t at position p. A substitution
is a mapping a from variables to terms. We use postfix notation for substitution
applications. A substitution can easily be extended to endomorphisms of T (a ~ , X):
f (fi tn)cr = f (tlCr thor). Then, t~r is called an instance of t.

A rewrite relation is a binary relation --+ on terms that is monotonic and closed
under substitution; -->* denotes its reflexive-transitive closure. A term rewriting
system (TRS for short) over a signature** U and a set of variables X is a (possibly

* Personal communication.
** We shall omit the signature if there is no ambiguity.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 319

infinite) set R(5 ~) of rewrite rules l --+ r. A TRS R defines a rewrite relation
--+R in the following way: s --+R t if there is a position p such that Sip = l~r
and t = s[rCr]p for a rule l --+ r 6 R and a substitution ~r. We say then that

Sip is a redex and that s reduces to t at position p with 1 --+ r denoted s P ~ t.
l--+ r

In cases where knowing the exact applied rule of R does not matter, or if there is
no ambiguity, we simply say that the reduction is performed with R and denote it

p
s --+ t. Symbols occurring at root position in the left-hand sides of rules in R are

R
said to be defined (in R); the others are said to be constructors (in R).

A term is R-strongly normalizable (SN) if it cannot reduce infinitely many times
for the relation defined by system R. If R is clear from the context, we omit it.
Similarly, a substitution ~r is said to be R-strongly normalizable if for any variable
x, xcr is SN.

A rewrite relation is terminating or terminates if any term is SN.
Termination is usually proven with the help of reduction orderings [8] or quasi-

orderings with dependency pairs. We briefly recall what we need. An ordering pair
is a pair (~_, >) of relations over T (~ , X) such that (1) ~ is a quasi-ordering (i.e.,
reflexive and transitive), (2) > is a strict ordering (i.e., irreflexive and transitive),
and (3) > • __ = > or _~ • > = >. We refer to these pairs as term orderings,
since it seems natural to keep the usual denomination w.r.t, the use we make of
them (especially for all comparisons on terms), even if the actual technical object
is different. A term ordering is said to be well-founded if there is no infinite strictly
decreasing sequence tl > t2 > " " "; stable if both > and _ are stable under
substitutions; and weakly (resp. strictly) monotonic if for all terms tl and t2, for
all f 6 U , if tl _~ (resp. >) t2, then f (. . . . tl) __ (resp. >) f (. . . . t2). A
term ordering (__, >) is called a weak (resp. strict) reduction ordering if it is well-
founded, stable, and weakly (resp. strictly) monotonic; a simplification ordering
if it is stable and monotonic and has the subterm property with reference to __:
C[t] ~- t for any context C and term t.

We point out that our notion of weak reduction ordering is a particular case
of the very general notion of weak reduction pair of Kusakari et al. [24], which
requires (1') ~_ to be any monotonic and stable relation (but not necessarily reflex-
ive nor transitive), (2') > to be well-founded and stable, and (3') > • ~- c > or
~ . > _ >. However, it is easy to see that if __ is reflexive, (3') implies (3); in other
words, any weak reduction pair made of orderings is a weak reduction ordering in
our setting.

We distinguish between modular and incremental proofs. A modular property
behaves as follows: if components C1 and C2 have property ~ , so does the

union CI U C2. Proving a property ~ ' in an incremental manner consists first of
proving ~ ' on a component Cl, then of showing if" on C1 tO C2, possibly using the
knowledge that Cl verifies ~ ' .

320 XAVIER URBAIN

C e- Termination

A TRS R(U) is said to be simply terminating if R U (U f ~ { f (x l xj
xn) --+ xj I 1 < j < n}) terminates.

A TRS R(U) is said to be Cs-terminating if R ~J Jr, where Jr = {G(x, y) --+
x, G(x, y) -+ y} (with G ¢ 5~) is terminating. Throughout this article, G always
is used for the special symbol of TRS Jr.

Unfortunately, Cs-termination is not modular for unions of nonfinitely branch-
ing TRSs sharing constructors, as shown by Ohlebusch [27]. Hence we restrict our
study to the finitely branching case, that is, the case of TRS R such that for any
l ~ r of its rules, there are finitely many different rules in R with 1 as the left-hand
side. This implies, in particular, that only finitely many rules may be applied to a
given term.

Cs-termination behaves nicely with reference to unions of TRSs. It is actually
a modular property for unions of

- disjoint TRSs (Gramlich, Ohlebusch) [16, 27],
- finitely branching and constructor sharing systems (Gramlich) [16],
- finitely branching and composable systems (Kurihara and Ohuchi) [23].

Ohlebusch showed that the finitely branching condition is compulsory [27].
es-termination is less restrictive than simple termination. For instance, a sys-

tem R is simply terminating if the union of R and all projections for all symbols
still terminates; this allows elimination of any constructors "hiding" a redex, while
such an elimination is impossible with rules of Jr only.

PROPOSITION 1 (Gramlich [16]). Any simply terminating TRS is eG-terminating.

The Dependency Pairs Approach

We briefly recall the dependency pairs approach by Arts and Giesl [2].
Termination proofs based on dependency pairs were recently introduced by Arts

and Giesl. This approach focuses on a deeper analysis of the structure of terms that
can be reduced.

DEFINITION 1 (Arts and Giesl [2]). Let R(.T) be a TRS, and let a ~ be split up
into two sets .To and Uc containing respectively the symbols defined in R and the
constructors. Let 5 ~ be the extension of signature Y" with fresh symbols f for all
f E D . If

f (s l Sn) ~ C[g(t l tm)]

is a rewrite rule of R, for C being a context and with g E D, then the pair
A

(f (sl s~), ~(tl tm)) is called a dependency pair of R.

The set of all dependency pairs of all rules in R is denoted DP(R).

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 32 1

Dependency pairs may be used for proving termination using the notion of
dependency chains: a sequence . . . (si, ti)(si+j, t i+l). . , of pairs in DP(R) is an
R-(dependency) chain if there exists a substitution cr such that

t jcr ---~" S j+ l l7
R

holds for every two consecutive pairs (si, ti) and (si+l, ti+l) in the sequence.
Arts and Giesl prove the following criterion.

THEOREM (Arts and Giesl [2]). A TRS R(37) is terminating if and only if no
infinite R-chain exists.

We note that proving automatically that no infinite R-chain exists is easier than
proving the strict decrease of each rule. In particular, the use of strictly monotonic
orderings is not mandatory.

The Running Example

We describe here the main example of the paper. Instead of choosing the usual
Peano's arithmetic example, we prefer an example occurring in real programming.
Binary arithmetic is really implemented, so that is what we are going to study.

EXAMPLE 2. The following system R describes addition and multiplication of
natural numbers in functional notation: # denotes ON, (x)0 denotes the value of x
multiplied by two, and (x)1 denotes the value of x multiplied by 2r~ plus 1 r~. In this
formalism, 6r~ is written #1 10, that is, the usual binary notation with a # in front.

R :

#0---~ #
+ x - - + x
xO + yO --+ (x + y)O
x 0 + y l - - + (x + y) l
x x - - + #
x 0 x y - - ~ (x x y) 0

x + # - + x
x l ÷ yO ~ (x + y) l
x l + y l ~ ((x + y) + # 1) 0
x x# - -+ #
x l x y --+ (x × y)O + y

The first (simplification) rule ensures that 2r~ × ON is ON, that is, that zeros in front
of numbers in binary notation can be erased.

3. Rewriting Modules

In this section, we define rewriting modules and show how they bring to the fore
the hierarchical structure of term rewriting systems.

From an operational point of view, a module consists of a set of "new" symbols
together with the rules that define them.

DEFINITION 2. Let R1 be a term rewriting system over a signature 371. A module
extending R1(371) is a pair [372 I R2] such that

322 XAVIER URBAIN

(1) .T] A .g2 = 0 (signatures are disjoint);
(2) R 2 is a term rewriting system over -,¢'1 U 3z'2;
(3) for all 1 --+ r 6 R2, A(I) 6 Y'2.

One can easily see that R1 U R 2 is a TRS over Y'l U U2. We say then that system
RI to R2 over Y'l tO Y'2 is a hierarchical extension ofRl (a~l) with module [-,~2 I R2].
We write such an extension as

Rl (5~1) < [~2 I R2].

A module can extend more than one system, and the extension by a module
naturally associates "arrowwise." Hence we write

Rl(5~l) < [5~2 I R2] < [.1~3 [e3]

the extension

(Rl (Ul) < [~2 I R2]) < [~ I R3].

The extension of several distinct systems by a single module is an alternative
notation for the (simple) extension of the union of the relevant systems by the
module.

Remark 1. For the sake of readability, we may denote

[2W'2 I Re] < [~3 I g3]

the hierarchical extension (with [U3 I R3]) of the whole hierarchy extended with
(that is, headed by) [U2] R2].

For instance, we may abbreviate "the hierarchy headed by [U2 I R2] is extended
with [~ I R3]," denoted

RI (~ I) < [3~2 I R2] < [.,~3 I R3],

in "[a~3 [R3] extends [5~'2 I R2], '' denoted

[5~2 I R2] < [;K3] R3].

Two disjoint modules may extend the same base hierarchy.

DEFINITION 3. We say that a module [5v2 [R2] extends a hierarchy headed by
[5% [R0] independently of a module [5~ I [R1] if

- .T, A .g2 = 0,
- [.To I Ro] < [oqL"l [Rl] and
- [- T ' 0 [R o] < [,T'2[R2].

