
A Topological View of Partitioning
Arguments: Reducing k-Set Agreement

to Consensus

Hugo Rincon Galeana1 , Kyrill Winkler2 , Ulrich Schmid2(B) ,
and Sergio Rajsbaum1

1 Instituto de Matemáticas, UNAM, CDMX, 04510 Mexico, D.F., Mexico
2 TU Wien, ECS Group (E191-02), Treitlstrasse 1–3, 1040 Vienna, Austria

s@ecs.tuwien.ac.at

Abstract. The objective of this paper is to understand the effect of
partitioning in distributed computing models. In spite of being quite
similar agreement problems, (deterministic) consensus (1-set agreement)
and k-set agreement (for k > 1) require surprisingly different techniques
for proving impossibilities. There is a widely applicable generic theorem,
however, which allows to reduce the impossibility of k-set agreement
to consensus in message-passing models that allow some partitioning.
In this paper, we provide the topological representation of this theo-
rem, which reveals how partitioning is reflected in the protocol com-
plex: It turns out that this leads to a “color splitting” of the algorithm’s
decision map, which separates the sub-complexes representing the par-
titioned processes. We also harvest a general advantage of topological
results, which allowed us to carry over our findings to shared memory
systems. We first demonstrate the utility of our reduction theorem by
proving that d-set agreement cannot be solved in the d-solo asynchronous
read-write model even when a single process may crash, not just in the
wait-free case. Moreover, our new insights into the structure of protocol
complexes gave us the idea for a simple proof of the fact that no par-
titioning argument can provide a valid impossibility proof for wait-free
set agreement in the iterated immediate snapshot model: For any set of
partition-compatible runs (which do not contain runs where all processes
always have a complete view), we provide a way to construct a simple
algorithm that solves set agreement.

Keywords: Algebraic topology · Consensus · Set agreement ·
Partitioning arguments · Shared memory

1 Introduction

Partitions, i.e., sets of processes that cannot always communicate with each
other, are a fundamental combinatorial notion in distributed computability

This work has been supported by the PAPIIT-UNAM grant IN109917 and the Austrian
Science Fund (FWF) projects RiSE/SHiNE (S11405) and ADynNet (P28182).

c© Springer Nature Switzerland AG 2019
M. Ghaffari et al. (Eds.): SSS 2019, LNCS 11914, pp. 307–322, 2019.
https://doi.org/10.1007/978-3-030-34992-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34992-9_25&domain=pdf
http://orcid.org/0000-0002-8152-1275
http://orcid.org/0000-0002-7310-1748
http://orcid.org/0000-0001-9831-8583
http://orcid.org/0000-0002-0009-5287
https://doi.org/10.1007/978-3-030-34992-9_25

308 H. Rincon Galeana et al.

[13,16]. Studying the effect of partitioning on the (im)possibility of agreement
problems has been a focal point at least since the realization that asynchronous
consensus is solvable with a minority of initially crashed processes [15] and the
observation that a shared register cannot be implemented on top of a message
passing system with a majority of faulty processes [5]. Since then, partitioning
arguments have been applied successfully to many distributed computing prob-
lems [14]. Essentially, these arguments exploit the fact that one cannot guarantee
agreement among processes of a distributed system that never, neither directly
nor indirectly, communicate with each other.

The objective of this paper is to understand the computational power of
models where partitioning can occur. For this purpose, we focus on the k-set
agreement problem and its special cases consensus and set agreement. In these
problems, every process owns a local input value taken from a finite domain V (to
rule out trivial solutions, we assume that |V| ≥ k), and must irrevocably assign
a local output value (also called decision value) that must be the input value of
some process and satisfy certain properties. For consensus, no two processes may
decide on, i.e., assign, different values. For set agreement among n processes, the
number of different decision values must be at most n − 1 system-wide. The
general case is k-set agreement, which requires that the number of different
decision values is at most k. We will focus solely on deterministic algorithms.

Due to the landmark FLP impossibility result [15], which employs (now clas-
sic) bivalence proofs, it is well-known that consensus is impossible to solve in
asynchronous systems if a single process may crash. The corresponding result
for general k-set agreement is the impossibility of solving this problem in asyn-
chronous systems where f ≥ k processes may crash. Surprisingly, establishing
the latter result requires quite involved techniques based on algebraic topology
resp. a variant of Sperner’s lemma [11,20,23], which have not been matched by
combinatorial proofs so far in their full generality (see the related work for some
exceptions for special cases).

