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Abstract. We propose a modular approach of term rewriting systems, making the best of their 
hierarchical structure. We define rewriting modules and then provide a new method to prove ter- 
mination incrementally. We obtain new and powerful termination criteria for standard rewriting, 
thanks to the combination of dependency pairs and C G-termination. Taking benefit of the generality 
of the module approach while restraining the notion of termination itself (thus relaxing constraints 
over hierarchies components), we can easily express previous results and methods the premises of 
which either include restrictions over unions or make a particular reduction strategy compulsory. We 
describe our implementation of the modular approach. Proofs are fully automated and performed 
incrementally. Since convenient orderings are simpler, we observe a dramatic speedup in the finding 
of the proof. 
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1. Introduction 

Termination is the property of a program any execution of which terminates after 
a finite amount of time. It deserves its status of fundamental property because it 
is indissociable from the very existence of any calculus defined by a program. 
Without termination there is no result, at least in finite time. The termination prop- 
erty arises in various domains. It also acts as a preliminary for proofs of other 
properties. 

We focus in this paper on termination of term rewriting systems (TRSs). 
Rewriting is used for specification, in automated proofs, and also for program- 

ming. Yet, while programs are (should be) developed in an incremental way, a TRS 
is still considered in practice as a single set of  rules. Termination proofs are made 
on the whole system without benefiting from its possible hierarchical structure. 

Termination is undecidable. In particular, methods for proving termination are 
incomplete. Thus, most efforts focus on defining techniques devoted to proving 
termination of as many programs as possible. Lately, new methods have induced 
breakthroughs in automated termination proof, namely, Borralleras, Ferreira, and 
Rubio's M S P O  [3] and Arts and Giesl's dependency pairs approach [2]. 
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Nevertheless, proving termination of a term rewriting system still remains hard, 
especially when the system consists of many rules. The reason is that a divide- 
and-conquer strategy cannot be applied directly, thus making automation of proofs 
for systems with many rules a difficult task (see below). To provide a significant 
improvement in proving termination automatically, we focus on two critical points: 
automating termination proofs and computing them incrementally, so as to deal 
with systems of hundreds of rules (common in practice) efficiently. 

Even if it allows a splitting up of a termination proof in several easier-to-solve 
subproblems, the incremental approach has not yet changed the way one deals with 
term rewriting systems, nor (even if numerous works on that subject can be found) 
the way one deals with the process itself of proving termination. 

The great difficulty in guaranteeing termination of a union from termination of 
its components has actually too often been avoided by putting hard restrictions on 
relations between components (see, for instance, Krishna Rao's restricted proper 
extensions [21, 22] or Dershowitz's constructor-based extensions [9]), that is, with- 
out referencing to the problem within the notion of termination itself. Such strong 
requirements exclude most of the unions naturally occurring in programming prac- 
tice. 

Indeed, as shown by Toyama [32], termination is not even modular for systems 
with disjoint signatures. 

EXAMPLE 1. Let us consider Toyama's example. 

G(x, y) --+ x 
R ' {  f ( O , l , x )  --+ f ( x , x , x )  7r" G(x ,y )  --+ y 

Both systems R and 7r terminate. But if we consider their union, 

G(x, y) --+ x 
G(x, y) ~ y 
f(O, 1, x) --+ f ( x ,  x, x), 

we may find an infinite reduction sequence, for instance, 

f (G(O,  1), G(0, 1), G(0, 1)) ~ f (0 ,  G(0, 1), G(0, 1)) 
--~ f(O, 1, G(O, 1)) 

f (G(O, 1), G(0, 1), G(0, 1)) --+ - . - .  

Instead of restraining the scope of our study by putting strong constraints on 
unions, we allow weakly constrained unions (so-called hierarchical) and consider 
a (slightly) restricted notion of termination that is preserved under nondetermin- 
istic collapse, ee-termination. From a historical point of view, Rusinowitch [30] 
remarked that the infinite reduction of Example 1 was due to the projective be- 
havior of system 7r. In fact, similar counterexamples may arise when one deals 
with systems with a nondeterministic projective behavior, more precisely when a 
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term t may be reduced to two distinct variables. Gramlich [17] then defined the 
notion of termination preserved under nondeterministic collapse, for which he had 
results. This is the property of terminating TRSs that remain terminating when one 
adds rules {C[x, y] --+ x; C[x, y] --+ y} for a context C (which express exactly 
that some term t containing variables x and y can be reduced to one of those). 
This is equivalent to adding system Jr where G is fresh. That property was later 
renamed collapse extended termination (Ce-termination, for short) and studied by 
Ohlebusch [27]: a system R is said to be Ce-terminating if R ~ 7r (where G is a 
fresh symbol) is terminating. 

We claim that focusing on Cs-termination is not too much of a restriction 
in practice. Actually, virtually all automated techniques for proving termination 
lead to Ce-termination, and among those, the powerful dependency pairs approach 
in particular (when used in conjunction with simplification orderings). In other 
words, ee-termination'provides means for controlling the zr-projection's possibly 
unproper behavior - illustrated by Toyama's example - with reference to termina- 
tion of most systems occurring in practice and for which we want an automated 
proof. 

System R of Example 1 is not Cs-terminating and so does not enter the scope 
of our study anymore: we simply will not try to prove its termination automati- 
cally. That system may be considered as "pathological," and such rules barely (if 
not never) occur in practical applications. The motivation of our work is to prove 
termination of systems with many rules that may be encountered in practice. 

Hierarchical Structure 

The common presentation of TRSs is based on the union of sets of rules (over 
some signatures) that are TRSs by themselves. This is not well suited to the ex- 
pression of their inner hierarchical structure for at least the following two reasons: 
it brings redundancy at the common subsystem definition level when symbols or 
rules are shared, and it does not keep track of the actual sequential construction 
and thus does not enhance any incremental process (say, a termination proof). Both 
contribute to separating rewriting from actual programming. 

To give a general framework bringing the hierarchical structure of TRSs to the 
fore, and thus provide automated methods to prove termination incrementally, we 
first recall some generalities. Then, in Section 3 we introduce rewriting modules. 
We show how the intrinsic hierarchical structure of TRSs naturally emerges from 
their formalization in terms of modules. 

In particular, this approach allows one to build TRSs the same way programs are 
built: modules after modules. It is also possible to split a whole TRS into several 
modules. Termination criteria based on these modules and leading to incremental 
and modular termination proofs would constitute a major breakthrough with ref- 
erence to the study of large TRSs, as well as in the (incremental) development of 
specifications or applications. 
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To that purpose, dependency pairs of modules as well as relative dependency 
chains are defined in Section 4. These powerful tools lead us to new criteria for 
incremental and modular termination (Theorem 1 and Theorem 2). 

Indeed, these criteria enjoy the full benefit of a really modular and incremen- 
tal approach together with the advantages of a dependency pairs approach: prov- 
ing termination with modules amounts to solving fewer and simpler termination 
constraints than in a global approach. 

Section 5 provides a class of orderings with good properties with respect to 
projection, hence to es-termination (the so-called :r-expandable orderings). 

Those results provide an incremental proof method illustrated with the complete 
example of Section 6.1 and a new notion of termination directly related to the 
incremental process hierarchical simple termination (Section 7). 

An Incremental and Modular Termination Tool 

All those results were developed with a constant thought for automation. Thanks 
to their generality as well as the purely syntactical tests provided, they are now 
part of the C/ME 2 rewriting tool [5]. With our incremental and modular criteria, 
C/ME 2 gives its user the possibility of searching termination proofs in a totally 
automated fashion. Section 6.2 provides benchmarks showing how important the 
obtained gain is (with our tool) compared to some other techniques. We also tested 
C/ME 2 on TRSs of approximately 400 rules with success: a termination proof is 
found in a few seconds. Examples came from a #-CRL specification of communi- 
cating processes by Thomas Arts,* which means they occur in practice. Their huge 
number of rules is not a problem for our termination tool because the incremental 
approach reduces termination constraints dramatically. 

We discuss in Section 8 how this work compares to that of others, especially to 
results of Arts and Giesl [1] and Dershowitz [9]. 

2. Preliminaries 

We recall usual notions about rewriting [10] and give our notation. 
A signature ~ is a finite set of symbols with arities. Let X be a countable 

set of variables; T ( Y ,  X) denotes the set of finite terms on Y" and X. Terms 
can be seen as trees: root position is then denoted by A, symbol at root position 
in a term t by A(t), t[p denotes the subterm of t at position p. A substitution 
is a mapping a from variables to terms. We use postfix notation for substitution 
applications. A substitution can easily be extended to endomorphisms of T (a ~ ,  X): 
f (fi . . . . .  tn)cr = f (tlCr . . . . .  thor). Then, t~r is called an instance of t. 

A rewrite relation is a binary relation --+ on terms that is monotonic and closed 
under substitution; -->* denotes its reflexive-transitive closure. A term rewriting 
system (TRS for short) over a signature** U and a set of variables X is a (possibly 

* Personal communication. 
** We shall omit the signature if there is no ambiguity. 
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infinite) set R(5 ~) of  rewrite rules l --+ r. A TRS R defines a rewrite relation 
--+R in the following way: s --+R t if there is a position p such that Sip = l~r 
and t = s[rCr]p for a rule l --+ r 6 R and a substitution ~r. We say then that 

Sip is a redex and that s reduces to t at position p with 1 --+ r denoted s P ~ t. 
l--+ r 

In cases where knowing the exact applied rule of  R does not matter, or if there is 
no ambiguity, we simply say that the reduction is performed with R and denote it 

p 
s --+ t. Symbols  occurring at root position in the left-hand sides of  rules in R are 

R 
said to be defined (in R); the others are said to be constructors (in R). 

A term is R-strongly normalizable (SN) if it cannot reduce infinitely many times 
for the relation defined by system R. If  R is clear from the context, we omit it. 
Similarly, a substitution ~r is said to be R-strongly normalizable if for any variable 
x, xcr is SN. 