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 323

T / \

(a) [~2 JR2] extends [f l I R 1] • (b) [.~'2] R2] extends [fo IRo]
independently of If1 I R1].

Figure 1. Graphical notations of hierarchical extensions.

Such an extension may be seen as a union ofcomposable systems [23, 26, 28].
Figure 1 illustrates the two different kinds of extensions.
One can express different kinds of classical extensions by means of extensions

of modules. For instance, we obtain a disjoint union R1 (Ul) ~ R2(5~2) whenever
[Srl [Rl] and [a~'2 [R2] extend [010] independently of each other.

We may also describe a constructor shared union with modules. A union of two
TRSs R1 (Uj) and R2 (~2) is said to be a constructor shared union if all symbols in
Y'l (q .,~2 are constructors for both R1 and R2. Let us consider two systems Rl (.,~f)
and R2(Y'2) that share only a set of common constructors Co = a~l N .,~2. Then the
constructor-shared union R1 U R2 is easily denoted with two modules [5~ l [RI] and
[~2] R2] independently extending the module of "constructors" [Co I 0].

The notion of hierarchical extensions with common subsystem [27] is captured
because extension with modules associates arrowwise.

We further note that the only condition we put on extensions is that new rules
must have a new symbol at the root position of their left-hand side (see Defin-
ition 2). Thus, module extensions subsume notions of heavily constrained hier-
archical extensions such as constructor-based extensions [9] (systems in which
no left-hand side has a symbol below the top that appears at the top of any left-
hand side) andproper extensions [21, 22] (involving constraints on right-hand sides
subterms with reference to a dependency relation on symbols).

EXAMPLE 3. Let us consider the binary arithmetic example (Example 2). Sys-
tem R may be seen as an extension involving three modules:

- module R# actually defining integers in binary notation;
- module R+ consisting of rules for addition over integers;
- module R× describing multiplication.

324 XAVIER URBAIN

o, I #l
R#{#0 ---> #} l

/
{ # + x ~ x x + # - + x

R+ xO+yO--+ (x+y)O xl + y 0 ---> (x + y) l
xO+ yl---> (x + y)l xl + yl--> ((x + y)+#1)O l

.,%{x}
Rx{ # x x --> # x x #--> #

{x}x0xy--> (x xy)0 xl x y - + (x x y) 0 + y

Now adding rules for subtraction consists only in extending R# by the relevant
module [Y'_ I R_] independently of each other module.

x - # ---~ x
R_ (x)0 - (y)0 ~ (x - y)0

(x) l - (y)0 ~ (x - y) l

And the hierarchy becomes

/ \

1

- x ---> #
(x)0 - (y)l --+ ((x - y) - (#)1)1
(x) l - (y) l ~ (x - y) 0

Now we would like to prove termination of the obtained hierarchy in an incremen-
tal way, that is, using the knowledge that a subhierarchy terminates while proving
termination of its extension by a module.

M O D U L A R D E C O M P O S I T I O N

Any TRS can be studied as a certain modules hierarchy exploited in its present
state (i.e., as it is provided). However, one can consider a unique canonical decom-
position. A TRS can actually be seen as a hierarchy of minimal modules, modules
that cannot be split up themselves in a hierarchy of nonempty modules.

For that purpose, we use the graph of a purely syntactical dependency relation
between symbols.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 325

DEFINITION 4. For a TRS R(U) , we say that a symbol f ~ ~ directly depends
on a g 6 3 ~ if and only if there is a rule l ~ r 6 R with

- f = A (l) and
- g either occurs in l or in r.

We note ~d that relation.

The decomposition is done in two steps. For a TRS R(5~),

1. we build a graph ~ the vertices of which are symbols of 5 ~ and such that there
is an arc from a vertex x to a vertex y if and only if x ~'d Y,

2. we pack together symbols of strongly connected components of ~, that is,
symbols f and g such that

f~*dg and g~*df.
In other words, signatures of modules are classes for the equivalence relation gen-
erated by ~d-

Building modules from these packs is easily done by joining for each of their
symbols the rules for which they occur at A. The module hierarchy may then be
read on graph ~.

Note that there is no cycle in the obtained hierarchy because symbols of mutu-
ally recursive functions appear in same packs. Thus, they belong to same modules.
Such a decomposition is clearly unique.

Remark 2. For the sake of readability, that is, in order to avoid many mod-
ules with no rule and only one constructor, one can gather constructor symbols
reachable from the same packs.

In particular, the hierarchy shown in Example 3 is a canonical one with refer-
ence to Remark 2.

4. Incremental and Modular Termination

The module framework provides a dependency pairs approach applicable to an
incremental treatment of the termination proof.

4.1. DEPENDENCY PAIRS OF MODULES

DEFINITION 5. Let 5 ~ be signature :g extended with "marked copies" f ' f o r all
symbols f . Marking of a term is as follows: for a nonvariable term t 6 T(Z', X),
we denote 7"the term t in which the symbol at a has been replaced by its marked
copy.

Let M = [U I R] be a module. A dependency pair of module M is a pair of
terms (~, r') such that there is a rule I --+ r ~ R for which term r' is a subterm of r
with A(r ') ~ 5 ~ defined in R.

We denote MDP(M) the set of all dependency pairs of a module M.

326 XAVIER URBAIN

Since we consider now only subterms whose rhs root symbols are defined lo-
cally, all dependency pairs of a module [Y f R] extending a system R0(~)) belong
to the set of "classical" dependency pairs of R considered in R tO R0. In other words,
MDP([Y] R]) _c DP(R U R0).

EXAMPLE 4. In the binary arithmetic example, the classical approach amounts
to considering five dependency pairs for rules defining multiplication (that is, with
symbol × at A).

(x0 ~ y, X ~ y) (X0 ~ y, (X × y)O)
(xl ~ y , x ~ y) (xl ~ y, (x × y)O) (xl ~ y, (x x y)O~- y).

But there are only two dependency pairs of module R×, namely, (x0 ~ y, x ~ y)
and (x 1 ~ y, x ~ y), since × is the only symbol of signature Y×.

Remark 3. Let us consider a system R(Y) over constructors Yc and defined
symbols YD. When such a system is seen as the extension [Yc [0] < [Yo I R],
the dependency pairs of module [YD I R] are exactly the "classical" dependency
pairs of R(Y) in Arts and Giesl's approach. That is, MDP([YD I R]) and DP(R(Y))
coincide.

4.2. RELATIVE DEPENDENCY CHAINS

We saw that, considered in a hierarchy, the notion of "defined symbol" loses its
absolute meaning to become local to a module of that hierarchy.

The same phenomenon arises with chains of dependency pairs of modules: they
indeed rely on what rules occurring in the hierarchy may be applied between MDP-
steps, and not only on what is provided by the considered module. In other words,
dependency chains become relative to some relevant set of rules.

DEFINITION 6. Let M = [Y I R] be a module, and let S be an arbitrary term
rewriting system. A dependency chain of M over S is a sequence of pairs of
MDP(M) together with a substitution tr such that for any two successive pairs
ISi, ti) and (si+[, t i+l),

tiff > Si+lff .
s

A dependency chain of a module M over a system S with a substitution a is
said to be minimal if tr is S-strongly normalizable.

Note that since S is an arbitrary TRS, it may be completely different from R. In
particular, we may have S D R.

Further note that requiring nonroot reductions between pairs avoid assumptions
on those: marked or unmarked pairs may be used.

The following proposition gives a (new) characterization of Ce-termination in
terms of relative dependency chains.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 327

PROPOSITION 2. A term rewriting system R(U) is Cs-terminating if and only if
there is no infinite chain of [U I R] over R U Jr.

Proof Since G does not belong to Y" and since right-hand sides of re are vari-
ables, DP(R U 70 = DP(R) and e~-termination of R is shown with the help of
Remark 3. []

This characterization is entirely expressed within the module framework and,
thus, is quite convenient in proofs, as a built-in property.

4.3. TERMINATION WITH MODULES

Dependency pairs of modules and relative dependency chains allow us to define
some purely syntactical tests so as to prove termination in an incremental fash-
ion. This section is organized as follows: first we make a remark about chains
(Lemma 1); then we state our main result, Theorem 1. Its proof is rather tech-
nical and involves a key lemma, Lemma 2. To prove this lemma, we define an
interpretation of terms and state several lemmas about it. Eventually we prove
Lemma 2.

From Theorem 1 we obtain as a corollary sufficient conditions to ensure com-
posability of O~-termination (Corollary 1), that is, that it can be proven incremen-
tally from es-terminating hierarchies. We then focus on extensions of a system
with two independent modules and state Theorem 2, a corollary of which is a
previous result by Kurihara and Ohuchi [23]. The hierarchy graph of theorems
and lemmas may be found Figure 2.

[Lea, real I ILemma3] [Lemma4] [Lemma5 I

/ ~ L e m m a ~ ~

[Theorem 11 [Theorem 2 l
T

[Corollary 11
Figure 2. Hierarchy graph of theorems and lemmas.

328 XAVIER URBAIN

Termination with Modules

We point out here an interesting property of chains of modules.

LEMMA 1. Let R~(UI) be a TRS and [a~2] R2] be a module such that [5~j [R1]
< [a~2 [R2].

Then for any two pairs {ul, vl}, (u2, v2) s.t. (u~, vl) 6 MDP([~I I RI]) and
(U2, I)2} E MDP([U2 I R2]), there is no substitution ~r such that

CA *
1)10" > U20".

A

Proof Since A(uzo) = A(u2) E a~2 and A(vlo) = A(vl) E ,Tj, we obtain
A(u2) 5 k A(Vl) . []

This property will be useful in the proof of the two main results, Theorems 1
and 2.