Despite this apparent “proof-incompatibility” of consensus and k-set agree-
ment for k > 1, Biely, Robinson, and Schmid showed in [9] that, in message-
passing models that allow partitioning, impossibility proofs for k-set agreement
can be reduced to impossibility proofs for consensus: They provided a theorem
(called BRS theorem in the sequel), which uses a partitioning argument as a
means for reduction and is generic w.r.t. the underlying system model: Essen-
tially, if failures and asynchrony allow for runs where the system partitions into
k parts, the processes must decide on their own in every partition. By choosing
distinct proposal values, solving k-set agreement in such runs requires solving
consensus in every partition. Consequently, the impossibility of k-set agreement
can be proved by showing that it is impossible to reach consensus in at least
one of these partitions. Note that the BRS theorem actually works for fairly
weak forms of partitioning, where some communication between partitions is
still possible.

In [9], the authors applied the BRS theorem to various message-passing mod-
els, including purely asynchronous systems with crash failures, synchronous sys-

A Topological Reduction of k-Set Agreement to Consensus 309

tems with omission failures, dynamic networks with omission failures, and even
asynchronous systems with failure detectors.
Main Contributions: In order to understand the impact of partitioning in
distributed computing models, we present a topological version/interpretation
of the BRS theorem and, on the positive side, show that it can even be applied
in the shared memory setting. On the negative side, we prove that one cannot
show the impossibility of set agreement in the iterated immediate snapshot model
based on a partitioning argument. In more detail:

(1) We provide a topological variant of a slightly generalized version of the BRS
theorem and its proof for message-passing systems, which reveals that par-
titioning is reflected in the protocol complex by a “color splitting” of the
algorithm’s decision map that separates the sub-complexes representing the
partitioned processes. This insight into the structure of the protocol com-
plexes of partitionable models is of independent interest, as the second major
contribution of our paper reveals.

(2) We exploit the natural genericity of topological results to translate the BRS
theorem to the shared memory model. First, we apply it to d-set agreement in
the d-solo asynchronous read-write model, where up to d processes may run
solo: We provide a simple and illustrative proof that this problem is not just
wait-free impossible, as has been shown in [18] already, but even impossible
if just a single process may crash. Second, we used our new insights obtained
in (1) to prove that one cannot hope to show the impossibility of wait-free
set agreement in the iterated immediate snapshot model using any form
of partitioning arguments: For any set of partition-compatible runs (which
do not contain runs where all processes always have a complete view), we
provide a way to construct a simple algorithm that solves set agreement.

In a nutshell, the results of our paper reveal how the partitioning argument
implemented by means of the BRS theorem actually works: It is the “color-split”
structure of the resulting protocol complex, which effectively allows to avoid a
complex global topological analysis and to perform a simple reduction to the
solvability of consensus in some partition instead. In the case of set agreement,
the existence of any such splitting already guarantees a solution algorithm. We
conjecture that we will be able to come up with similar statements also for
other problems, in particular, for general k-set agreement. It is important to
note, though, that our results apply only to systems where some partitioning
can occur. They cannot hence replace results like [11,20,23] in general.

Related Work: We are not aware of much research that considers non-trivial
reductions of k-set agreement to consensus. However, quite some papers, like
[21], prove the impossibility of k-set agreement by partitioning the system into
more than k sets of processes that decide independently.

For message-passing systems, besides [9], Biely et al. have employed reduc-
tion already in [8] to show that consensus is impossible in certain partially syn-
chronous models, and to prove the tightness of the generalized loneliness failure
detector L(k) for k-set agreement. Similar reduction arguments were employed in
[12] and, in particular, in [10], where certain k-set agreement runs with disjoint

310 H. Rincon Galeana et al.

participants are pasted together in order to prove the necessity of the generalized
quorum failure detector Σk for solving k-set agreement. In [4], a reduction to
asynchronous set agreement is used to derive a lower bound on the minimum
size of a “synchronous window” that is necessary for k-set agreement.

For shared memory systems, [1] shows the wait-free equivalence of k-set agree-
ment and k-simultaneous consensus using read/write atomic registers. The latter
problem allows processes to participate, with the same input, in k independent
consensus instances that run simultaneously, but requires a decision only in one
of those. Whereas this can be seen as an explicit form of partitioning, it is obvi-
ously much less general than the partitioning allowed by the BRS theorem.