A rewrite relation is terminating or terminates if any term is SN. 
Termination is usually proven with the help of  reduction orderings [8] or quasi- 

orderings with dependency pairs. We briefly recall what we need. An ordering pair 
is a pair (~_, >)  of  relations over T ( ~ ,  X) such that (1) ~ is a quasi-ordering (i.e., 
reflexive and transitive), (2) > is a strict ordering (i.e., irreflexive and transitive), 
and (3) > • __ = > or _~ • > = >.  We refer to these pairs as term orderings, 
since it seems natural to keep the usual denomination w.r.t, the use we make of  
them (especially for all comparisons on terms), even if the actual technical object 
is different. A term ordering is said to be well-founded if there is no infinite strictly 
decreasing sequence tl > t2 > " "  "; stable if both > and _ are stable under 
substitutions; and weakly (resp. strictly) monotonic if for all terms tl and t2, for 
all f 6 U ,  if tl _~ (resp. >)  t2, then f (  . . . .  tl . . . .  ) __ (resp. >)  f (  . . . .  t2 . . . .  ). A 
term ordering (__, >)  is called a weak (resp. strict) reduction ordering if it is well- 
founded, stable, and weakly (resp. strictly) monotonic; a simplification ordering 
if it is stable and monotonic and has the subterm property with reference to __: 
C[t] ~- t for any context C and term t. 

We point out that our notion of  weak reduction ordering is a particular case 
of  the very general notion of  weak reduction pair of Kusakari et al. [24], which 
requires (1') ~_ to be any monotonic and stable relation (but not necessarily reflex- 
ive nor transitive), (2') > to be well-founded and stable, and (3') > • ~- c > or 
~ .  > _ >.  However, it is easy to see that if __ is reflexive, (3') implies (3); in other 
words, any weak reduction pair made of  orderings is a weak reduction ordering in 
our setting. 

We distinguish between modular and incremental proofs. A modular property 
behaves as follows: if components C1 and C2 have property ~ ,  so does the 

union CI U C2. Proving a property ~ '  in an incremental manner consists first of  
proving ~ '  on a component Cl, then of  showing if" on C1 tO C2, possibly using the 
knowledge that Cl verifies ~ ' .  
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C e- Termination 

A TRS R(U)  is said to be simply terminating if R U ( U f ~ { f ( x l  . . . . . .  xj . . . . .  
xn) --+ xj I 1 < j < n}) terminates. 

A TRS R(U)  is said to be Cs-terminating if R ~J Jr, where Jr = {G(x, y) --+ 
x, G(x, y) -+ y} (with G ¢ 5~) is terminating. Throughout this article, G always 
is used for the special symbol of TRS Jr. 

Unfortunately, Cs-termination is not modular for unions of nonfinitely branch- 
ing TRSs sharing constructors, as shown by Ohlebusch [27]. Hence we restrict our 
study to the finitely branching case, that is, the case of TRS R such that for any 
l ~ r of its rules, there are finitely many different rules in R with 1 as the left-hand 
side. This implies, in particular, that only finitely many rules may be applied to a 
given term. 

Cs-termination behaves nicely with reference to unions of TRSs. It is actually 
a modular property for unions of 

- disjoint TRSs (Gramlich, Ohlebusch) [16, 27], 
- finitely branching and constructor sharing systems (Gramlich) [16], 
- finitely branching and composable systems (Kurihara and Ohuchi) [23]. 

Ohlebusch showed that the finitely branching condition is compulsory [27]. 
es-termination is less restrictive than simple termination. For instance, a sys- 

tem R is simply terminating if the union of R and all projections for all symbols 
still terminates; this allows elimination of any constructors "hiding" a redex, while 
such an elimination is impossible with rules of Jr only. 

PROPOSITION 1 (Gramlich [16]). Any simply terminating TRS is eG-terminating. 

The Dependency Pairs Approach 

We briefly recall the dependency pairs approach by Arts and Giesl [2]. 
Termination proofs based on dependency pairs were recently introduced by Arts 

and Giesl. This approach focuses on a deeper analysis of the structure of terms that 
can be reduced. 

DEFINITION 1 (Arts and Giesl [2]). Let R(.T) be a TRS, and let a ~ be split up 
into two sets .To and Uc containing respectively the symbols defined in R and the 
constructors. Let 5 ~ be the extension of signature Y" with fresh symbols f for all 
f E D .  If 

f ( s l  . . . . .  Sn) ~ C[g( t l  . . . . .  tm)] 

is a rewrite rule of R, for C being a context and with g E D, then the pair 
A 

( f  (sl . . . . .  s~), ~(tl . . . . .  tm)) is called a dependency pair of R. 

The set of all dependency pairs of all rules in R is denoted DP(R). 
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Dependency pairs may be used for proving termination using the notion of 
dependency chains: a sequence . . .  (si, ti)(si+j, t i+l). . ,  of pairs in DP(R) is an 
R-(dependency) chain if there exists a substitution cr such that 

t jcr  ---~" S j+  l l7 
R 

holds for every two consecutive pairs (si, ti) and (si+l, ti+l) in the sequence. 
Arts and Giesl prove the following criterion. 

THEOREM (Arts and Giesl [2]). A TRS R(37) is terminating if and only if no 
infinite R-chain exists. 

We note that proving automatically that no infinite R-chain exists is easier than 
proving the strict decrease of each rule. In particular, the use of strictly monotonic 
orderings is not mandatory. 

The Running Example 

We describe here the main example of the paper. Instead of choosing the usual 
Peano's arithmetic example, we prefer an example occurring in real programming. 
Binary arithmetic is really implemented, so that is what we are going to study. 

EXAMPLE 2. The following system R describes addition and multiplication of 
natural numbers in functional notation: # denotes ON, (x)0 denotes the value of x 
multiplied by two, and (x)1 denotes the value of x multiplied by 2r~ plus 1 r~. In this 
formalism, 6r~ is written #1 10, that is, the usual binary notation with a # in front. 

R :  

#0---~ # 
# + x - - +  x 
xO + yO --+ (x + y)O 
x 0 + y l - - +  ( x + y ) l  
# x x - - + #  
x 0 x y - - ~  ( x x y ) 0  

x + # - +  x 
x l  ÷ yO ~ (x + y) l 
x l + y l  ~ ((x + y )  + # 1 ) 0  
x x# - -+  # 
x l  x y --+ (x × y)O + y 

The first (simplification) rule ensures that 2r~ × ON is ON, that is, that zeros in front 
of numbers in binary notation can be erased. 

3. Rewriting Modules 

In this section, we define rewriting modules and show how they bring to the fore 
the hierarchical structure of term rewriting systems. 

From an operational point of view, a module consists of a set of "new" symbols 
together with the rules that define them. 

DEFINITION 2. Let R1 be a term rewriting system over a signature 371. A module 
extending R1(371) is a pair [372 I R2] such that 
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(1) .T] A .g2 = 0 (signatures are disjoint); 
(2) R 2 is a term rewriting system over -,¢'1 U 3z'2; 
(3) for all 1 --+ r 6 R2, A(I) 6 Y'2. 

One can easily see that R1 U R 2 is a TRS over Y'l U U2. We say then that system 
RI to R2 over Y'l tO Y'2 is a hierarchical extension ofRl (a~l) with module [-,~2 I R2]. 
We write such an extension as 

Rl (5~1) < [~2 I R2]. 

A module  can extend more than one system, and the extension by a module  
naturally associates "arrowwise." Hence we write 

Rl(5~l) < [5~2 I R2] < [.1~3 [ e3] 

the extension 

(Rl (Ul)  < [~2 I R2]) < [ ~  I R3]. 

The extension of several distinct systems by a single module  is an alternative 
notation for the (simple) extension of  the union of the relevant systems by the 
module.  

Remark 1. For the sake of readability, we may denote 

[2W'2 I Re] < [~3 I g3] 

the hierarchical extension (with [U3 I R3]) of the whole hierarchy extended with 
(that is, headed by) [U2 ] R2]. 

For instance, we may abbreviate "the hierarchy headed by [U2 I R2] is extended 
with [ ~  I R3]," denoted 

RI (~ I )  < [3~2 I R2] < [.,~3 I R3], 

in "[a~3 [ R3] extends [5~'2 I R2], '' denoted 

[5~2 I R2] < [;K3 ] R3]. 

Two disjoint modules  may extend the same base hierarchy. 

DEFINITION 3. We say that a module  [5v2 [ R2] extends a hierarchy headed by 
[5% [ R0] independently of a module  [5~ I [ R1] if 

- .T, A .g2 = 0, 
- [.To I Ro] < [oqL"l [ Rl] and 
- [ - T ' 0 [ R o ]  < [,T'2[ R2].  
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T / \ 

(a) [~2 JR2] extends [ f l  I R 1 ]  • (b) [.~'2 ] R2] extends [fo IRo] 
independently of If1 I R1]. 

Figure 1. Graphical notations of hierarchical extensions. 

Such an extension may be seen as a union ofcomposable systems [23, 26, 28]. 
Figure 1 illustrates the two different kinds of extensions. 
One can express different kinds of classical extensions by means of extensions 

of modules. For instance, we obtain a disjoint union R1 (Ul) ~ R2(5~2) whenever 
[Srl [Rl]  and [a~'2 [ R2] extend [010]  independently of each other. 

We may also describe a constructor shared union with modules. A union of two 
TRSs R1 (Uj) and R2 (~2) is said to be a constructor shared union if all symbols in 
Y'l (q .,~2 are constructors for both R1 and R2. Let us consider two systems Rl (.,~f) 
and R2(Y'2) that share only a set of common constructors Co = a~l N .,~2. Then the 
constructor-shared union R1 U R2 is easily denoted with two modules [5~ l [ RI ] and 
[~2 ] R2] independently extending the module of "constructors" [Co I 0]. 

The notion of hierarchical extensions with common subsystem [27] is captured 
because extension with modules associates arrowwise. 

We further note that the only condition we put on extensions is that new rules 
must have a new symbol at the root position of their left-hand side (see Defin- 
ition 2). Thus, module extensions subsume notions of heavily constrained hier- 
archical extensions such as constructor-based extensions [9] (systems in which 
no left-hand side has a symbol below the top that appears at the top of any left- 
hand side) andproper extensions [21, 22] (involving constraints on right-hand sides 
subterms with reference to a dependency relation on symbols). 

EXAMPLE 3. Let us consider the binary arithmetic example (Example 2). Sys- 
tem R may be seen as an extension involving three modules: 

- module R# actually defining integers in binary notation; 
- module R+ consisting of rules for addition over integers; 
- module R× describing multiplication. 