We now state Theorem 1.

THEOREM 1. Let[Ul I Rj] < [5~2]R2]beahierarchicalextensionofRl(5~l);
/f
(1) R1 is Ce-terminating, and
(2) there is no infinite dependency chain of[5~2] R2] over Ri U R2,

then R I U R2 is terminating.

In the proof of this theorem, as well as in the proof of Theorem 2, we use a more
general result given here as a technical key lemma: Lemma 2.

LEMMA 2. Let Si and $2 be two TRSs over signature 5~1. Let $3(UI U U2) be such
that

-- ~ 1 N ff2"2 = ~ ,

- for each l --+ r E Ss, A(1) E a~2.

Then, from an infinite minimal dependency chain of [Ul I $2] over Sl U $2 U $3,
one can build an infinite dependency chain of [a~l [$2] over Sl U $2 U Jr consisting
of
- the same sequence of pairs,
- a new substitution as well as new rewriting steps.

Proof of Theorem 1. By contradiction. The proof scheme is as follows. Let us
suppose that there is an infinite dependency chain of Rl U R> We are going to show
that

- either there is an infinite dependency chain of [U2] R2] over Rj U R2, thus
contradicting the second premise,

- or RI is not C6-terminating, now contradicting the first premise of Theorem I.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 329

We suppose that R1 UR2 does not terminate. Thus there is an infinite dependency
chain of module [Y'I U .T2 I Rl U R2] over Rt U R2. Recall that marked symbols
occur at root position only.

Pairs of MDP([U1 U 5~2 [Rj U R2]) consist of

@pairs of [Svj [R1];
@pairs ~ [f2 I R2];
@pairs (l, r ') such that l --+ r 6 R2 and r' is a subterm o f r the root symbol A(r')

of which belongs to a~l.

Premises give us information with reference to the first two cases. To avoid the
third one, we use Lemma 1.

From that lemma we know that pairs (~) and @ may follow pairs @ only in a
dependency chain. Similarly, pairs @ may follow pairs @ or @ only.

Hence we may encounter three cases: the dependency chain we consider con-
sists of

1. pairs @ only, that is, pairs of module [a~2 I R2] or
2. pairs @ only, that is, pairs of module [3vl [Rj] or
3. pairs @ in finite number (possibly zero) followed by only one pair @, then by

an infinite number of pairs @.

• First case: An infinite dependency chain of pairs of [:V2 [R2] over RI U R2
contradicts the second premise of Theorem 1.

• Cases 2 and 3: In both cases an infinite chain of [.,~l [Ri] over Rl U R2 occurs.
We will show that such a chain can be translated in an chain of [Y'I I R1] over
R1 U Jr. Thus, we can obtain an infinite chain of [Wl] RI] over Rl U 7r, that
is, a infinite chain of [5vl tA {G} [R~ tA zr] over RI UTr, the existence of which
contradicts first premise of Theorem 1: es-termination of R ~.
That proof mainly consists of an application of Lemma 2 with R~ = $1 = $2
and R2 = $3.
Thus, for any infinite dependency chain of [Ul I Rl] over Rl U R2, we can
build a corresponding (infinite) chain of [Ul [R1] over R1 U re, that is, an
infinite dependency chain of Rt U Jr. Since we supposed R~ Cs-terminating,
such a chain raises a contradiction.

This ends the proof of Theorem 1. []

Prerequisites of proof of Lemma 2. The proof sketch is as follows. To get rid
of symbols of Y'2, we provide an interpretation I of terms (see Definition 7). Then
we prove that this interpretation is sufficient for our purpose: first it is well defined
(Lemmas 3, 4, and 5), and second we may "simulate" any S1 U $2 U $3 step with (a
finite number of) $1 U $2 U Jr steps (Lemmas 6 and 7).

3 3 0 XAVIER URBAIN

Eventually, we may build a suitable infinite dependency chain of [.gl I $2] over
$1 t0S2Uzr from any infinite minimal dependency chain of [Y'I I $2] over Sl US2US3
with substitution cr by keeping the same pairs, and using substitution or' such that
for all x, xer' = I(x~). []

We use an interpretation of terms akin to Gramlich's [16]. The main difference
between our interpretation and Gramlich's q~ is related to the definition of Red(t).
We actually take all one-step reductions into account while function SUCC & (t)
occurring in • selects from terms obtained in reductions by --**s the ones whose
root symbol belongs to Uj.

This interacts with the sizes of terms, bigger in our case, and would result in
other proofs, since interpretations of two terms s and t might be identical if more
than one-step reductions are considered. Thus, using Gramlich's ~ , we would end
with

q~(s) >* ~(t)
Si US2UTr

instead of

• (s) >+ ~ (t)
S I US2 UTg

as conclusions of main lemmas. Further note that even with these changes, The-
orems 1 and 2 would be proven in a similar manner. This ends the sketch of the
proof.

We expose now the prerequisite of the proof of Lemma 2: we define the inter-
pretation and state some useful lemmas.

We denote T ~ (~ , X) the set of infinite terms over signature ~ and variables
set X.

DEFINITION 7. Let us denote S = Sj U $2 U $3, and let > be an arbitrary total
ordering over T~(Y] U {G • 2~}U {_L • 0}, X).

Interpretation I(x) • T(5~j U U2, X) ~ T~(Y'I U {G • 2} U {_L • 0}, X) is
defined as follows:

l (x) = x i f x 6 X ,
f (l (t l) I(tn))

I (f (t l . . . tn)) = Comb(Red(f(t l tn)))

where

A
i f f e ~j ,
i f f E ~2,

Red(t) = {I(t')lt , t'},
SIUS2US3

Comb(0) = _L,
Comb({a} tO E) = G(a, Comb(E)), where for all e 6 E, a < e.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 3 31

G

U2

Uk
Figure 3. Structure of interpreted terms.

Red(t) denotes the set E of interpreted one-step-reducts of t. To avoid any
ambiguity on the actual construction of tree Comb(E) from E (nonordered set),
we need a total ordering > providing a building strategy.

Remark 4. The interpretation of a term t = f (t l t,) where f e Y'2 is, as
Figure 3 illustrates, a sequence of its one-step-reducts interpretations, each ui being
an element of Red(t). Since those are interpretations themselves, it is possible to
reach any of them by using a suitable ---+* --+ reduction.

Jz 2 7g I

Given a substitution tr, by I(cr), we denote the substitution or' such that xo-' =
I (xcr) for any variable x.

A

LEMMA 3. For each t ~ T(Sri, X) and each substitution or,

I(tcr) = t l (a) .

Proof Structural induction on t. []

LEMMA 4. For all ti t~ o f T (U l UU2, X) and for any context C over 5rl with
n holes,

I (C[ti t,]) = C[I (tl) I(t,)].

Proof. Structural induction on C. []

LEMMA 5. For each term t strongly normalizable fo r Si U 82 U $3, l (t) is finite.
Proof. Immediate, since we are interested in finitely branching systems only. []

We state now the two fundamental lemmas for the proof of Lemma 2.
A

LEMMA 6. For all s and t in T(:VI UU2, X) and each rule l ~ r ~ S1 U 82,

i f s P> t, then I(s) >+l(t).
l-->r SI US2UYt

Moreover, i f p ¢ A and A(s) E ~l, then l (s) #A + > I (t) .
St US2 Urr

Proof. Two cases depending on symbols occurring on path from A to p.

332 XAVIER URBAIN

1. If there are only symbols of Y], then s = C[sl l a s,,], Sip = l a and
C is a context with n holes over Y'I. We have

I (s) = l (C [s l l a s,,])

= C[I(s l) l (l a) I (sn)] (Lemma 4)

= C [l (s l) 1 1 (a) I(sn)] (Lemma3)
P > C [l (S l) r I (a) I(s,,)] (Premises)

St US2

= C [I (s l) I (r a) l(sn)] (Lemma 3)

= / (C[sI r a sn]) (Lemma 4)

= I (t) .

2. If symbols of U2 occur, then there is a smallest p' < p (with reference to
the prefix ordering) such that A(slp,) ~ Y'2. We may again assume (without
any loss of generality) that s = C[sl s' sn], where C is a context
with n holes (possibly empty) over 3:'1, p = P 'q and sit,, = s' with s' =
C ' [l a] > C ' [r a] = t'. Hence,

Si US2

l (s) = I (C [s l s ' , . . . , s , ,])

= C [I (s l) l (s ') I(s~)] (Lemma4).

From Definition 7, I (s') = Comb(Red(s')). But

S'lq = l a > ra .
Si US2

We can then deduce from definition of Red: 1 (ra) 6 Red(la) . Thus, I (t') is a
subterm of I (s I) and

I (s ') --++ l (t ') .
yr

Eventually,

C [I (s l) I (s ') I(s,,)] -++ C [l (s l) I (t ') I(s,,)]
7T

= I (C [s l t ' , s,,]) (Lemma4)

= I (t) .
[]

LEMMA 7. For all s a n d t in T ('~ I ©$-2, X) , i f s P--* t, then l (s) --++ I (t) .
$3 Jr

Moreover , / fA(s) 6 ~l, then I (s) #A> + l (t) .
7(

P r o o f Similar to case 2 in proof of Lemma 6. []

We may now tackle the actual proof of Lemma 2.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 333

Proof of Lemma 2. Let (u t, 1)1), (U2, V2) be an infinite minimal dependency
chain of [,,<'l I $2] over $1 U $2 U $3 with a substitution 0.. Let 0.' be the substitution
such that for all x, xo.' = I(xo.).