Regarding different proof techniques for consensus and k-set agreement,
the only alternatives to the celebrated impossibility proofs for k-set agreement
[11,20,23] known to us, which are all based on algebraic topology resp. dif-
ferent proofs of Sperner’s lemma, are the combinatorial impossibility proof for
k-set agreement in wait-free environments provided in [6] and the counting-based
impossibility of general wait-free colored and colorless tasks in [7]. The latter two
results do not generalize to k = f < n − 1 crash failures, however.

In [2,3], Alistarh et al. described an approach for proving general impossibil-
ities for wait-free tasks in the iterated immediate snapshot model by introducing
extension-based proofs. The idea is to consider a game between a prover (con-
structing a schedule) and the protocol (specified by its decision map Δ, unknown
to the prover). By constructing a protocol on the fly, via an adversarial strategy
w.r.t. the prover, the authors could prove that the wait-free k-set agreement
impossibility cannot be established by an extension-based proof. Part (2) of our
work differs from [2] in that we restrict our attention to partitioning arguments,
i.e., do not aim at general combinatorial proofs (not to speak of bivalence argu-
ments) as does the latter. This restriction greatly reduces the effort needed to
show that partitioning arguments are not sufficient for showing the wait-free
set agreement impossibility: Rather than adversarially constructing a protocol
following the prover’s strategy, the construction of our set agreement protocol
just instantiates a simple generic algorithm and is hence relatively easy.

Paper Organization: After a short introduction to topological modeling of dis-
tributed systems in Sect. 2, we translate the definitions and concepts underlying
the original BRS theorem and prove1 some basic lemmas in Sect. 3. In Sect. 4, we
develop our topological version of the BRS theorem, in Sect. 5, we prove that set
agreement can be solved for any set of partition-compatible runs. We conclude
in Sect. 6 with some open questions.

2 Topological Modeling of Distributed Systems

We now briefly describe the basics of modeling distributed systems using alge-
braic topology, see e.g. [17] for a comprehensive introduction. Whereas this pow-
erful approach became particularly popular for asynchronous shared memory
systems [20], it is well-suited for message passing systems as well [19].
1 Lacking space forced us to relegate all proofs into the full version [22] of our paper.

A Topological Reduction of k-Set Agreement to Consensus 311

We consider a set Π = {p1, . . . , pn} of processes, each with its own unique
identifier, which may suffer from crash or omission failures, i.e., may also lose
messages. Except in Sect. 5, where we use the standard iterated snapshot asyn-
chronous shared memory model, we will primarily deal with message passing
protocols, where each process pi ∈ Π has an individual message buffer mj for
received messages from every potential sender process pj ∈ Π in its local state
(pi,m1, . . . ,mn), where (m1, . . . ,mn) is called pi’s view. Note that mi is assumed
to contain pi’s local variables. Valid messages are taken from a possibly infinite
set M . Typically, we will consider deterministic full information protocols, where
processes send messages that consist of the entire history of local states. We rep-
resent “p2 receives message m ∈ M from p1” by appending m to the message
buffer of p2 that corresponds to p1. We will assume that the initial input is
given as a message from a process pi to itself, and that the decision value is also
appended to the message buffer reserved for itself. A global state of the system
is a vector of local states, one for each pi ∈ Π.

We define a run of a given protocol as a valid infinite sequence of global
states, in which eventually each non-crashing process reaches a final decision
state, i.e., a state where it has decided. Note carefully that, since we consider
full-history protocols, the final decision state of a process contains its view of the
entire run. Clearly, the decision of the process is determined by its local view at
the first time it reached a decision state. We call such local views minimal final
views. Note that we will assume that processes may still send messages after they
have decided; messages that reach a process after a final decision state do not
change the process’ decision, however. Observe that if run α and run β have the
same minimal final views for each process, then they have the same decisions.
Therefore, we can restrict our attention to the equivalence classes of runs where
two runs are equivalent if all processes have the same minimal final view.