324 XAVIER URBAIN 

o, I #l 
R#{#0 ---> #} l 

/ 
{ # + x ~ x  x + # - + x  

R+ xO+yO--+ (x+y)O xl  + y 0  ---> (x + y ) l  
xO+ yl---> (x + y)l xl + yl--> ((x + y)+#1)O l 

.,%{x} 
Rx{ # x x --> # x x #--> # 

{x}x0xy--> (x xy)0 xl x y - +  (x x y ) 0 + y  

Now adding rules for subtraction consists only in extending R# by the relevant 
module [Y'_ I R_] independently of each other module. 

x - # ---~ x 
R_ (x)0 - (y)0 ~ (x - y)0 

(x) l - (y)0 ~ (x - y) l 

And the hierarchy becomes 

/ \ 

1 

# -  x ---> # 
(x)0 - (y)l  --+ ((x - y) - (#)1)1 
(x) l - ( y ) l  ~ ( x - y ) 0  

Now we would like to prove termination of the obtained hierarchy in an incremen- 
tal way, that is, using the knowledge that a subhierarchy terminates while proving 
termination of its extension by a module. 

M O D U L A R  D E C O M P O S I T I O N  

Any TRS can be studied as a certain modules hierarchy exploited in its present 
state (i.e., as it is provided). However, one can consider a unique canonical decom- 
position. A TRS can actually be seen as a hierarchy of minimal modules, modules 
that cannot be split up themselves in a hierarchy of nonempty modules. 

For that purpose, we use the graph of a purely syntactical dependency relation 
between symbols. 
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DEFINITION 4. For a TRS R(U) ,  we say that a symbol f ~ ~ directly depends 
on a g 6 3 ~ if and only if there is a rule l ~ r 6 R with 

- f = A ( l )  and 
- g either occurs in l or in r. 

We note ~d that relation. 

The decomposition is done in two steps. For a TRS R(5~), 

1. we build a graph ~ the vertices of which are symbols of 5 ~ and such that there 
is an arc from a vertex x to a vertex y if and only if x ~'d Y, 

2. we pack together symbols of strongly connected components of ~, that is, 
symbols f and g such that 

f~*dg and g~*df. 
In other words, signatures of modules are classes for the equivalence relation gen- 
erated by ~d- 

Building modules from these packs is easily done by joining for each of their 
symbols the rules for which they occur at A. The module hierarchy may then be 
read on graph ~. 

Note that there is no cycle in the obtained hierarchy because symbols of mutu- 
ally recursive functions appear in same packs. Thus, they belong to same modules. 
Such a decomposition is clearly unique. 

Remark 2. For the sake of readability, that is, in order to avoid many mod- 
ules with no rule and only one constructor, one can gather constructor symbols 
reachable from the same packs. 

In particular, the hierarchy shown in Example 3 is a canonical one with refer- 
ence to Remark 2. 

4. Incremental and Modular Termination 

The module framework provides a dependency pairs approach applicable to an 
incremental treatment of the termination proof. 

4.1. DEPENDENCY PAIRS OF MODULES 

DEFINITION 5. Let 5 ~ be signature :g extended with "marked copies" f ' f o r  all 
symbols f .  Marking of a term is as follows: for a nonvariable term t 6 T(Z',  X), 
we denote 7"the term t in which the symbol at a has been replaced by its marked 
copy. 

Let M = [U I R] be a module. A dependency pair of module M is a pair of 
terms (~, r') such that there is a rule I --+ r ~ R for which term r' is a subterm of r 
with A(r ')  ~ 5 ~ defined in R. 

We denote MDP(M) the set of all dependency pairs of a module M. 
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Since we consider now only subterms whose rhs root symbols are defined lo- 
cally, all dependency pairs of a module [Y f R] extending a system R0(~)) belong 
to the set of "classical" dependency pairs of R considered in R tO R0. In other words, 
MDP([Y ] R]) _c DP(R U R0). 

EXAMPLE 4. In the binary arithmetic example, the classical approach amounts 
to considering five dependency pairs for rules defining multiplication (that is, with 
symbol × at A). 

(x0 ~ y, X ~ y) (X0 ~ y, (X × y)O) 
(xl ~ y , x  ~ y) (xl ~ y, (x × y)O) (xl ~ y, (x x y)O~- y). 

But there are only two dependency pairs of module R×, namely, (x0 ~ y, x ~ y) 
and (x 1 ~ y, x ~ y), since × is the only symbol of signature Y×. 

Remark 3. Let us consider a system R(Y)  over constructors Yc and defined 
symbols YD. When such a system is seen as the extension [Yc [ 0] < [Yo I R], 
the dependency pairs of module [YD I R] are exactly the "classical" dependency 
pairs of R(Y)  in Arts and Giesl's approach. That is, MDP([YD I R]) and DP(R(Y))  
coincide. 

4.2. RELATIVE DEPENDENCY CHAINS 

We saw that, considered in a hierarchy, the notion of "defined symbol" loses its 
absolute meaning to become local to a module of that hierarchy. 

The same phenomenon arises with chains of dependency pairs of modules: they 
indeed rely on what rules occurring in the hierarchy may be applied between MDP- 
steps, and not only on what is provided by the considered module. In other words, 
dependency chains become relative to some relevant set of rules. 

DEFINITION 6. Let M = [Y I R] be a module, and let S be an arbitrary term 
rewriting system. A dependency chain of M over S is a sequence of pairs of 
MDP(M) together with a substitution tr such that for any two successive pairs 
ISi, ti) and (si+[, t i+l),  

tiff  > Si+lff .  
s 

A dependency chain of a module M over a system S with a substitution a is 
said to be minimal if tr is S-strongly normalizable. 

Note that since S is an arbitrary TRS, it may be completely different from R. In 
particular, we may have S D R. 

Further note that requiring nonroot reductions between pairs avoid assumptions 
on those: marked or unmarked pairs may be used. 

The following proposition gives a (new) characterization of Ce-termination in 
terms of relative dependency chains. 
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PROPOSITION 2. A term rewriting system R( U) is Cs-terminating if and only if 
there is no infinite chain of [ U I R] over R U Jr. 

Proof Since G does not belong to Y" and since right-hand sides of re are vari- 
ables, DP(R U 70 = DP(R) and e~-termination of R is shown with the help of 
Remark 3. [] 

This characterization is entirely expressed within the module framework and, 
thus, is quite convenient in proofs, as a built-in property. 

4.3. TERMINATION WITH MODULES 

Dependency pairs of modules and relative dependency chains allow us to define 
some purely syntactical tests so as to prove termination in an incremental fash- 
ion. This section is organized as follows: first we make a remark about chains 
(Lemma 1); then we state our main result, Theorem 1. Its proof is rather tech- 
nical and involves a key lemma, Lemma 2. To prove this lemma, we define an 
interpretation of terms and state several lemmas about it. Eventually we prove 
Lemma 2. 

From Theorem 1 we obtain as a corollary sufficient conditions to ensure com- 
posability of O~-termination (Corollary 1), that is, that it can be proven incremen- 
tally from es-terminating hierarchies. We then focus on extensions of a system 
with two independent modules and state Theorem 2, a corollary of which is a 
previous result by Kurihara and Ohuchi [23]. The hierarchy graph of theorems 
and lemmas may be found Figure 2. 

[Lea, real  I ILemma3] [Lemma4] [Lemma5 I 

/ ~ L e m m a ~ ~  

[Theorem 11 [Theorem 2 l 
T 

[ Corollary 11 
Figure 2. Hierarchy graph of theorems and lemmas. 
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Termination with Modules 

We point out here an interesting property of chains of modules. 

LEMMA 1. Let R~(UI) be a TRS and [a~2 ] R2] be a module such that [5~j [ R1] 
< [a~2 [ R2]. 

Then for  any two pairs {ul, vl}, (u2, v2) s.t. (u~, vl) 6 MDP([~I I RI]) and 
(U2, I)2} E MDP([U2 I R2]), there is no substitution ~r such that 

CA * 
1)10" > U20". 

A 

Proof Since A(uzo) = A(u2) E a~2 and A(vlo)  = A(vl) E ,Tj, we obtain 
A(u2)  5 k A(Vl) .  [] 

This property will be useful in the proof of the two main results, Theorems 1 
and 2. 

We now state Theorem 1. 

THEOREM 1. Let[Ul I Rj] < [5~2]R2]beahierarchicalextensionofRl(5~l); 
/f 
(1) R1 is Ce-terminating, and 
(2) there is no infinite dependency chain of[5~2 ] R2] over Ri U R2, 

then R I U R2 is terminating. 

In the proof of this theorem, as well as in the proof of Theorem 2, we use a more 
general result given here as a technical key lemma: Lemma 2. 

LEMMA 2. Let Si and $2 be two TRSs over signature 5~1. Let $3(UI U U2) be such 
that 

-- ~ 1 N  ff2"2 = ~ ,  

- for  each l --+ r E Ss, A(1) E a~2. 

Then, from an infinite minimal dependency chain of  [ Ul I $2] over Sl U $2 U $3, 
one can build an infinite dependency chain of  [a~l [ $2] over Sl U $2 U Jr consisting 
of 
- the same sequence of pairs, 
- a new substitution as well as new rewriting steps. 

Proof of  Theorem 1. By contradiction. The proof scheme is as follows. Let us 
suppose that there is an infinite dependency chain of Rl U R> We are going to show 
that 

- either there is an infinite dependency chain of [U2 ] R2] over Rj U R2, thus 
contradicting the second premise, 

- or RI is not C6-terminating, now contradicting the first premise of Theorem I. 
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We suppose that R1 UR2 does not terminate. Thus there is an infinite dependency 
chain of module [Y'I U .T2 I Rl U R2] over Rt U R2. Recall that marked symbols 
occur at root position only. 

Pairs of MDP([U1 U 5~2 [ Rj U R2]) consist of 

@pairs of [Svj [ R1]; 
@pairs ~ [f2 I R2]; 
@pairs (l, r ') such that l --+ r 6 R2 and r' is a subterm o f r  the root symbol A(r') 

of which belongs to a~l. 

Premises give us information with reference to the first two cases. To avoid the 
third one, we use Lemma 1. 

From that lemma we know that pairs (~) and @ may follow pairs @ only in a 
dependency chain. Similarly, pairs @ may follow pairs @ or @ only. 