Substitution o. is strongly normalizable since the considered chain is minimal.
Then from Lemma 5 we know that 0.' substitutes finite terms only.

We are going to show that (Ul, Vl), (u2, v2) together with 0.' is actually a
dependency chain of [,TI I $2] over $1 U $2 U Jr.

To do that, we have to prove that for all i,
¢A *

l)io. t) /g i+ lo . I.
SI US2Uyr

We know that
CA *

rio.) Ui+ l O'.
SIUS2US3

Let us consider a s t eps P >t. Since
SIUS2US3

= A (v i) = A (/ , t i + l) E ,/"L" I, A(s) = A(t)

then from Lemma 7 or from Lemma 6 we have
CA * I(s) > I(t) .

SI US2UJr

We may build the expected sequence step by step in order to obtain

I(vio-) > I(Ui+lo'). SIUS2Urc

Since l (vso.) = rio.' and I (ui+lo') = Ui+lo" I, we conclude by Lemma 3.
This ends the proof of Lemma 2. []

Corollary and Independent Extensions

By considering the extension of RI with [Ue U {G : 2} I R2 U Jr] and with the help
of Theorem 1, we obtain as a corollary a sufficient condition for proving Ce-
termination of the extension itself.

COROLLARY 1. Let [Y'l J RL]
R1 (U1); if

(1) R1 is es-terminating, and
(2) there is no infinite dependency chain of[U2 I R2] over RI U Re U Jr,

then Rl U R2 is Cs-terminating.

We may compose applications of this corollary in order to perform a termination
proof in an incremental fashion, by proceeding from the base to the top of the
modules hierarchy.

[Uel R2] be a hierarchical extension of

334 XAVIER URBAIN

THEOREM2. Let[5~l I R1] < [5721R2]beahierarchicalextensionofRl(Ul),
and let [a~3 I R3] be a module extending R1 independently of R2. If

(1) R1 U R2 is C~-terminating, and
(2) there is no infinite dependency chain of[U3 I R3] over R1 U R3 U Jr,

then R1 U R2 U R3 is C~-terminating.
Proof Let us suppose that there is an infinite dependency chain of R1 U R2 U

R3 U yr. We are going to show that in such a case, we may conclude either on non-
Cs-termination of Ri U R2, thus contradicting first premise, or on the existence
of an infinite relative dependency chain of module [5% I R3] over Ri U R3 U Jr, a
contradiction to the second premise.

Following from the definition of hierarchical extensions and by Lemma 1, we
know that chains of R~ U R2 U R3 U yr are

- chains of [~ I R3]; or
- chains of [a~l U -,~2 I Rl U R2] over R1 U R2 U R3 U yr = R; or
- chains consisting of a finite number of pairs of module [a~3 I R3], followed by

only one pair ~ , t~ such that A(s) 6 a~3 and A(t) ~ 3:1 U ~2, then by a chain of
[U1 U 5~2 I RI U R2] over RI U Re U R3 U yr = R.

Thus, it suffices to prove finiteness of relative chains of [Y'3 I R3] over R and of
[a~l U Y'2 I Rl U R2] over R.

- There is no infinite chain of [a~3 I R3] over R. Otherwise, by Lemma 2 with

* SI = R1,
• S2=R3UYr,
• $3 = R2,
• Y'I = Y'l U ~ and 5~2 = Y),

we would end with an infinite chain of [U3 I R3] over Rl U R3 U yr. But all
those are finite from the premises.

- There is no infinite chain of [:Vi U 3=2 I R1 U R2] over R. Otherwise, applying
Lemma 2 with

• S l = 0 ,

• $2 = R1 U R2, and
• $3 = R3 U yr,

we would end with an infinite chain of [U1 U 572 I R1 U R2] over R1 U R2 U yr.
But these chains are all finite because Rl U R2 Ce-terminates from premises.

Hence, R~ U R2 U R3 is C~-terminating. []

Remark 5. The crucial point in Theorem 2 is that no premise bounds R2 and R3
together. Thus, a proof can actually be performed in an incremental and modular
fashion.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 335

Further note that Ce-termination of Rl U R2 is necessary: we may otherwise
encounter Toyama's counterexample by choosing

- R | = 0 ,
-- g 2 = {f(0, 1, x) --+ f (x , x, x)} and
- R 3 = T r .

Eventually, by Proposition 2 we have as a corollary of Theorem 2 a previous
result by Kurihara and Ohuchi [23]: ee-termination is a modular property for
unions of composable TRSs.

Theorem 1 is clearly an incremental result, while Theorem 2 is a modular one:
irrelevant rules (those in R2) do not interfere.

5. Prov ing Terminat ion

Termination is usually proven by using appropriate well-founded orderings. We
propose in this section a class of orderings (zr-expandable orderings) that are well
suited for Cs-termination, that is, take care of the possible projective behavior of
an additional set of rules. Using these orderings, we obtain corollaries of Theo-
rems 1 and 2 that provide effective methods for incremental/modular termination
proof.

5 .1 . Y~-EXPANDABLE O R D E R I N G S

DEFINITION 8. A term ordering (>-, >) over T(W, X) is said to be re-expandable
if there is a reduction ordering (_>-', >') over T(.T t2 {G : 2}, X) such that

- (>-', >') restricted to T(5 ~, X) is exactly (>-, >);
- G(s, t) >-' s and G(s, t) >_' t for all s and t in T(Y', X).

We say that such a suitable (>-', > ') is an associate ordering of (~, >).

7r-expandable orderings may be used for proving Cs-termination.

PROPOSITION 3. Let (_, >) be a strictly monotonic zr-expandable ordering. I f
for each rule I ---> r o f a term rewriting system R, 1 > r, then R is Ce-terminating.

Clearly, any simplification ordering is Jr-expandable. In particular, RPO and the
orderings induced by polynomial interpretations are Jr-expandable. We may indeed
combine them so as to obtain some new ones.

Lexicographical Compositions

In particular, lexicographical compositions may be useful for building Jr-expand-
able orderings.

336 XAVIER URBAIN

DEFINITION 9. Let (>-1, >1) and (>-2, >2)be term orderings. The lexicograph-
ical composition ((>- 1, > 1), (>- 2, > 2))l~ of (_ 1, > 1) and (>- 2, > 2) is a pair (>-, >)
such that

- s > t i f f s > l t or s ___ 1 t and s > 2 t;
- s _ t i f f s >~ t o r s >-_1 t a n d s >-2 t.

It is easily shown that the lexicographical composition of two term orderings is
itself a term ordering.

PROPOSITION4. I f (>-l ,>t) , (>-2, >2) are re-expandable orderings with
(5_ 1, > 1) strictly monotonic, then the lexicographical composition ((>-l, > i),
(_2, >2))/ex is a 7r-expandable ordering.

Moreover, i f (>-2, >2) is strictly monotonic itself then so is the composition
((>-1, >1), (>-2, >2))lex"

Proof We have to find a suitable (>-', >') satisfying the two conditions of
Definition 8. Let us suppose that (>-'1, >'1), strictly monotonic, and (>-~, >~) are
associate orderings to, respectively, (>-1, >1) and (>-2, >2). We may verify that
(>", >') = ((>-'1, >'1), (>-~, >2))lex is suitable, strict monotonicity of (>-'~, >'1)
implying the (weak) monotonicity of the composition.

We need to show

1. correct comparison of G(s, t) and s for all s and t;
2. correct comparison of G(s, t) and t for all s and t;
3. equality of (>-', > ') restricted to T(Z' , X) and ((>-1, >1), (>-2, >2))lex.
• G (s , t) >-' s. Since (~1, >1) is 7r-expandable, we know G(s, t) ~_] s;

similarly since (>-2, >2) is 7r-expandable, we know G(s, t) >"2 s, hence
G(s, t) >-' s.

• G(s, t) >-' t. Similar to previous case.
• (_ , >')IT~Y.X) ~ ((~l , >l) , (>-2, >2))tex. Let us get into details fo r thes _ ' t

case for s and t 6 T (U , X): Either s >'l t and from premises s >1 t, or
s ---~1 t and we face two possibilities (1) s >2 t and then from premises s >2 t
or (2) s >-~ t and then from premises s ~2 t.

• (>_I, >t)IT(U,X) ~ ((~-1, >1), (>-2, >2))[ex. Immediate.

Proof regarding > is similar. []

Recursive Program Schemes

As well as lexicographical compositions, recursive program schemes [7, 20] may
be used to construct Jr-expandable orderings.

DEFINITION 10. A recursive program scheme (RPS) is a term rewriting system
such that

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 337

- each defined symbol appears at root position in only one rule, and
- each rule is of the form f (x l xi xn) --+ r where xi are pairwise

distinct variables and r is any term.

All RPSs are confluent, and their termination is decidable. All RPSs considered
hereafter are supposed to be complete; in particular, we denote by t$ p the unique
P-normal form of any term t.

DEFINITION 11. Given a term ordering (El, >1) and a RPS P, we define
(~, >) = (_~1, >l)$P the following way:

- s ~ t i f fsSe ---1 t,l,e and
- s > t i f f s S e >1 t S p .

Arts and Giesl have shown that if term ordering (±1, >1) is weakly monotonic,
then (~ l, > t)4, e is a weakly monotonic term ordering [2]. It is not strictly monotonic
in general, even if (~l , > 1) is strictly monotonic.

PROPOSITION 5. Let (>-, >) be a zr-expandable ordering. I f P is a recursive
program scheme over 5 v such that G f[3 =, then (>-, >) $ e is a re-expandable
ordering.