We define a task TΠ = 〈I,O,Δ〉 as a tuple, where I and O are chromatic
simplicial complexes, which model the valid inputs and outputs for a set Π
of processes, and Δ : I → 2O is a valid decision function that maps valid
input configurations to sets of valid output configurations. Both complexes are
chromatic, with coloring χ (formally, a simplicial map from the complex to a
simplex of matching dimension, i.e., one that maps simplices to simplices) that
attaches a unique label (in fact, a process id from Π) to every vertex such that
no two neighbors in any 1-simplex have the same label. Note that we will usually
write T instead of TΠ for brevity.

More formally, the input complex I = 〈V (I), F (I)〉 is given by its
set of vertices V (I) and its set of faces F (I): V (I) = {(pi, vi) | pi ∈
Π, vi ∈ Vi} where Vi is the set of valid inputs for pi, and F (I) = {σ ⊆
V (I) | σ is part of a valid input cfg.}.

The output complex O = 〈V (O), F (O)〉 is given by its set of vertices V (O)
and its set of faces F (O): V (O) = {(pi, vi) | pi ∈ Π, vi ∈ V̂i} where V̂i is the set
of valid outputs for pi, F (O) = {σ ⊆ V (O) | σ is part of a valid output cfg.}.

The decision function Δ : F (I) → 2F (O) is a function with the property that,
for every σ ⊆ ρ and ρ′ ∈ Δ(ρ), there is some σ′ ⊆ ρ′ with σ′ ∈ Δ(σ). Moreover,

312 H. Rincon Galeana et al.

Δ is a chromatic map, i.e., χ(Δ(σ)) ⊆ χ(σ), where χ(σ) gives the set of colors
of the vertices in σ and χ(S) =

⋃
σ∈S χ(σ) for every set S of simplices.

We define the protocol complex PM = 〈V (PM), F (PM)〉 for a given protocol
P and model M as V (PM) = {(pi, vi) | pi ∈ Π, vi ∈ V i}, where V i is the set of
valid minimal final views for pi in protocol P under a given model M. The set of
faces is F (PM) = {σ ⊆ V (PM)}, where σ corresponds to a valid configuration
of minimal final views of a run. The chromatic function χ : V (PM) → Π is
given by the id of each process, that is χ(pi, vi) = pi. The decision map for a
protocol μ : V (PM) → 2V (O) is a chromatic vertex map that maps final views
of a process to valid outputs for a task.

Since the initial input values are self-messages in our model, each run is
produced by a unique configuration of initial input values. Therefore, for each
task T , there exists a chromatic simplicial map iT : F (PM) → F (I) that maps
simplices to simplices of matching dimension, such that iT (σ) is the initial input
configuration for each process in σ. A protocol P solves a task T in model M
if and only if the decision map for the protocol is a simplicial map that carries
Δ, i.e., ensures μ(σ) ⊆ Δ(iT (σ)). Note that, since the decision map μ needs
to be chromatic, it is determined by the mapping values at the facets, i.e., the
maximal faces. Therefore, the facet decision map μ̂ : F̂ (PM) → 2V (O), which is
just the restriction of μ to the facets F̂ (PM) in F (PM), fully determines μ.

3 BRS Basic Definitions

In this section, we recast the foundations of the BRS theorem introduced in
[9] in our topological framework. Most of the concepts introduced here allow to
relate the runs of different algorithms in different models. After all, our purpose
is to reduce a run of a k-set agreement algorithm A in some model M to a run
of a consensus algorithm B in some model M′, with a different set of processes
and possibly different synchrony assumptions and failure models. The restricted
model only requires that algorithm A is computationally compatible with M′,
i.e, that A can be executed in M′. Since it is primarily the number of processes
in M′ and M′ that matter here, we will follow [9]and sloppyly write M = 〈Π〉
and M′ = 〈D〉 in the sequel. Note carefully, however, that the runs in M′ do
not necessarily correspond to runs in M and vice versa, due to |〈D〉| �= |〈Π〉|
and the usually different synchrony assumptions and failure models.

A pivotal concept here is a restricted algorithm.

Definition 1 (Restricted algorithm). Let A be an algorithm for a model
M = 〈Π〉 that consists of the set of processes Π, and D ⊆ Π a nonempty set
of processes. Consider a restricted model M′ = 〈D〉. To restrict algorithm A for
model M to an algorithm for model M′, we just drop all messages sent from D
to the outside. We call the restricted algorithm A|D = B.