Hence we may encounter three cases: the dependency chain we consider con- 
sists of 

1. pairs @ only, that is, pairs of module [a~2 I R2] or 
2. pairs @ only, that is, pairs of module [3vl [ Rj] or 
3. pairs @ in finite number (possibly zero) followed by only one pair @, then by 

an infinite number of pairs @. 

• First case: An infinite dependency chain of pairs of [:V2 [ R2] over RI U R2 
contradicts the second premise of Theorem 1. 

• Cases 2 and 3: In both cases an infinite chain of [.,~l [ Ri] over Rl U R2 occurs. 
We will show that such a chain can be translated in an chain of [Y'I I R1] over 
R1 U Jr. Thus, we can obtain an infinite chain of [Wl ] RI] over Rl U 7r, that 
is, a infinite chain of [5vl tA {G} [ R~ tA zr] over RI UTr, the existence of which 
contradicts first premise of Theorem 1: es-termination of R ~. 
That proof mainly consists of an application of Lemma 2 with R~ = $1 = $2 
and R2 = $3. 
Thus, for any infinite dependency chain of [Ul I Rl] over Rl U R2, we can 
build a corresponding (infinite) chain of [Ul [ R1] over R1 U re, that is, an 
infinite dependency chain of Rt U Jr. Since we supposed R~ Cs-terminating, 
such a chain raises a contradiction. 

This ends the proof of Theorem 1. [] 

Prerequisites of proof of Lemma 2. The proof sketch is as follows. To get rid 
of symbols of Y'2, we provide an interpretation I of terms (see Definition 7). Then 
we prove that this interpretation is sufficient for our purpose: first it is well defined 
(Lemmas 3, 4, and 5), and second we may "simulate" any S1 U $2 U $3 step with (a 
finite number of) $1 U $2 U Jr steps (Lemmas 6 and 7). 
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Eventually, we may build a suitable infinite dependency chain of [.gl I $2] over 
$1 t0S2Uzr from any infinite minimal dependency chain of [Y'I I $2] over Sl US2US3 
with substitution cr by keeping the same pairs, and using substitution or' such that 
for all x, xer' = I(x~). [] 

We use an interpretation of terms akin to Gramlich's [16]. The main difference 
between our interpretation and Gramlich's q~ is related to the definition of Red(t). 
We actually take all one-step reductions into account while function SUCC & (t) 
occurring in • selects from terms obtained in reductions by --**s the ones whose 
root symbol belongs to Uj. 

This interacts with the sizes of terms, bigger in our case, and would result in 
other proofs, since interpretations of two terms s and t might be identical if more 
than one-step reductions are considered. Thus, using Gramlich's ~ ,  we would end 
with 

q~(s) >* ~( t )  
Si US2UTr 

instead of 

• (s) >+ ~ ( t )  
S I US2 UTg 

as conclusions of main lemmas. Further note that even with these changes, The- 
orems 1 and 2 would be proven in a similar manner. This ends the sketch of the 
proof. 

We expose now the prerequisite of the proof of Lemma 2: we define the inter- 
pretation and state some useful lemmas. 

We denote T ~ ( ~ ,  X) the set of infinite terms over signature ~ and variables 
set X. 

DEFINITION 7. Let us denote S = Sj U $2 U $3, and let > be an arbitrary total 
ordering over T~(Y] U {G • 2~}U {_L • 0}, X). 

Interpretation I(x) • T(5~j U U2, X) ~ T~(Y'I U {G • 2} U {_L • 0}, X) is 
defined as follows: 

l ( x ) = x  i f x 6 X ,  
f ( l ( t l )  . . . . .  I(tn)) 

I ( f ( t l  . . . tn))  = Comb(Red(f( t l  . . . . .  tn))) 

where 

A 
i f f  e ~j ,  
i f f  E ~2, 

Red(t) = {I(t')lt , t'}, 
SIUS2US3 

Comb(0) = _L, 
Comb({a} tO E) = G(a, Comb(E)),  where for all e 6 E, a < e. 
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G 

U2 

Uk 
Figure 3. Structure of interpreted terms. 

Red(t) denotes the set E of interpreted one-step-reducts of t. To avoid any 
ambiguity on the actual construction of tree Comb(E) from E (nonordered set), 
we need a total ordering > providing a building strategy. 

Remark 4. The interpretation of a term t = f ( t l  . . . . .  t,) where f e Y'2 is, as 
Figure 3 illustrates, a sequence of its one-step-reducts interpretations, each ui being 
an element of Red(t). Since those are interpretations themselves, it is possible to 
reach any of them by using a suitable ---+* --+ reduction. 

Jz  2 7g I 

Given a substitution tr, by I(cr), we denote the substitution or' such that xo-' = 
I (xcr) for any variable x. 

A 

LEMMA 3. For each t ~ T(Sri, X)  and each substitution or, 

I(tcr) = t l ( a ) .  

Proof  Structural induction on t. [] 

LEMMA 4. For all ti . . . . .  t~ o f T ( U l  UU2, X)  and for  any context C over 5rl with 
n holes, 

I (C[ti . . . . .  t,]) = C[I  (tl) . . . . .  I(t,)]. 

Proof. Structural induction on C. [] 

LEMMA 5. For each term t strongly normalizable fo r  Si U 82 U $3, l (t) is finite. 
Proof. Immediate, since we are interested in finitely branching systems only. [] 

We state now the two fundamental lemmas for the proof of Lemma 2. 
A 

LEMMA 6. For all s and t in T(:VI UU2, X)  and each rule l ~ r ~ S1 U 82, 

i f s  P> t, then I(s) >+l(t). 
l-->r SI US2UYt 

Moreover, i f  p ¢ A and A(s) E ~l, then l (s) #A + > I ( t ) .  
St US2 Urr 

Proof. Two cases depending on symbols occurring on path from A to p. 
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1. If there are only symbols of Y], then s = C[sl  . . . . .  l a  . . . . .  s,,], Sip = l a  and 
C is a context with n holes over Y'I. We have 

I ( s )  = l ( C [ s l  . . . . .  l a  . . . . .  s,,]) 

= C[I(s l )  . . . . .  l ( l a )  . . . . .  I (sn)] (Lemma 4) 

= C [ l ( s l )  . . . . .  1 1 ( a )  . . . . .  I(sn)] (Lemma3) 
P > C [ l ( S l )  . . . . .  r I ( a )  . . . . .  I(s,,)] (Premises) 

St US2 

= C [ I ( s l )  . . . . .  I ( r a )  . . . . .  l(sn)] (Lemma 3) 

= / (C[sI . . . . .  r a  . . . . .  sn]) (Lemma 4) 

= I ( t ) .  

2. If symbols of U2 occur, then there is a smallest p' < p (with reference to 
the prefix ordering) such that A(slp,) ~ Y'2. We may again assume (without 
any loss of generality) that s = C[sl  . . . . .  s'  . . . . .  sn], where C is a context 
with n holes (possibly empty) over 3:'1, p = P 'q  and sit,, = s' with s' = 
C ' [ l a ]  > C ' [ r a ]  = t'. Hence, 

Si US2 

l ( s )  = I ( C [ s l  . . . . .  s ' ,  . . . , s , , ] )  

= C [ I ( s l )  . . . . .  l ( s ' )  . . . . .  I(s~)] (Lemma4). 

From Definition 7, I (s') = Comb(Red(s')).  But 

S'lq = l a  > ra .  
Si US2 

We can then deduce from definition of Red: 1 ( ra)  6 Red(la) .  Thus, I (t') is a 
subterm of I (s I) and 

I ( s ' )  --++ l ( t ' ) .  
yr 

Eventually, 

C [ I ( s l )  . . . . .  I ( s ' )  . . . . .  I(s,,)] -++ C [ l ( s l )  . . . . .  I ( t ' )  . . . . .  I(s,,)] 
7T 

= I ( C [ s l  . . . . .  t ' ,  . . . .  s,,]) (Lemma4) 

= I ( t ) .  
[] 

LEMMA 7. For  all  s a n d  t in T ( '~ I  ©$-2, X ) ,  i f  s P--* t, then  l (s)  --++ I ( t ) .  
$3 Jr 

Moreover ,  / fA(s)  6 ~l, then  I ( s )  #A> + l ( t ) .  
7( 

P r o o f  Similar to case 2 in proof of Lemma 6. [] 

We may now tackle the actual proof of Lemma 2. 
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Proof of  Lemma 2. Let (u t, 1)1 ), (U2, V2) . . . .  be an infinite minimal dependency 
chain of [,,<'l I $2] over $1 U $2 U $3 with a substitution 0.. Let 0.' be the substitution 
such that for all x, xo.' = I(xo.). 

Substitution o. is strongly normalizable since the considered chain is minimal. 
Then from Lemma 5 we know that 0.' substitutes finite terms only. 

We are going to show that (Ul, Vl), (u2, v2) . . . .  together with 0.' is actually a 
dependency chain of [,TI I $2] over $1 U $2 U Jr. 

To do that, we have to prove that for all i, 
¢A * 

l)io. t ) /g i+ lo .  I. 
SI US2Uyr 

We know that 
CA * 

rio. ) Ui+ l  O'. 
SIUS2US3 

Let us consider a s t eps  P >t. Since 
SIUS2US3 

= A ( v i )  = A ( / , t i + l )  E ,/"L" I, A(s) = A(t) 

then from Lemma 7 or from Lemma 6 we have 
CA * I(s) > I(t) .  

SI US2UJr 

We may build the expected sequence step by step in order to obtain 

I(vio-) > I(Ui+lo'). SIUS2Urc 

Since l (vso.) = rio.' and I (ui+lo')  = Ui+lo" I, we conclude by Lemma 3. 
This ends the proof of Lemma 2. [] 

Corollary and Independent Extensions 

By considering the extension of RI with [Ue U {G : 2} I R2 U Jr] and with the help 
of Theorem 1, we obtain as a corollary a sufficient condition for proving Ce- 
termination of the extension itself. 

COROLLARY 1. Let [Y'l J RL] 
R1 (U1); if  

(1) R1 is es-terminating, and 
(2) there is no infinite dependency chain of[U2 I R2] over RI U Re U Jr, 

then Rl U R2 is Cs-terminating. 

We may compose applications of this corollary in order to perform a termination 
proof in an incremental fashion, by proceeding from the base to the top of the 
modules hierarchy. 