Proof Let (~1, >-1) be a re-expandable ordering, and let (_, >-) be defined by
(±, >-) = (~1, >-1)$P. We have to find an ordering (___', >') satisfying the two
conditions of Definition 8.

Let us suppose that (>--'1, >'1) is an associate ordering of (~t , >~). We shall
prove that (_~', > ')defined by s ~ ' t (resp. > ') i f f sSp ~-'1 tSp (resp. >'l)suits.

First, let us check that rules of re are oriented in a correct way. Since G (s$ p,
t~.e) ~'1 SSp because ___l is n'-expandable, we have G(s, t) >-' s by definition.
Comparison to t is checked similarly.

Second, let us show that

(~' , c_ >')IT~,x) (~,
and t belong to T (~ ,
t~, p, that is, s ~ t.

(>J, >')]T(~-,X) = (>', >).

>). I f s >-' t, we get SSp>-' 1 tSe. But G ~g 5v; hence s
X). Since _ l is Jr-expandable, we know that s ,l, P _ 1

(>-', >')lT(~-,x) ~ (>-, >). If s ~ t, then since G ~g ~ we know that s and
t belong to T(5 ~, X). Hence sSe El tSe and sSe ±'t t4,e, which means by
definition s ___' t.

Proof regarding > is similar. []

5.2. METHODS FOR PROVING TERMINATION

From Proposition 2 we have a first test for termination.

COROLLARY 2. Let (>-, >) be a (weakly monotonic) re-expandable ordering
such that

3 3 8 XAVmR U~AIN

(1) l >- r for each l --+ r E R, and
(2) s > t for each (s, t) ~ DP(R).

Then R is Cs-terminating.

We obtain similarly effective corollaries to our theorems. A corollary of Theo-
rem 1 is given first.

COROLLARY 3. Let [5~1]R1] < [~2 I R2] be a hierarchical extension of
Rl(a~l); i f

(1) Rl is Cs-terminating, and
(2) there is a weakly monotonic reduction ordering (resp. weakly monotonic Jr-

expandable) (>-, >) such that

- Rl tO R2 c >- and
- MDP([Sc'2 [R2]) _ >,

then Rl U R2 terminates (resp. Ce-terminates).
Proof. By contradiction. Let us suppose the existence of an infinite chain. Since

the ordering (weakly) decreases for each rewriting step and strictly decreases for
each MDP step, there is a infinite sequence strictly decreasing for (>-, >). This
contradicts the well-foundedness of (_, >), and R1 U R2 terminates by Theorem 1.

If (__, >) is Jr-expandable, then Rl tO R2 U Jr c >- and R1 U R2 Cs-terminates
by Corollary 1. D

Similarly, zr-expandable orderings give us a simple way of using Theorem 2.

COROLLARY4. Let [5~1]Rj] < [~2 I R2] be a hierarchical extension of
R1(5~1), and let [5~3] R3] be a module that extends R1 independently of[Y'21R2].
If
(1) Rl tO R2 is Cs-terminating, and
(2) there is a weakly zr-expandable ordering (~, >) such that

- R l U R 3 C > - a n d
- MDP([U3 I R3]) __c >,

then Rl U R2 (3 R3 C~-terminates.

Remark 6. Optimizations with dependency graphs [2] may be applied to all
results presented here [33].

In particular Arts and Giesl showed how to obtain an estimation* of the de-
pendency graph, that is, a graph that contains the actual dependency graph. This
approximation [2] is based on a replacement in dependency pairs of the proper

* Middeldorp proposed another approximation [25], which is closer to the actual dependency
graph (hence with more termination power) but slightly less simple to compute.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 339

subterms whose root symbol are defined by fresh variables (the CAP operation). All
those variables are made pairwise distinct (the REN operation); then the edges of
the estimated graph are determined following unifiability of members of modified
dependency pairs: there is an edge from (sl, tl) to (s2, re) if s2 and REN(CAP(tl))
are unifiable.

We point out that system Jr adds arcs to the dependency graph but, forArts and
Giesl's estimation, the estimated dependency graph remains unmodified.

This last remark amounts to comparing to what can be obtained by using de-
pendency graphs analysis only [1]. The latter method would lead to the same set of
strict constraints coming from dependency pairs of module R3 after computation
of strongly connected components, or even a smaller one because it does not take
only the root symbol into account. Regarding nonstrict constraints, their set would
be RI U R2 U R3 c >-, which contains additional constraints coming from rules of
Re, contrary to what happens with Corollary 4 whose (weak) requirements involve
R l U R3 only.

Ending with fewer constraints over suitable orderings makes the discovery of
one of them easier. Hence, applying the hierarchical criteria above, then using the
dependency graph analysis on each module will be a significant improvement over
previous approaches, as we shall illustrate in Section 6.2.

6. Modules and Automation

Thanks to their generality and to the purely syntactical tests, we implemented our
methods in the termination toolbox of the C/ME 2 system [5].

When it comes to automation of proofs, ordering constraints are the main prob-
lem. For large TRSs, even if rules are "simple," their huge number is almost insur-
mountable for most solvers in reasonable time. If they are very strict, an automated
search for a suitable ordering often fails.

Our results induce a significant decrease in the number (modularity with Theo-
rem 2 and the corollaries) and in the strictness (incrementality with Theorem 1 and
the corollaries) of these constraints, and such improvements show on termination
proofs in practice.

For instance, C/ME 2 took less than a second for finding all interpretations in
Section 6.1, in a completely automated way, using the incremental and modular
methods.

A catalogue of examples treated with C/ME can be found in the C/ME distrib-
ution [5].

6.1. EXAMPLE

We present in this section a complete example of an incremental proof using our
results. We will actually extend Example 2. The complete hierarchy is illustrated
by Figure 6 (page 340).

340 XAVIER URBAIN

!

Figure 4. Independent extensions with [5~+IR+] and [a ~_ I R-] . The proof of
es-termination of the union uses C~-termination of [Y'+ f R+], but that module does not
interfere in ordering constraints: no constraint (weak or strong) arises from it.

7 ~ ~ ,

Figure 5. Arithmetical operators and comparisons are independent.

1///1\

Figure 6. Modules hierarchy.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 341

So let us consider the system describing natural numbers (which clearly e¢-
terminates):

Ur~{# " constant; 1, 0 • unary,
Rr~{#O --+ #.

We already defined some arithmetic on these integers, in particular addition with
[.T'+ I R÷] to which we add an associativity rule in order to make it overlapping:

Y'+{+ • infix binary}

R+

x + # ~ x
+ x ---> x
xO + yO --+ (x + y)O
x O + y l ---> (x + y) l
x l + y O --+ (x + y) l
x l + y l --+ ((x + y) +#1)0
x + (y + z) --+ (x + y) + z

Termination of Rr~ U R+ is proven using dependency pairs and a polynomial inter-
pretation.

MDP([,,¢'+ [R+]) :

A A

(xO+ yO, x + y)
(xO~ y l , x ~ y)
(xl +yO, x + y)
(xl ~ - y l , x ~-y)
(xl ~-yl , (x + y)~-#1)
(x ~ (y + z), x ~ y)
(x ~ (y + z), (x + y) ~- z)

I[#11 = 0
I[0]](x) = x + 1
I[1]](x) = x + 2
I[+]](x, y) = x + y + 1
I[~-]](x, y) = x + 2y

With reference to the ordering defined using the zr-expandable interpretation above,
pairs of MDP([Y'+ I R+]) strictly decrease while rules of RN U R+ U Jr weakly
decrease. Corollary 3 allows us to conclude on the Ce-termination of R• U R+.

We may want to perform subtraction.

~_ { - • infix binary}

R_

X - - # ---~ X

- x ---~#
x O - y O -* (x - y) O
xl - yl ---> (x - y)O
x l - yO --+ (x - y) l
x O - y l --+ ((x - y) - # 1) l

Again, dependency pairs of modules together with a polynomial interpretation are
sufficient for showing that RN U R_ Cs-terminates. Indeed, for

342 XAVIER URBAIN

~#~ = 0

~0](x) = x + 1

~l](x) = x + 1
~ - ~ (x , y) = x
f f ~ (x , y) = x

pairs of [Y'_ [R_] strictly decrease while rules in Rr~ U R_ weakly decrease.
Applying Corollary 4, we obtain that Rr~ U R_ U R+ is Cs-terminating (cf. Figure 4).

To compare integers, we need Boolean operators. We add a new module, namely,
[,~Bool] RBool].

UBoo,{true,false : constant;--, : unary; A : infix binary; if : ternary}

RBool

--,(true) -+ false
--,(false) --> true
x A true --+ x
x A false ---> false
if(true, x, y) --+ x
if(false, x, y) --+ y

This system is dependency pairs free; hence it trivially Ce-terminates.
We can now define a comparison in module [Y'ge I Rge], extending both RN and

RBool.

5~ge{ge :binary}
ge(xO, yO)
ge(xO, yl)
ge(x l , yO)

Rue ge(x l , yl)
ge(x, #)
ge(#, xO)
ge(#, xl)

--+ ge(x, y)
--+ --,ge(y , x)
---> ge(x, y)
--+ ge(x, y)

true
--+ ge(#, x)
--+ false

Termination of Rr~ U RBool U Rge is shown by RPO with {ge > --, > (true,false)}
directly. As a simplification ordering, RPO is zr-expandable. Hence, the relevant
union es-terminates thanks to Proposition 3. We may then apply Theorem 2 and
thus obtain ee-termination of Rr~ O RBool U Rg e U R+ U R_ (cf. Figure 5).

We add a new function over integers: base 2 logarithm rounded down. For tech-
nical reasons, it is easier to define first a Log' such that Log'(x) = Log(x) + 1 with
convention Log'(O) = O.

UCog' {Log': unary}
Log'(#) ~ #

RLog' Log' (x l) --~ L o g ' (x) + # 1
Log'(xO) --~ i f(ge(x, #1), Log'(x) + #1, #)

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 343

We use dependency pairs of modules and polynomial interpretations.
A

MDP([~Log, I Rcog,]) (~og'(xO), ~og'(x))
[#] = 0
~0](x) = x + 1
~ a ~ e] = O
[ge](x) = 0
[L o g ' U (x) = x

[[1]](x) = x + 1
Utrue~ = 0
[ifB(x, y, z) = y + z
l[Log'~ (x) = x

[[+~(x, y) = x + y
~ - q (x) = 0
[/x~(x, y) = x

search tree (BS), we introduce module

Urroo{Z, Val" unary; J~ • ternary}
{ Val(Z(x)) --+ x

RTree Val(Af(x, l, r) ----> x

This module has no dependency pairs.
To test whether a tree is a binary

[SVBS IRes], extending both Rue and Rvree:

UBs{BS, Min, Max • unary}
Min(Z(x)) ---> x
Min(J~ (x, l, r)) --+ Min(1)
m a x (£ (x)) ---> x

RBS Max(Af(x , l, r)) --+ Max(r)
BS(f . (x)) ---> true
BS(Af(x, l, r)) ---> (ge(x, Max(l)) /x ge(min(r), x))A

(BS(l) A BS(r))

We have six dependency pairs for this module:
A A

(Min(eg (x, l, r)), Min(l) }
A A

(Max(J~ (x , l, r)) , Max(r)}
A

(BS(2¢ (x, l, r)), Max(l))
MDP([UBS]Res])" (B~'S(~f(x, l, r)), Mien(r))

A

(BS(JV (x, l, r)), BS(I))
A

{BS(eV (x, l, r)), BS(r))

Dependency pairs strictly decrease while rules in Rr~ U R+ U RBool URge U RLog,
weakly decrease. We may then apply Corollary 4 in order to show Cs-termination
of Rr~ U R+ U RBool U Rg e U RLog, U R_.

The "correct" logarithm is computed by using module [UCog I RLog]:
SO'Log{LOg : unary}
RLog{Log(x) ---> Log'(x) - # 1

Since [SVCog I RLog] has no dependency pairs, we apply Theorem 2 and obtain Cs-
termination of R~ U R+ U R_ U Raoo~ URge U RLog' U RLog.

Beside arithmetics we may want to work with binary trees over our integers. It
suffices to define a module [5~Tree I Rvee] extending Rr~:

344 XAVIER URBAIN

These strictly decrease while rules in Rr~ U RBool URge U RTree U RBS weakly decrease
w.r.t, polynomial interpretation

~#]1 = 0
~a l se [[= 0
l[ge](x) = 0
[[£]] (x) = x

I[Max~(x) = x
[[max]] (x) = x

[[ON(x) = o
[[true]] = 0
[[if](x, y, z) = y + z
[[W]](x , l , r) = x + l + r + 1
~BS]](x) = 0
[[BS]](x) = x

[Ill(x) --- 0
[[- q (x) = 0
~A]](x, y) = x
[[min]](x) = x
[[min] (x) = x
[[Val]](x) = x

Thus, Rr~ U RBool URge U RTree U RBS Cs-terminates from Corollary 1.
Eventually, to decide whether a tree is well balanced (WB), that is, if the differ-

ence between sizes of left and right subtrees is at most 1, we have to compute sizes
of trees.

Z'WB

RWB

WB, Size : unary}
Size(£ (x))
S i z e (W (x, l, r))
W B O £ (x))
W B (W (x , l, r))

#1
--+ (Size(l) + S i ze (r)) + #1
--+ true
--+ i f(ge(Size(1), S i ze (r)) ,

ge(#1, Size(1) - S i ze (r)) ,
ge(#1, Size(r) - S i ze(l)))

A (WB(1) A W B (r))

The set of dependency pairs is the following:

M D P ([~ B s I RBs]) "

A A

(S i ze (de(x , l, r)), S ize(l))
(Size(Jq'(x, l, r)), S i ze (r))

A

(WB(W (x, l, r)), S ize(l))
(WB(W (x, l, r)), S i ze(r))
(W B (W (x , l, r)) , WB(I))

A

(WB(W (x, l, r)) , W B (r))

With help of the polynomial interpretation

[[#11 = 0
[[+~ (x, y) --- x + y
[[true]] = 0
[[if](x, y, z) = y + z
[[Val[[(x) = x
[[Size]](x) = 0
[[Sized(x) = x

[[0]](x) = 0
[[- ~ (x , y) = x
[[~] (x) = 0
I[A]](x, y) = x
[[W]](x , l , r) = x + l + r + 1
[[WB~(x) = 0
[[WB~(x) = x

[[1](x) = 0
[[f a ~ e] = O
~ g e] (x) = O
[[Z ~ (x) = x

we may prove easily, simply using Corollary 4, that the union of all rules Cs-
terminates. Please note how simple interpretations are.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 345

6.2. COMPARISON WITH OTHER TECHNIQUES IN C/ME

We emphasize in this section how our results empower termination proofs. Using
the C/ME 2 termination tool, we compare the time needed for termination proofs
of some practical examples.

Tests are as follows. The system is provided as a single set of rules; then termi-
nation proofs are searched for with

- first, dependency pairs and graphs with modularity results from Arts and
Giesl [1], denoted DPQ, since they are related to the notion of DP-(quasi)
simple termination [14], and

- second, dependency pairs of modules (and related dependency graphs) over a
hierarchy of minimal modules automatically obtained from the TRS.

The time of automated decomposition of TRSs into a relevant hierarchy is included
in the proof search time.

Recall from Remark 6 that it is possible to use, for example, the DPQ criterion
for each module.

Tests are performed on a computer equipped with a P-III 933 MHz processor
and 1 GB RAM, running DEBIAN LINUX. We search successively for Linear, then
Simple, polynomials w.r.t. Steinbach's notions [31]. Bounds refer to the maximum
that coefficients in polynomials can reach. A search for a proof can be characterized
by the conjunction of these restrictions; we denote it hereafter by pairing the kind
of polynomials with the chosen bound.

Fail means that C/ME 2 found no solution. Abort characterizes a computation
interrupted after a time that seemed to us reasonably large: 48 hours.

Times given in brackets correspond to unnecessary expensive choices of bounds
or polynomials.

6.2.1. The Log Example (31 rules)

Let us consider the TRS obtained from Section 6.1 by union

Rr~ U R+ U R_ U RI3ool U Rg e U RI~,~,, U RLog.

We point out that rule x 4- (y + z) ~ (x -t- y) + z, describing associativity of
+, makes the system overlapping: criteria based on innermost termination do not
apply because innermost termination of an overlapping system does not imply its
termination.

The decomposition leads to the hierarchy of 13 minimal modules that is de-
scribed Figure 7, where

R , = {--,(true) --+ false; --,(false) --+ true}
RA = {x A true --+ x; x A false --~ false} and
Rif = {if(true, x, y) --+ x; if(false, x, y) ~ y}

346

Figure 7. Hierarchy of minimal modules for the Log example.

XAVIER URBAIN

Regarding constraints, we focus on the maximal number of termination con-
straints (TC, depending on criterion) and, since we are looking for orderings based
on polynomial interpretations, on the maximal number of polynomial ordering
constraints (POC, depending on parameters set for the search). Solving polyno-
mial constraints can be complicated and tricky: for C/ME it amounts to solv-
ing nonlinear Diophantine constraints the number of which may be worthy of
consideration [6].

The modular approach leads to a maximum of 24 TC and 51 POC (for linear
polynomials, same module) and succeeds, while DPQ criteria lead to a maximum
of 38 TC and 88 POC (for linear polynomials, same subgraph) and fails.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS

Number of minimal modules in the hierarchy: 13.
Number of modules with no rule in the hierarchy: 4.

Polynomials DPQ Modules
and bounds Time Time

Linear, 1 Fail 0.51 s
Linear, 2 Fail 0.35 s
Linear, 3 Fail (0.35 s)
Linear, 6 Abort (0.35 s)
Simple, 2 Fail (15.08 s)
Simple, 3 Abort (393 s)

347

The best choice here is clearly the modular approach. In particular, the fact that
more easily solvable constraints are obtained with modules is worth mentioning
here.

If we omit the associativity rule, previous approaches may end with a termina-
tion proof; linear polynomials are even suitable. Nevertheless, they require more
than twice as much search time, at best.

Number of minimal modules in the hierarchy: 13.
Number of modules with no rule in the hierarchy: 4.

Polynomials DPQ Modules
and bounds Time Time

Linear, 1 0.78 s 0.32 s
Linear, 2 0.82 s 0.35 s
Linear, 3 (82 s) (0.35 s)
Linear, 6 (0.82 s) (0.35 s)
Simple, 2 (30.3 s) (3.96 s)
Simple, 3 (86.64 s) (11.5 s)

6.2.2. The Tree Example (39 rules)

Results are similar when trying to prove termination of the TRS, which describes
binary search trees and well-balanced trees. That is,

Rr~ tO R+ U R_ U RBool URge U RTree U RBS U RwB.

348 XAVIER URBAIN

Number of minimal modules in the hierarchy: 19.
Number of modules with no rule in the hierarchy: 6.