[Uel R2] be a hierarchical extension of  
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THEOREM2.  Let[5~l I R1] < [5721R2]beahierarchicalextensionofRl(Ul), 
and let [a~3 I R3] be a module extending R1 independently of R2. If 

(1) R1 U R2 is C~-terminating, and 
(2) there is no infinite dependency chain of[U3 I R3] over R1 U R3 U Jr, 

then R1 U R2 U R3 is C~-terminating. 
Proof Let us suppose that there is an infinite dependency chain of R1 U R2 U 

R3 U yr. We are going to show that in such a case, we may conclude either on non- 
Cs-termination of Ri U R2, thus contradicting first premise, or on the existence 
of an infinite relative dependency chain of module [5% I R3] over Ri U R3 U Jr, a 
contradiction to the second premise. 

Following from the definition of hierarchical extensions and by Lemma 1, we 
know that chains of R~ U R2 U R3 U yr are 

- chains of [ ~  I R3]; or 
- chains of [a~l U -,~2 I Rl U R2] over R1 U R2 U R3 U yr = R; or 
- chains consisting of a finite number of pairs of module [a~3 I R3], followed by 

only one pair ~ , t~  such that A(s) 6 a~3 and A(t) ~ 3:1 U ~2, then by a chain of 
[U1 U 5~2 I RI U R2] over RI U Re U R3 U yr = R. 

Thus, it suffices to prove finiteness of relative chains of [Y'3 I R3] over R and of 
[a~l U Y'2 I Rl U R2] over R. 

- There is no infinite chain of [a~3 I R3] over R. Otherwise, by Lemma 2 with 

* SI = R1, 
• S2=R3UYr,  
• $3 = R2, 
• Y'I = Y'l U ~ and 5~2 = Y), 

we would end with an infinite chain of [U3 I R3] over Rl U R3 U yr. But all 
those are finite from the premises. 

- There is no infinite chain of [:Vi U 3=2 I R1 U R2] over R. Otherwise, applying 
Lemma 2 with 

• S l = 0 ,  

• $2 = R1 U R2, and 
• $3 = R3 U yr, 

we would end with an infinite chain of [U1 U 572 I R1 U R2] over R1 U R2 U yr. 
But these chains are all finite because Rl U R2 Ce-terminates from premises. 

Hence, R~ U R2 U R3 is C~-terminating. [] 

Remark 5. The crucial point in Theorem 2 is that no premise bounds R2 and R3 
together. Thus, a proof can actually be performed in an incremental and modular 
fashion. 
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Further note that Ce-termination of Rl U R2 is necessary: we may otherwise 
encounter Toyama's counterexample by choosing 

- R | = 0 ,  
-- g 2 = {f(0,  1, x) --+ f ( x ,  x, x)} and 
- R 3  = T r .  

Eventually, by Proposition 2 we have as a corollary of Theorem 2 a previous 
result by Kurihara and Ohuchi [23]: ee-termination is a modular property for 
unions of composable TRSs. 

Theorem 1 is clearly an incremental result, while Theorem 2 is a modular one: 
irrelevant rules (those in R2) do not interfere. 

5. Prov ing  Terminat ion  

Termination is usually proven by using appropriate well-founded orderings. We 
propose in this section a class of orderings (zr-expandable orderings) that are well 
suited for Cs-termination, that is, take care of the possible projective behavior of 
an additional set of rules. Using these orderings, we obtain corollaries of Theo- 
rems 1 and 2 that provide effective methods for incremental/modular termination 
proof. 

5 .1 .  Y~-EXPANDABLE O R D E R I N G S  

DEFINITION 8. A term ordering (>-, >) over T(W, X) is said to be re-expandable 
if there is a reduction ordering (_>-', >')  over T(.T t2 {G : 2}, X) such that 

- (>-', >')  restricted to T(5 ~, X) is exactly (>-, >); 
- G(s, t) >-' s and G(s, t) >_' t for all s and t in T(Y', X). 

We say that such a suitable (>-', > ')  is an associate ordering of (~, >). 

7r-expandable orderings may be used for proving Cs-termination. 

PROPOSITION 3. Let (_,  >) be a strictly monotonic zr-expandable ordering. I f  
for  each rule I ---> r o f  a term rewriting system R, 1 > r, then R is Ce-terminating. 

Clearly, any simplification ordering is Jr-expandable. In particular, RPO and the 
orderings induced by polynomial interpretations are Jr-expandable. We may indeed 
combine them so as to obtain some new ones. 

Lexicographical Compositions 

In particular, lexicographical compositions may be useful for building Jr-expand- 
able orderings. 
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DEFINITION 9. Let (>-1, >1) and (>-2, >2)be  term orderings. The lexicograph- 
ical composition ((>- 1, > 1 ), (>- 2, > 2))l~ of (_  1, > 1 ) and (>- 2, > 2 ) is a pair (>-, >) 
such that 

- s > t i f f  s > l t or s ___ 1 t and s > 2 t; 
- s _ t i f f s  >~ t o r s  >-_1 t a n d s  >-2 t. 

It is easily shown that the lexicographical composition of two term orderings is 
itself a term ordering. 

PROPOSITION4. I f  (>-l ,>t) ,  (>-2, >2) are re-expandable orderings with 
(5_ 1, > 1) strictly monotonic, then the lexicographical composition ((>-l, > i), 
(_2, >2))/ex is a 7r-expandable ordering. 

Moreover, i f  (>-2, >2) is strictly monotonic itself then so is the composition 
((>-1, >1), (>-2, >2))lex" 

Proof  We have to find a suitable (>-', >')  satisfying the two conditions of 
Definition 8. Let us suppose that (>-'1, >'1), strictly monotonic, and (>-~, >~) are 
associate orderings to, respectively, (>-1, >1) and (>-2, >2). We may verify that 
(>", >')  = ((>-'1, >'1), (>-~, >2))lex is suitable, strict monotonicity of (>-'~, >'1) 
implying the (weak) monotonicity of the composition. 

We need to show 

1. correct comparison of G(s,  t) and s for all s and t; 
2. correct comparison of G(s, t) and t for all s and t; 
3. equality of (>-', > ')  restricted to T(Z' ,  X) and ((>-1, >1), (>-2, >2))lex. 
• G ( s , t )  >-' s. Since (~1, >1) is 7r-expandable, we know G(s, t) ~_] s; 

similarly since (>-2, >2) is 7r-expandable, we know G(s, t) >"2 s, hence 
G(s,  t) >-' s. 

• G(s,  t) >-' t. Similar to previous case. 
• ( _ ,  >')IT~Y.X) ~ ((~l ,  >l) ,  (>-2, >2))tex. Let us get into details fo r thes  _ '  t 

case for s and t 6 T (U ,  X): Either s >'l t and from premises s >1 t, or 
s ---~1 t and we face two possibilities (1) s >2 t and then from premises s >2 t 
or (2) s >-~ t and then from premises s ~2 t. 

• (>_I, >t)IT(U,X) ~ ((~-1, >1), (>-2, >2))[ex. Immediate. 

Proof regarding > is similar. [] 

Recursive Program Schemes 

As well as lexicographical compositions, recursive program schemes [7, 20] may 
be used to construct Jr-expandable orderings. 

DEFINITION 10. A recursive program scheme (RPS) is a term rewriting system 
such that 
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- each defined symbol appears at root position in only one rule, and 
- each rule is of the form f ( x l  . . . . .  xi . . . . .  xn) --+ r where xi are pairwise 

distinct variables and r is any term. 

All RPSs are confluent, and their termination is decidable. All RPSs considered 
hereafter are supposed to be complete; in particular, we denote by t$ p the unique 
P-normal form of any term t. 

DEFINITION 11. Given a term ordering (El, >1) and a RPS P, we define 
(~, >) = (_~1, >l)$P the following way: 

- s ~ t i f fsSe ---1 t,l,e and 
- s > t i f f s S e  >1  t S p .  

Arts and Giesl have shown that if term ordering (±1, >1) is weakly monotonic, 
then (~ l, > t)4, e is a weakly monotonic term ordering [2]. It is not strictly monotonic 
in general, even if (~l ,  > 1) is strictly monotonic. 

PROPOSITION 5. Let (>-, >) be a zr-expandable ordering. I f  P is a recursive 
program scheme over 5 v such that G f[ 3 =, then (>-, > ) $ e  is a re-expandable 
ordering. 

Proof Let (~1, >-1) be a re-expandable ordering, and let (_,  >-) be defined by 
(±, >-) = (~1, >-1)$P. We have to find an ordering (___', >')  satisfying the two 
conditions of Definition 8. 

Let us suppose that (>--'1, >'1) is an associate ordering of (~t ,  >~). We shall 
prove that (_~', > ' )defined by s ~ ' t  (resp. > ' ) i f f sSp  ~-'1 tSp (resp. >'l)suits. 

First, let us check that rules of re are oriented in a correct way. Since G (s$ p, 
t~.e) ~'1 SSp because ___l is n'-expandable, we have G(s, t) >-' s by definition. 
Comparison to t is checked similarly. 

Second, let us show that 

(~' ,  c_ >')IT~,x) (~, 
and t belong to T ( ~ ,  
t~, p, that is, s ~ t. 

(>J, >')]T(~-,X) = (>', >). 

>). I f s  >-' t, we get SSp>-' 1 tSe. But G ~g 5v; hence s 
X). Since _ l is Jr-expandable, we know that s ,l, P _ 1 

(>-', >')lT(~-,x) ~ (>-, >). If s ~ t, then since G ~g ~ we know that s and 
t belong to T(5 ~, X). Hence sSe El tSe and sSe ±'t t4,e, which means by 
definition s ___' t. 

Proof regarding > is similar. [] 

5.2. METHODS FOR PROVING TERMINATION 

From Proposition 2 we have a first test for termination. 

COROLLARY 2. Let (>-, >) be a (weakly monotonic) re-expandable ordering 
such that 
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(1) l >- r for  each l --+ r E R, and 
(2) s > t for  each (s, t) ~ DP(R). 

Then R is Cs-terminating. 

We obtain similarly effective corollaries to our theorems. A corollary of Theo- 
rem 1 is given first. 