Polynomials DPQ Modules
and bounds Time Time

Linear, 1 Fail 0.71 s
Linear, 2 5.7 s 0.6 s
Linear, 3 Abort (0.6 s)
Linear, 6 Abort (0.6 s)
Simple, 2 Abort (Abort)
Simple, 3 Abort (Abort)

Here again we notice that our modular approach requires lower bounds than
does the DPQ approach.

6.2.3. A Sum and Product Example (35 rules)

One of the advantages of an incremental/modular approach is that different kinds
of orderings may be used to prove termination, thus restraining expensive searches
to modules that need them and using fast but less powerful criteria for the others.

We saw on previous examples that the search for a termination proof of the Log
example ends successfully very quickly when looking for linear interpretations
but lasts several minutes (depending on bounds) when looking for simple interpre-
tations. Suppose that we add independent rules requiring simple interpretations.
Then we obtain a TRS the termination of which may be very long to prove if the
search is limited to simple polynomials.

Here is where incrementality and modularity play an important role: we may
look for linear interpretations (with some bounds), and if a search ever fails on a
module, we may switch for that particular module only to simple interpretations
(with some other bounds when necessary).

Let us consider the following system combining the Log example and multipli-
cation:

Rr~ U R+ U R_ U RBool URge U Rz~,g' U RLog U R × with
x x # ---~#

R× # x x --~ #
x 0 x y ~ (x x y) 0
xl x y --+ (x x y)O + y

A search for a proof with our incremental/modular criteria ends with the fol-
lowing times.

[paraml;param2; . . .] denotes the successive tries of parameters as follows: for
each module, if no proof is found with parameters paraml, then C/ME looks for a
proof with next parameters in the list (here param2), and so on.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 349

Number of minimal modules in the hierarchy: 14.
Number of modules with no rule in the hierarchy: 4.

Parameters Modules
Polynomials and bounds Time

Simple, 2 8.08 s
[(Linear, 2); (Simple, 1)] 0.38 s

Comparison of times with other approaches in this particular case is useless
because we know from Section 6.2.1 that the search would fail or would be inter-
rupted. Nevertheless, regarding constraints, we point out that the modular approach
leads to a maximum of 24 TC and 51 POC (for linear, then simple polynomials,
same module) and succeeds, while DPQ criteria lead to a maximum of 42 TC and
136 POC (for linear, then simple polynomials, same subgraph) and fails.

Now if we omit the rule describing associativity, a previous approach may find
a proof in a reasonable time. However, the modular approach is again clearly the
best choice.

Number of minimal modules in the hierarchy: 14.
Number of modules with no rule in the hierarchy: 4.

Parameters DPQ Modules
Polynomials and bounds Time Time

Simple, 2 32.45 s 3.91 s
[(Linear, 2); (Simple, 1)] 10.65 s 0.4 s

6.2.4. A Note on Communicating Processes

We also tried our results on large systems provided by Thomas Arts. Those systems
come from a real application: /Z-CRL specifications of communicating processes.
Roughly speaking, communicating processes can send a message or perform an
action. Termination of such systems implies that an action is always performed
after a finite lapse of time.

An attempt to prove termination of the 377 rules directly by means of poly-
nomial interpretations failed. The system found no solution involving only linear
interpretation; it had been looking for simple interpretations* for more than ten
days when we stopped the computer. But with our incremental/modular methods
it took less than two seconds for C/ME 2 to find a termination proof with only
linear interpretations [33], by splitting up the TRS in a hierarchy of 74 modules
(33 of which containing no rule). Regarding constraints, the modular approach led
to a maximum of 309 TC and 558 POC (for linear polynomials, same module) and

* Simple is here Steinbach's notion [31].

350 XAVIER URBAIN

succeeded quickly, while DPQ criteria led to a maximum of 378 TC and 763 POC
(for linear polynomials, same subgraph) and failed.

Note that our modular approach requires C/ME solving Diophantine constraints
problems only three of which consist of more than 225 constraints (maximum 1486
over 107 variables) while a DPQ approach requires solving a problem of 2334
constraints over 306 variables for which there is no convenient linear interpretation.

Automated termination proof for real programs is no longer out of reach. C/ME 2
is available at http: / / c i m e . iri. fr

7. Hierarchical Simple Termination

We provide in this section a new notion of termination that is modular for unions
of composable term rewriting systems. To obtain such modularity results, we dis-
tinguish relevant sets of rules by means of dependency relation over symbols ~-d
(see Definition 4).

DEFINITION 12. Let (a ~ , ~) be a term rewriting system.
A rule I --+ r is said to be defining a symbol f if that symbol occurs at the root

position in l.
A rule l --+ r is said to be relevant w.r.t, a rule l' ~ r' if there is a symbol f

occurring in l' or r ' such that f ~ g where g is defined by I --~ r.

As in Definition 4, the dependency relation can be represented as a graph whose
vertices are symbols and such that there is an arc from f to g if and only if f E>d g.
We can now define hierarchical simple termination.

DEFINITION 13. Let (.,~, R) be a term rewriting system, and let ~ be the graph
of E>d over 5 ~. We define sets Ci as strongly connected components of ~ (see
Definition 4).

A finitely branching term rewriting system (5 ~, R) is said to be hierarchically
simply terminating (HST) if for each Ci there is an ordering pair (~i, >i) that
constitutes a well-founded simplification ordering and such that

- s >i t for all dependency pairs (s, t), where both root symbols o f s and t occur
in Ci;

- l ~i r for all rules in R relevant w.r.t, rules defining symbols in Ci.

THEOREM 3. Hierarchical simple termination is a modular property of unions
of composable finitely branching TRSs,

Proof Let Ri = R' I U R0 and R2 = R~ U Ro be two composable systems
where R0 consists of rules defining symbols in common and such that both are
hierarchically simply terminating. From the definition of composable systems we
know that rules in R~ are not relevant w.r.t, rules in R' l U R0 and that rules in R' I are
not relevant w.r.t, rules in R~ U R0. Hence the suitable ordering pairs for hierarchical

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 351

simple termination of R1 and R2 may still be used so as to show hierarchical simple
termination of R~ U R2. []

Hierarchical simple termination is clearly more general than simple termination
because it uses dependency pairs. It also includes DP-simple termination strictly
[14], thanks to the modular decomposition: DP-simple termination requires order-
ings that have to orient (weakly at least) all rules in a TRS, while the orderings
involved in HST put constraints on relevant rules only. Hence any DP-simply
terminating TRS is HS-terminating. The reciprocal does not hold.

EXAMPLE 5. The following system R, from Giesl and Ohlebusch [14], is not
DP-simply terminating.

R I f (f (x)) --+ f (c (f (x))) g(c(x)) ~ x g(c(O)) ~ g(d(1))
I f (f (x)) ~ f (d (f (x))) g(d(x)) -+ x g(c(1)) ~ g(d(O))

System R is, however, hierarchically simply terminating. Since the only (order-
ing) constraints are

f (c (f (x)))
f (d (f (x)))

f (f (x))
f (f (x))

and
A

f (f (x)) > f'(x)
the simplification ordering induced by the following interpretation is enough.

l I c l l (x) = x

[[d](x) = x
~f]](x) = x + l

Further note that C/ME 2 is able to find an automated proof for that system,
however, by using an ordering that is not a simplification ordering.

Similarly, each DP-quasi simply terminating TRS [14] is hierarchically simply
terminating. We conjecture that the reciprocal does not hold.

8. Related Work and Conclusion

With the notion of rewriting modules (Definition 2), we defined a new framework
very well suited to the study of the intrinsic hierarchical structure of term rewriting
systems.

The framework of modules has many applications regarding termination proofs.
In particular, with the help of dependency pairs of modules (Definition 5), we
obtain powerful methods (Theorems 1 and 2 and corollaries) that allow proofs to
be found incrementally and modularly.

352 XAVIER URBA1N

Actually, the use of a concept of dependency pairs based on modules allows
incremental and modular proving with state-of-the-art techniques and thus provides
the most powerful approach for termination proof of systems with many rules
known so far.

As explained below, our results apply to systems met in practice and are suitable
for full automation, which was not really the case before either because of strong
requirements on systems or unions or because criteria were too much ad hoc. They
do not generate constraints for irrelevant sets of rules in incremental proving, which
is definitely an improvement in the termination proof domain. Eventually a new
class of terminating systems naturally emerges from them.

Our work has to compare with Dershowitz's results [9]. Since we do not restrict
ourselves to constructor-based systems, and use a slightly more general defini-
tion of hierarchical extensions, we obtain more general conditions applicable to
the systems one has to deal with in practical applications. Moreover, our criteria
(fully syntactical and applicable to most TRSs met in practice) are more suited for
automation - because they were designed for this purpose - than are the finely
tuned conditions of Dershowitz. Similarly, Krishna Rao's proper extensions and
restricted proper extensions [21, 22] are constrained modules extensions, and, thus,
all our results apply to these.

Arts and Giesl exploit the modular structure of dependency graphs [1]. Their
approach is fundamentally different from ours. They use an optimization, namely,
dependency graphs, in order tofilter strict constraints over dependency pairs, while
in our case those are simply not generated. Moreover, their criterion keeps weak
constraints over all rules for the whole system (whatever the extension might be).
That is a drawback we wanted to get rid of, because it fundamentally acts as a break
upon real incremental/modular proving. As noticed in Remark 5, criteria based on
Theorem 2 do not require anything from irrelevant sets of rules, and hence no
constraint (neither strict nor weak) comes from those. Our framework furthermore
provides for the general case the powerful results they got for the special case of
innermost rewriting: the only way they can avoid constraints from irrelevant rules
is to require innermost rewriting and to use the notion of usable rules, while we
can prove termination of systems for which innermost termination does not imply
termination and without any constraint from irrelevant rules.

The modular approach combines several advantages. The constraints over suit-
able orderings we obtain from a modular analysis are less numerous at each step
than in a "global" approach because only relevant rules are considered. They are
also less restrictive, for the same reasons and because optimizations such as depen-
dency graphs may be applied afterward at each step.

Being less numerous and weaker, ordering constraints are easier to solve in our
approach. This is especially noticeable at the ordering level where, for instance,
polynomial interpretations are much simpler than in a proof without modules, even
if powerful methods such as dependency pairs with dependency graphs are used.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 353

The notion of hierarchical simple termination (Section 7), which naturally ap-
pears in that framework, defines a class that contains the class of systems that are
DP-quasi simply terminating and is stable by (composable) unions. We claim that
this class represents most terminating systems from practical applications.

All these results are implemented in the C/ME 2 rewriting tool. As illustrated
by our benchmarks, they considerably enhance a completely automated search of
termination proofs. A significant speedup may be observed on large examples,
occurring in practice, and the verification of which is not any longer out of reach.

We point out that during the Termination Workshop WST'03 [29], none of the
other tools in competition, such as TTT [19], APROVE [15], or TERMPTATION [4],
was able to find termination proofs for the large systems that were easily shown
terminating by C/ME.*

This work should extend in several directions and in particular toward exten-
sions of rewriting. First, a quite important extension in practice regards rewriting
modulo an equational theory. Some work has already been done on associativity
and commutativity [34] and will be pursued.

Second, since this work aims at proving termination for TRSs of large size and
practical applications, it is important to study how it can be applied to particular
paradigms of programming such as conditional and/or constraint (i.e., with primi-
tive types) rewriting, but also to rewriting with strategies [11, 12] like, for instance,
context sensitive rewriting, which has received new interest recently [13, 18].

Finally, an extension of these results and methods to higher-order rewriting
would lead to termination tools for functional programs, a crucial issue indeed
in automated theorem proving.

Acknowledgments

The author thanks Thomas Arts for the very interesting examples he gave. The
author is grateful to Bernhard Gramlich and Claude March6 for judicious com-
ments and discussions about this work and to Aart Middedorp and the anonymous
referees for their fruitful remarks.

References
1. Arts, T. and Giesl, J.: Modularity of termination using dependency pairs, in T, Nipkow (ed.),

9th International Conference on Rewriting Techniques and Applications, Lecture Notes in
Computer Science 1379, Tsukuba, Japan, 1998, pp. 226-240.

2. Arts, T. and Giesl, J.: Termination of term rewriting using dependency pairs, Theoretical
Computer Science 236 (2000), 133-178.

3. Brralleras, C., Ferreira, M. and Rubio, A.: Complete monotonic semantic path orderings, in
D. McAllester (ed.), 17th International Conference on Automated Deduction, Lecture Notes in
Computer Science 1831, Pittsburgh, PA, USA, 2000.

* Note added in print.

354 XAVIER URBAIN

4. Borralleras, C. and Rubio, A.: Termptation, in A. Rubio (ed.), Extended Abstracts of the 6th In-
ternational Workshop on Termination, WST'03, Technical Report DSIC 11/15/03, Universidad
Polittcnica de Valencia, Spain, 2003, pp. 61-63.

5. Contejean, E., March& C., Monate, B. and Urbain, X.: CiME version 2, 2000. Available at
http: //cime. iri. fr/.

6. Contejean, E., March6, C., Tom,is, A.-R and Urbain, X.: Mechanically proving termination
using polynomial interpretations, Research Report 1382, LRI, 2004.

7. Courcelle, B.: Recursive applicative program schemes, in J. van Leeuwen (ed.), Handbook of
Theoretical Computer Science, Vol. B, North-Holland, 1990, Chapt. 9, pp. 459--492.

8. Dershowitz, N.: Termination of rewriting, J. Symbolic Comput. 3(1) (1987), 69-115.
9. Dershowitz, N.: Hierarchical termination, in N. Dershowitz and N. Lindenstrauss (eds.), Pro-

ceedings of the Fourth International Workshop on Conditional and Typed Rewriting Systems
(Jerusalem, Israel, July 1994), Vol. 968, Berlin, 1995, pp. 89-105.

10. Dershowitz, N. and Jouannaud, J.-P.: Notations for rewriting, EATCSBull. 43 (1990), 162-172.
11. Fissore, O., Gnaedig, I. and Kirchner, H.: Termination of rewriting with local strategies, in

M. Bonacina and B. Gramlich (eds.), Selected Papers of the 4th International Workshop on
Strategies in Automated Deduction, Electronic Notes in Theoretical Computer Science 58,
Siena, Italy, 2001.

12. Fissore, O., Gnaedig, I. and Kirchner, H.: Simplification and termination of strategies in rule-
based languages, in Proceedings of the Fifth International Conference on Principles and
Practice of Declarative Programming, Uppsala, Sweden, 2003, pp. 124-135.

13. Giesl, J. and Middeldorp, A.: Transforming context-sensitive rewrite systems, in R Narendran
and M. Rusinowitch (eds.), Proceedings of the lOth International Conference on Rewriting
Techniques and Applications, Lecture Notes in Computer Science 1631, Trento, 1999, pp. 271-
285.

14. Giesl, J. and Ohlebusch, E.: Pushing the frontiers of combining rewrite systems farther out-
wards, in Proceedings of the Second International Workshop on Frontiers of Combining
Systems (FroCoS '98), Studies in Logic and Computation 7, Amsterdam, The Netherlands,
2000, pp. 141-160.

15. Giesl, J., Thiemann, R., Schneider-Kamp, P. and Falke, S.: AProVE: A system for proving
termination, in A. Rubio (ed.), Extended Abstracts of the 6th International Workshop on Termi-
nation, WST'03, Technical Report DSIC 11/15/03, Universidad Polittcnica de Velencia, Spain,
2003. http: //www-i2. informatik, rwth-aaehen, de/AProVE.

16. Gramlich, B.: Generalized sufficient conditions for modular termination of rewriting, Applica-
ble Algebra in Engineering, Communication and Computing 5 (1994), 131-158.

17. Gramlich, B.: Abstract relations between restricted termination and confluence properties of
rewrite systems, Fund. Inform. 24 (1995), 3-23.

18. Gramlich, B. and Lucas, S.: Simple termination of context-sensitive rewriting, in B. Fischer and
E. Visser (eds.), Proceedings of the 3rd ACM Sigplan Workshop on Rule-Based Programming,
RULE'02, Pittsburgh, PA, USA, 2002, pp. 29-41.

19. Hirokawa, N. and Middeldorp, A.: Tsukuba termination tool, in R. Nieuwenhuis (ed.), 14th In-
ternational Conference on Rewriting Techniques and Applications, Lecture Notes in Computer
Science 2706, Valencia, Spain, 2003, pp. 311-320.

20. Klop, J. W.: Term rewriting systems, in S. Abramsky, D. Gabbay and T. Maibaum (eds.),
Handbook of Logic in Computer Science, Vol. 2, Clarendon Press, 1992, pp. 1-116.

21. Krishna Rao, M. R. K.: Simple termination of hierarchical combinations of term rewriting
systems, in Theoretical Aspects of Computer Software, Lecture Notes in Computer Science
789, 1994, pp. 203-223.

22. Krishna Rao, M. R. K.: Modular proofs for completeness of hierarchical term rewriting
systems, Theoretical Computer Science 151 (1995), 487-512.

MODULAR AND INCREMENTAL AUTOMATED TERMINATION PROOFS 355

23. Kurihara, M. and Ohuchi, A.: Decomposable termination of composable term rewriting
systems, IEICE E78--D(4) (1994), 314-320.

24. Kusakari, K., Nakamura, M. and Toyama, Y.: Argument filtering transformation, in G. Na-
dathur (ed.), Principles and Practice of Declarative Programming, International Conference
PPDP'99, Lecture Notes in Computer Science 1702, Paris, 1999, pp. 47-61.

25. Middeldorp, A.: Approximating dependency graphs using tree automata techniques, in R. Gor6,
A. Leitsch and T. Nipkow (eds.), International Joint Conference on Automated Reasoning,
Lecture Notes in Artificial Intelligence 2083, Siena, Italy, 2001, pp. 593-610.

26. Middeldorp, A. and Toyama, Y.: Completeness of combinations of constructor systems, J.
Symbolic Comput. 15 (1993), 331-348.

27. Ohlebusch, E.: On the modularity of termination of term rewriting systems, Theoretical
Computer Science 136 (1994), 333-360.

28. Ohlebusch, E.: Modular properties of composable term rewriting systems, J. Symbolic Comput.
20 (1995), 1-41.

29. Rubio, A. (ed.): Extended Abstracts of the 6th International Workshop on Termination,
WST'03, Technical Report DSIC 11/15/03, Universidad Polit6cnica de Valencia, Spain, 2003.

30. Rusinowitch, M.: On termination of the direct sum of term rewriting systems, Information
Processing Letters 26 (1987), 65-70.

31. Steinbach, L: Generating polynomial orderings, Information Processing Letters 49 (1994), 85-
93.

32. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems,
Information Processing Letters 25 (1987), 141-143.

33. Urbain, X.: Approche incr6mentale des preuves automatiques de terminaison, Th~se de doc-
torat, Universit6 Paris-Sud, Orsay, France, 2001. http://www.lri, fr/ urbain/textes/
these.ps, gz.

34. Urbain, X.: Modular and incremental proofs of AC-termination, Research Report 1317, LRI,
2002.