COROLLARY 3. Let [5~1 ]R1] < [~2 I R2] be a hierarchical extension of  
Rl(a~l); i f  

(1) Rl is Cs-terminating, and 
(2) there is a weakly monotonic reduction ordering (resp. weakly monotonic Jr- 

expandable) (>-, >) such that 

- Rl tO R2 c >- and 
- MDP([Sc'2 [ R2]) _ >, 

then Rl U R2 terminates (resp. Ce-terminates). 
Proof. By contradiction. Let us suppose the existence of an infinite chain. Since 

the ordering (weakly) decreases for each rewriting step and strictly decreases for 
each MDP step, there is a infinite sequence strictly decreasing for (>-, >). This 
contradicts the well-foundedness of (_,  >), and R1 U R2 terminates by Theorem 1. 

If (__, >) is Jr-expandable, then Rl tO R2 U Jr c >- and R1 U R2 Cs-terminates 
by Corollary 1. D 

Similarly, zr-expandable orderings give us a simple way of using Theorem 2. 

COROLLARY4. Let [5~1 ]Rj]  < [~2 I R2] be a hierarchical extension of  
R1(5~1), and let [5~3 ] R3] be a module that extends R1 independently of[Y'21R2]. 
If 
(1) Rl tO R2 is Cs-terminating, and 
(2) there is a weakly zr-expandable ordering (~,  >) such that 

- R l U R 3 C > - a n d  
- MDP([U3 I R3]) __c >, 

then Rl U R2 (3 R3 C~-terminates. 

Remark 6. Optimizations with dependency graphs [2] may be applied to all 
results presented here [33]. 

In particular Arts and Giesl showed how to obtain an estimation* of the de- 
pendency graph, that is, a graph that contains the actual dependency graph. This 
approximation [2] is based on a replacement in dependency pairs of the proper 

* Middeldorp proposed another approximation [25], which is closer to the actual dependency 
graph (hence with more termination power) but slightly less simple to compute. 
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subterms whose root symbol are defined by fresh variables (the CAP operation). All 
those variables are made pairwise distinct (the REN operation); then the edges of 
the estimated graph are determined following unifiability of members of modified 
dependency pairs: there is an edge from (sl, tl) to (s2, re) if s2 and REN(CAP(tl)) 
are unifiable. 

We point out that system Jr adds arcs to the dependency graph but, forArts and 
Giesl's estimation, the estimated dependency graph remains unmodified. 

This last remark amounts to comparing to what can be obtained by using de- 
pendency graphs analysis only [1]. The latter method would lead to the same set of 
strict constraints coming from dependency pairs of module R3 after computation 
of strongly connected components, or even a smaller one because it does not take 
only the root symbol into account. Regarding nonstrict constraints, their set would 
be RI U R2 U R3 c >-, which contains additional constraints coming from rules of 
Re, contrary to what happens with Corollary 4 whose (weak) requirements involve 
R l U R3 only. 

Ending with fewer constraints over suitable orderings makes the discovery of 
one of them easier. Hence, applying the hierarchical criteria above, then using the 
dependency graph analysis on each module will be a significant improvement over 
previous approaches, as we shall illustrate in Section 6.2. 

6. Modules and Automation 

Thanks to their generality and to the purely syntactical tests, we implemented our 
methods in the termination toolbox of the C/ME 2 system [5]. 

When it comes to automation of proofs, ordering constraints are the main prob- 
lem. For large TRSs, even if rules are "simple," their huge number is almost insur- 
mountable for most solvers in reasonable time. If they are very strict, an automated 
search for a suitable ordering often fails. 

Our results induce a significant decrease in the number (modularity with Theo- 
rem 2 and the corollaries) and in the strictness (incrementality with Theorem 1 and 
the corollaries) of these constraints, and such improvements show on termination 
proofs in practice. 

For instance, C/ME 2 took less than a second for finding all interpretations in 
Section 6.1, in a completely automated way, using the incremental and modular 
methods. 

A catalogue of examples treated with C/ME can be found in the C/ME distrib- 
ution [5]. 

6.1. EXAMPLE 

We present in this section a complete example of an incremental proof using our 
results. We will actually extend Example 2. The complete hierarchy is illustrated 
by Figure 6 (page 340). 
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! 

Figure 4. Independent extensions with [5~+IR+] and [a ~_ I R-] .  The proof of 
es-termination of the union uses C~-termination of [Y'+ f R+], but that module does not 
interfere in ordering constraints: no constraint (weak or strong) arises from it. 

7 ~  ~ , 

Figure 5. Arithmetical operators and comparisons are independent. 

1///1\ 

Figure 6. Modules hierarchy. 
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So let us consider the system describing natural numbers (which clearly e¢- 
terminates): 

Ur~{# " constant; 1, 0 • unary, 
Rr~{#O --+ #. 

We already defined some arithmetic on these integers, in particular addition with 
[.T'+ I R÷] to which we add an associativity rule in order to make it overlapping: 

Y'+{+ • infix binary} 

R+ 

x + #  ~ x 
# + x  ---> x 
xO + yO --+ (x + y)O 
x O + y l  ---> (x + y) l  
x l + y O  --+ (x + y) l  
x l + y l  --+ ((x + y) +#1)0  
x + ( y + z )  --+ ( x + y ) + z  

Termination of Rr~ U R+ is proven using dependency pairs and a polynomial inter- 
pretation. 

MDP([,,¢'+ [ R+] )  : 

A A 

(xO+ yO, x + y) 
(xO~ y l , x  ~ y) 
(xl +yO, x + y )  
(xl ~ - y l , x  ~-y) 
(xl ~-yl ,  (x + y)~-#1) 
(x ~ (y  + z), x ~ y) 
(x ~ (y  + z), (x + y) ~- z) 

I[#11 = 0 
I[0]](x) = x + 1 
I[1]](x) = x + 2 
I[+]](x, y) = x + y + 1 
I[~-]](x, y) = x + 2y 

With reference to the ordering defined using the zr-expandable interpretation above, 
pairs of MDP([Y'+ I R+]) strictly decrease while rules of RN U R+ U Jr weakly 
decrease. Corollary 3 allows us to conclude on the Ce-termination of R• U R+. 

We may want to perform subtraction. 

~_ { -  • infix binary} 

R_ 

X - - #  ---~ X 

# - x  ---~# 
x O - y O  -* ( x - y ) O  
xl  - yl  ---> ( x -  y)O 
x l -  yO --+ ( x -  y) l 
x O - y l  --+ ( ( x - y ) - # 1 ) l  

Again, dependency pairs of modules together with a polynomial interpretation are 
sufficient for showing that RN U R_ Cs-terminates. Indeed, for 
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~#~ = 0 

~0](x) = x + 1 

~l](x)  = x + 1 
~ - ~ ( x , y )  = x 
f f ~ ( x , y )  = x 

pairs of [Y'_ [ R_] strictly decrease while rules in Rr~ U R_ weakly decrease. 
Applying Corollary 4, we obtain that Rr~ U R_ U R+ is Cs-terminating (cf. Figure 4). 

To compare integers, we need Boolean operators. We add a new module, namely, 
[,~Bool ] RBool]. 

UBoo,{true,false : constant;--, : unary; A : infix binary; if : ternary} 

RBool 

--,(true) -+ false 
--,(false) --> true 
x A true --+ x 
x A false ---> false 
if(true, x, y) --+ x 
if(false, x,  y) --+ y 

This system is dependency pairs free; hence it trivially Ce-terminates. 
We can now define a comparison in module [Y'ge I Rge], extending both RN and 

RBool. 

5~ge{ge :binary} 
ge(xO, yO) 
ge(xO, yl)  
ge(x l ,  yO) 

Rue ge(x l ,  yl)  
ge(x, #) 
ge(#, xO) 
ge(#, xl)  

--+ ge(x, y) 
--+ --,ge(y , x) 
---> ge(x, y) 
--+ ge(x, y) 

true 
--+ ge(#, x) 
--+ false 

Termination of Rr~ U RBool U Rge is shown by RPO with {ge > --, > (true,false)} 
directly. As a simplification ordering, RPO is zr-expandable. Hence, the relevant 
union es-terminates thanks to Proposition 3. We may then apply Theorem 2 and 
thus obtain ee-termination of Rr~ O RBool U Rg e U R+ U R_ (cf. Figure 5). 

We add a new function over integers: base 2 logarithm rounded down. For tech- 
nical reasons, it is easier to define first a Log' such that Log'(x) = Log(x) + 1 with 
convention Log'(O) = O. 

UCog' {Log': unary} 
Log'(#) ~ # 

RLog' Log' (x l )  --~ L o g ' ( x ) + # 1  
Log'(xO) --~ i f(ge(x,  #1), Log'(x) + #1, #) 
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We use dependency pairs of modules and polynomial interpretations. 
A 

MDP([~Log, I Rcog,]) (~og'(xO), ~og'(x)) 
[ # ] = 0  
~0](x) = x + 1 
~ a ~ e ] = O  
[ge](x) = 0 
[ L o g ' U ( x ) = x  

[[1]](x) = x + 1 
Utrue~ = 0 
[ifB(x, y, z) = y + z 
l[Log'~ (x) = x 

[[+~(x, y) = x + y 
~ - q ( x )  = 0 
[/x~(x, y) = x 

search tree (BS), we introduce module 

Urroo{Z, Val" unary; J~ • ternary} 
{ Val(Z(x))  --+ x 

RTree Val(Af(x, l, r) ----> x 

This module has no dependency pairs. 
To test whether a tree is a binary 

[SVBS IRes], extending both Rue and Rvree: 

UBs{BS, Min, Max • unary} 
Min(Z(x) )  ---> x 
Min( J~ (x, l, r) ) --+ Min(1) 
m a x ( £ ( x ) )  ---> x 

RBS Max(Af(x ,  l, r)) --+ Max(r) 
BS( f . (x ) )  ---> true 
BS(Af(x,  l, r)) ---> (ge(x, Max(l)) /x  ge(min(r),  x ) )A 

(BS(l) A BS(r)) 

We have six dependency pairs for this module: 
A A 

(Min( eg (x, l, r ) ), Min(l) } 
A A 

(Max( J~ (x , l, r ) ) , Max(r)} 
A 

(BS( 2¢ (x, l, r) ), Max(l)) 
MDP([UBS ]Res])"  (B~'S(~f(x, l, r)), Mien(r)) 

A 

(BS( JV (x, l, r ) ), BS(I) ) 
A 

{BS(eV (x, l, r)), BS(r)) 

Dependency pairs strictly decrease while rules in Rr~ U R+ U RBool URge U RLog, 
weakly decrease. We may then apply Corollary 4 in order to show Cs-termination 
of Rr~ U R+ U RBool U Rg e U RLog, U R_. 

The "correct" logarithm is computed by using module [UCog I RLog]: 
SO'Log{LOg : unary} 
RLog{Log(x) ---> Log'(x) - # 1  

Since [SVCog I RLog] has no dependency pairs, we apply Theorem 2 and obtain Cs- 
termination of R~ U R+ U R_ U Raoo~ URge U RLog' U RLog. 

Beside arithmetics we may want to work with binary trees over our integers. It 
suffices to define a module [5~Tree I Rvee] extending Rr~: 
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These strictly decrease while rules in Rr~ U RBool URge U RTree U RBS weakly decrease 
w.r.t, polynomial interpretation 

~#]1 = 0 
~a l se  [[ = 0 
l[ge](x) = 0 
[ [ £ ] ] ( x )  = x 

I[Max~(x)  = x 
[[max]] (x)  = x 

[[ON(x) = o 
[[true]] = 0 
[[if](x, y,  z )  = y + z 
[ [W]](x , l , r )  = x + l + r + 1 
~BS]](x)  = 0 
[[BS]](x) = x 

[Ill(x) --- 0 
[ [ - q ( x )  = 0 
~A]](x, y) = x 
[[min]](x) = x 
[[min] (x)  = x 
[[Val]](x) = x 

Thus, Rr~ U RBool URge U RTree U RBS Cs-terminates from Corollary 1. 
Eventually, to decide whether a tree is well balanced (WB),  that is, if the differ- 

ence between sizes of left and right subtrees is at most 1, we have to compute sizes 
of trees. 

Z'WB 

RWB 

WB, Size : unary} 
Size(  £ (x ) ) 
S i z e ( W  (x,  l, r ) )  
W B O £ ( x ) )  
W B ( W ( x ,  l, r ) )  

#1 
--+ (Size(l)  + S i ze ( r ) )  + #1 
--+ true 
--+ i f(ge(Size(1),  S i ze (r ) ) ,  

ge(#1, Size(1) - S i ze (r ) ) ,  
ge(#1, Size(r )  - S i ze( l ) ) )  

A (WB(1) A W B ( r ) )  

The set of dependency pairs is the following: 

M D P ( [ ~ B s  I RBs]) " 

A A 

(S i ze (de(x ,  l, r ) ), S ize( l ) )  
(Size( Jq'(x, l, r ) ),  S i ze (r ) )  

A 

(WB(  W (x, l, r)  ), S ize( l ) )  
(WB(  W (x,  l, r)  ), S i ze(r ) )  
( W B ( W ( x ,  l, r ) ) ,  WB(I ) )  

A 

(WB(  W (x,  l, r ) ) ,  W B ( r ) )  

With help of the polynomial interpretation 

[[#11 = 0 
[[+~ (x, y) --- x + y 
[[true]] = 0 
[[if](x, y, z )  = y + z 
[[ Val[[(x ) = x 
[[Size]](x) = 0 
[[Sized(x) = x 

[[0]](x) = 0 
[ [ - ~ ( x ,  y)  = x 
[ [~ ] (x )  = 0 
I[A]](x, y) = x 
[[W]](x , l , r )  = x + l  + r  + 1 
[ [WB~(x)  = 0 
[ [WB~(x)  = x 

[[1](x) = 0 
[ [ f a ~ e ] = O  
~ g e ] ( x ) = O  
[ [ Z ~ ( x ) = x  

we may prove easily, simply using Corollary 4, that the union of all rules Cs- 
terminates. Please note how simple interpretations are. 
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6.2. COMPARISON WITH OTHER TECHNIQUES IN C/ME 

We emphasize in this section how our results empower termination proofs. Using 
the C/ME 2 termination tool, we compare the time needed for termination proofs 
of some practical examples. 

Tests are as follows. The system is provided as a single set of rules; then termi- 
nation proofs are searched for with 

- first, dependency pairs and graphs with modularity results from Arts and 
Giesl [1], denoted DPQ, since they are related to the notion of DP-(quasi) 
simple termination [14], and 

- second, dependency pairs of modules (and related dependency graphs) over a 
hierarchy of minimal modules automatically obtained from the TRS. 

The time of automated decomposition of TRSs into a relevant hierarchy is included 
in the proof search time. 

Recall from Remark 6 that it is possible to use, for example, the DPQ criterion 
for each module. 

Tests are performed on a computer equipped with a P-III 933 MHz processor 
and 1 GB RAM, running DEBIAN LINUX. We search successively for Linear, then 
Simple, polynomials w.r.t. Steinbach's notions [31]. Bounds refer to the maximum 
that coefficients in polynomials can reach. A search for a proof can be characterized 
by the conjunction of these restrictions; we denote it hereafter by pairing the kind 
of polynomials with the chosen bound. 

Fail means that C/ME 2 found no solution. Abort characterizes a computation 
interrupted after a time that seemed to us reasonably large: 48 hours. 

Times given in brackets correspond to unnecessary expensive choices of bounds 
or polynomials. 

6.2.1. The Log Example (31 rules) 

Let us consider the TRS obtained from Section 6.1 by union 

Rr~ U R+ U R_ U RI3ool U Rg e U RI~,~,, U RLog. 

We point out that rule x 4- (y + z) ~ (x -t- y) + z, describing associativity of 
+,  makes the system overlapping: criteria based on innermost termination do not 
apply because innermost termination of an overlapping system does not imply its 
termination. 

The decomposition leads to the hierarchy of 13 minimal modules that is de- 
scribed Figure 7, where 

R ,  = {--,(true) --+ false; --,(false) --+ true} 
RA = {x A true --+ x; x A false --~ false} and 
Rif = {if(true, x, y) --+ x; if(false, x, y) ~ y} 
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Figure 7. Hierarchy of minimal modules for the Log example. 
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Regarding constraints, we focus on the maximal number of termination con- 
straints (TC, depending on criterion) and, since we are looking for orderings based 
on polynomial interpretations, on the maximal number of polynomial ordering 
constraints (POC, depending on parameters set for the search). Solving polyno- 
mial constraints can be complicated and tricky: for C/ME it amounts to solv- 
ing nonlinear Diophantine constraints the number of which may be worthy of 
consideration [6]. 

The modular approach leads to a maximum of 24 TC and 51 POC (for linear 
polynomials, same module) and succeeds, while DPQ criteria lead to a maximum 
of 38 TC and 88 POC (for linear polynomials, same subgraph) and fails. 
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Number of minimal modules in the hierarchy: 13. 
Number of modules with no rule in the hierarchy: 4. 

Polynomials DPQ Modules 
and bounds Time Time 

Linear, 1 Fail 0.51 s 
Linear, 2 Fail 0.35 s 
Linear, 3 Fail (0.35 s) 
Linear, 6 Abort (0.35 s) 
Simple, 2 Fail (15.08 s) 
Simple, 3 Abort (393 s) 

347 

The best choice here is clearly the modular approach. In particular, the fact that 
more easily solvable constraints are obtained with modules is worth mentioning 
here. 

If we omit the associativity rule, previous approaches may end with a termina- 
tion proof; linear polynomials are even suitable. Nevertheless, they require more 
than twice as much search time, at best. 

Number of minimal modules in the hierarchy: 13. 
Number of modules with no rule in the hierarchy: 4. 

Polynomials DPQ Modules 
and bounds Time Time 

Linear, 1 0.78 s 0.32 s 
Linear, 2 0.82 s 0.35 s 
Linear, 3 (82 s) (0.35 s) 
Linear, 6 (0.82 s) (0.35 s) 
Simple, 2 (30.3 s) (3.96 s) 
Simple, 3 (86.64 s) (11.5 s) 

6.2.2. The Tree Example (39 rules) 

Results are similar when trying to prove termination of the TRS, which describes 
binary search trees and well-balanced trees. That is, 

Rr~ tO R+ U R_ U RBool URge U RTree U RBS U RwB. 
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Number of minimal modules in the hierarchy: 19. 
Number of modules with no rule in the hierarchy: 6. 

Polynomials DPQ Modules 
and bounds Time Time 

Linear, 1 Fail 0.71 s 
Linear, 2 5.7 s 0.6 s 
Linear, 3 Abort (0.6 s) 
Linear, 6 Abort (0.6 s) 
Simple, 2 Abort (Abort) 
Simple, 3 Abort (Abort) 

Here again we notice that our modular approach requires lower bounds than 
does the DPQ approach. 

6.2.3. A Sum and Product Example (35 rules) 

One of the advantages of an incremental/modular approach is that different kinds 
of orderings may be used to prove termination, thus restraining expensive searches 
to modules that need them and using fast but less powerful criteria for the others. 

We saw on previous examples that the search for a termination proof of the Log 
example ends successfully very quickly when looking for linear interpretations 
but lasts several minutes (depending on bounds) when looking for simple interpre- 
tations. Suppose that we add independent rules requiring simple interpretations. 
Then we obtain a TRS the termination of which may be very long to prove if the 
search is limited to simple polynomials. 

Here is where incrementality and modularity play an important role: we may 
look for linear interpretations (with some bounds), and if a search ever fails on a 
module, we may switch for that particular module only to simple interpretations 
(with some other bounds when necessary). 

Let us consider the following system combining the Log example and multipli- 
cation: 

Rr~ U R+ U R_ U RBool URge U Rz~,g' U RLog U R × with 
x x #  ---~# 

R× # x x  --~ # 
x 0 x y  ~ (x x y ) 0  
xl  x y --+ (x x y)O + y 

A search for a proof with our incremental/modular criteria ends with the fol- 
lowing times. 

[paraml;param2; . . . ]  denotes the successive tries of parameters as follows: for 
each module, if no proof is found with parameters paraml, then C/ME looks for a 
proof with next parameters in the list (here param2), and so on. 
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Number of minimal modules in the hierarchy: 14. 
Number of modules with no rule in the hierarchy: 4. 

Parameters Modules 
Polynomials and bounds Time 

Simple, 2 8.08 s 
[(Linear, 2); (Simple, 1)] 0.38 s 

Comparison of times with other approaches in this particular case is useless 
because we know from Section 6.2.1 that the search would fail or would be inter- 
rupted. Nevertheless, regarding constraints, we point out that the modular approach 
leads to a maximum of 24 TC and 51 POC (for linear, then simple polynomials, 
same module) and succeeds, while DPQ criteria lead to a maximum of 42 TC and 
136 POC (for linear, then simple polynomials, same subgraph) and fails. 

Now if we omit the rule describing associativity, a previous approach may find 
a proof in a reasonable time. However, the modular approach is again clearly the 
best choice. 

Number of minimal modules in the hierarchy: 14. 
Number of modules with no rule in the hierarchy: 4. 

Parameters DPQ Modules 
Polynomials and bounds Time Time 

Simple, 2 32.45 s 3.91 s 
[(Linear, 2); (Simple, 1)] 10.65 s 0.4 s 

6.2.4. A Note on Communicating Processes 

We also tried our results on large systems provided by Thomas Arts. Those systems 
come from a real application: /Z-CRL specifications of communicating processes. 
Roughly speaking, communicating processes can send a message or perform an 
action. Termination of such systems implies that an action is always performed 
after a finite lapse of time. 

An attempt to prove termination of the 377 rules directly by means of poly- 
nomial interpretations failed. The system found no solution involving only linear 
interpretation; it had been looking for simple interpretations* for more than ten 
days when we stopped the computer. But with our incremental/modular methods 
it took less than two seconds for C/ME 2 to find a termination proof with only 
linear interpretations [33], by splitting up the TRS in a hierarchy of 74 modules 
(33 of which containing no rule). Regarding constraints, the modular approach led 
to a maximum of 309 TC and 558 POC (for linear polynomials, same module) and 

* Simple is here Steinbach's notion [31]. 
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succeeded quickly, while DPQ criteria led to a maximum of 378 TC and 763 POC 
(for linear polynomials, same subgraph) and failed. 

Note that our modular approach requires C/ME solving Diophantine constraints 
problems only three of which consist of more than 225 constraints (maximum 1486 
over 107 variables) while a DPQ approach requires solving a problem of 2334 
constraints over 306 variables for which there is no convenient linear interpretation. 

Automated termination proof for real programs is no longer out of reach. C/ME 2 
is available at http: / / c i m e .  iri. fr 

7. Hierarchical Simple Termination 

We provide in this section a new notion of termination that is modular for unions 
of composable term rewriting systems. To obtain such modularity results, we dis- 
tinguish relevant sets of rules by means of dependency relation over symbols ~-d 
(see Definition 4). 

DEFINITION 12. Let (a ~ ,  ~ )  be a term rewriting system. 
A rule I --+ r is said to be defining a symbol f if that symbol occurs at the root 

position in l. 
A rule l --+ r is said to be relevant w.r.t, a rule l' ~ r' if there is a symbol f 

occurring in l' or r '  such that f ~ g where g is defined by I --~ r. 

As in Definition 4, the dependency relation can be represented as a graph whose 
vertices are symbols and such that there is an arc from f to g if and only if f E>d g. 
We can now define hierarchical simple termination. 

DEFINITION 13. Let (.,~, R) be a term rewriting system, and let ~ be the graph 
of E>d over 5 ~. We define sets Ci as strongly connected components of ~ (see 
Definition 4). 

A finitely branching term rewriting system (5 ~, R) is said to be hierarchically 
simply terminating (HST) if for each Ci there is an ordering pair (~i,  >i) that 
constitutes a well-founded simplification ordering and such that 

- s >i t for all dependency pairs (s, t), where both root symbols o f s  and t occur 
in Ci; 

- l ~i r for all rules in R relevant w.r.t, rules defining symbols in Ci. 

THEOREM 3. Hierarchical simple termination is a modular property of unions 
of composable finitely branching TRSs, 

Proof Let Ri = R' I U R0 and R2 = R~ U Ro be two composable systems 
where R0 consists of rules defining symbols in common and such that both are 
hierarchically simply terminating. From the definition of composable systems we 
know that rules in R~ are not relevant w.r.t, rules in R' l U R0 and that rules in R' I are 
not relevant w.r.t, rules in R~ U R0. Hence the suitable ordering pairs for hierarchical 
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simple termination of R1 and R2 may still be used so as to show hierarchical simple 
termination of R~ U R2. [] 

Hierarchical simple termination is clearly more general than simple termination 
because it uses dependency pairs. It also includes DP-simple termination strictly 
[14], thanks to the modular decomposition: DP-simple termination requires order- 
ings that have to orient (weakly at least) all rules in a TRS, while the orderings 
involved in HST put constraints on relevant rules only. Hence any DP-simply 
terminating TRS is HS-terminating. The reciprocal does not hold. 

EXAMPLE 5. The following system R, from Giesl and Ohlebusch [14], is not 
DP-simply terminating. 

R I f ( f ( x ) )  --+ f ( c ( f ( x ) ) )  g(c(x)) ~ x g(c(O)) ~ g(d(1)) 
I f ( f ( x ) )  ~ f ( d ( f ( x ) ) )  g(d(x)) -+ x g(c(1)) ~ g(d(O)) 

System R is, however, hierarchically simply terminating. Since the only (order- 
ing) constraints are 

f ( c ( f ( x ) ) )  
f ( d ( f ( x ) ) )  

f ( f ( x ) )  
f ( f ( x ) )  

and 
A 

f ( f ( x ) )  > f'(x) 
the simplification ordering induced by the following interpretation is enough. 

l I c l l ( x )  = x 

[[d](x) = x 
~f]](x) = x + l 

Further note that C/ME 2 is able to find an automated proof for that system, 
however, by using an ordering that is not a simplification ordering. 

Similarly, each DP-quasi simply terminating TRS [14] is hierarchically simply 
terminating. We conjecture that the reciprocal does not hold. 

8. Related Work and Conclusion 

With the notion of rewriting modules (Definition 2), we defined a new framework 
very well suited to the study of the intrinsic hierarchical structure of term rewriting 
systems. 

The framework of modules has many applications regarding termination proofs. 
In particular, with the help of dependency pairs of  modules (Definition 5), we 
obtain powerful methods (Theorems 1 and 2 and corollaries) that allow proofs to 
be found incrementally and modularly. 
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Actually, the use of a concept of dependency pairs based on modules allows 
incremental and modular proving with state-of-the-art techniques and thus provides 
the most powerful approach for termination proof of systems with many rules 
known so far. 

As explained below, our results apply to systems met in practice and are suitable 
for full automation, which was not really the case before either because of strong 
requirements on systems or unions or because criteria were too much ad hoc. They 
do not generate constraints for irrelevant sets of rules in incremental proving, which 
is definitely an improvement in the termination proof domain. Eventually a new 
class of terminating systems naturally emerges from them. 

Our work has to compare with Dershowitz's results [9]. Since we do not restrict 
ourselves to constructor-based systems, and use a slightly more general defini- 
tion of hierarchical extensions, we obtain more general conditions applicable to 
the systems one has to deal with in practical applications. Moreover, our criteria 
(fully syntactical and applicable to most TRSs met in practice) are more suited for 
automation - because they were designed for this purpose - than are the finely 
tuned conditions of Dershowitz. Similarly, Krishna Rao's proper extensions and 
restricted proper extensions [21, 22] are constrained modules extensions, and, thus, 
all our results apply to these. 

Arts and Giesl exploit the modular structure of dependency graphs [1]. Their 
approach is fundamentally different from ours. They use an optimization, namely, 
dependency graphs, in order tofilter strict constraints over dependency pairs, while 
in our case those are simply not generated. Moreover, their criterion keeps weak 
constraints over all rules for the whole system (whatever the extension might be). 
That is a drawback we wanted to get rid of, because it fundamentally acts as a break 
upon real incremental/modular proving. As noticed in Remark 5, criteria based on 
Theorem 2 do not require anything from irrelevant sets of rules, and hence no 
constraint (neither strict nor weak) comes from those. Our framework furthermore 
provides for the general case the powerful results they got for the special case of 
innermost rewriting: the only way they can avoid constraints from irrelevant rules 
is to require innermost rewriting and to use the notion of usable rules, while we 
can prove termination of systems for which innermost termination does not imply 
termination and without any constraint from irrelevant rules. 

The modular approach combines several advantages. The constraints over suit- 
able orderings we obtain from a modular analysis are less numerous at each step 
than in a "global" approach because only relevant rules are considered. They are 
also less restrictive, for the same reasons and because optimizations such as depen- 
dency graphs may be applied afterward at each step. 

Being less numerous and weaker, ordering constraints are easier to solve in our 
approach. This is especially noticeable at the ordering level where, for instance, 
polynomial interpretations are much simpler than in a proof without modules, even 
if powerful methods such as dependency pairs with dependency graphs are used. 
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The notion of hierarchical simple termination (Section 7), which naturally ap- 
pears in that framework, defines a class that contains the class of systems that are 
DP-quasi simply terminating and is stable by (composable) unions. We claim that 
this class represents most terminating systems from practical applications. 

All these results are implemented in the C/ME 2 rewriting tool. As illustrated 
by our benchmarks, they considerably enhance a completely automated search of 
termination proofs. A significant speedup may be observed on large examples, 
occurring in practice, and the verification of which is not any longer out of reach. 

We point out that during the Termination Workshop WST'03 [29], none of the 
other tools in competition, such as TTT [19], APROVE [15], or TERMPTATION [4], 
was able to find termination proofs for the large systems that were easily shown 
terminating by C/ME.* 

This work should extend in several directions and in particular toward exten- 
sions of rewriting. First, a quite important extension in practice regards rewriting 
modulo an equational theory. Some work has already been done on associativity 
and commutativity [34] and will be pursued. 

Second, since this work aims at proving termination for TRSs of large size and 
practical applications, it is important to study how it can be applied to particular 
paradigms of programming such as conditional and/or constraint (i.e., with primi- 
tive types) rewriting, but also to rewriting with strategies [11, 12] like, for instance, 
context sensitive rewriting, which has received new interest recently [ 13, 18]. 

Finally, an extension of these results and methods to higher-order rewriting 
would lead to termination tools for functional programs, a crucial issue indeed 
in automated theorem proving. 
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