Restricted algorithms induce protocol complexes with specific properties.
However, even if protocol B corresponds to a restriction of A to D, since message
buffers for processes not in D are not present in B (the protocol complex of B),

A Topological Reduction of k-Set Agreement to Consensus 313

B is strictly different from any protocol complex that includes Π in its set of
processes. Therefore, we need to define a way to extend the views in B in a way
that could possibly match a protocol complex with processes Π executed in M.
The natural way of doing this is by adding empty message buffers denoted by ⊥
for any process not in D.

Definition 2 (Protocol complexes of restricted algorithms). Given an
algorithm A for M and a restricted algorithm B for M′, let B be the proto-
col complex for B executed in M′. We define the extended complex of B with
respect to Π, AD, as follows: V (AD) = {(p,w,⊥, . . . ,⊥) | (p,w) ∈ V (B)} and
⊥ represents empty message buffers for processes in Π\D, F (AD) = {σ ⊆
V (AD) | ∃σ̂ ∈ F (B), (p,w,⊥, . . . ,⊥) ∈ σ ⇒ (p,w) ∈ σ̂}.

The following Lemma 1 shows that AD is isomorphic to B, i.e., AD is an
“extended view copy” of B. This isomorphic copy AD of the protocol complex
B will turn out to be essential, since it corresponds to a subcomplex of A under
certain conditions (Definition 4). Note carefully that, per se, this is not neces-
sarily the case as, e.g., the synchrony model for M may forbid empty message
buffers.

Lemma 1 (Isomorphic complex). Let AD and B be as defined above. Then
there exists a chromatic bijective simplicial map μ : AD → B.

The following definition captures the notion of indistinguishability of runs:

Definition 3 (Indistinguishability of runs). Runs α and β are indistin-
guishable for a process p if p has the same sequence of states in α and β until p

decides. For a non-empty set D of processes, we say that α
D∼ β if α is indistin-

guishable from β until decision for all p ∈ D.

Note that since p has the same sequence of states until decision for runs α and
β, then the minimal final view for p (that contains the full history) is the same
for both runs α and β. This means that the simplices σα and σβ that correspond
to runs α and β share vertex (p, sw,m1, . . . ,mk), where (sw,m1, . . . ,mk) corre-
sponds to the minimal final view of p at both runs α and β. This translates nat-
urally to D-skel(σα) = D-skel(σβ), where D-skel(σα) = {(p,w) ∈ σα : p ∈ D}.

Definition 4 (Compatibility of Runs). Let R and R′ be sets of runs, possi-
bly from system models with different synchrony assumptions and failure models.
Runs R′ are compatible with runs R for processes in D, denoted by R′
D R,
if ∀α ∈ R′∃β ∈ R : a

D∼ β.

If R and R′ are sets of runs for the same protocol A, and in the same
model M, then both induce subcomplexes of a common protocol complex A.
We will call those subcomplexes R and R′ respectively. We define D-skel(R′)
as the subcomplex of R′ where all vertices correspond to processes of D with
views from R′. Given these definitions, it is clear that R′
D R if and only if
D-skel(R′) ⊆ D-skel(R). Note that the applicability of Definition 3 is limited, as

314 H. Rincon Galeana et al.

it only works for sets of runs from the same protocol in the same model. However,
we will give a more general definition below, which provides some correspondence
between runs of different protocols in different models: Herein, M and M′ only
need to be computationally compatible, but may otherwise differ in the number
of processes, synchrony assumptions, failure models, etc.

Definition 5 (D-View embedding). Let A and B be protocols with a non-
empty set of common processes S, and D ⊆ S with s = |S|, and let A and B be the
protocol complexes corresponding to A’s runs in model M (with s + r processes,
r ≥ 0) and B’s runs in model M′ (with s + k processes, k ≥ 0), respectively.
Consider sets of runs R and R′ from protocol A in model M and B in model M′

respectively, and the corresponding subcomplexes R ⊆ A and R′ ⊆ B. We say
that R′ is D-view embedded in R, if for every (p,ws,m1, . . . ,mk) ∈ D-skel(R′)
with ws denoting the message buffers for the processes in S the following holds
for every 1 ≤ i ≤ k: (i) pi /∈ S ⇒ mi = ⊥; (ii) There exists (p,ws,m

′
1, . . . m

′
r) ∈

V (R) such that

m′
j =

{
mj if pj ∈ S,

⊥ if pj /∈ S;

(iii) μ : D-skel(R′) → R defined by (p,ws,m1, . . . ,mk) �→ (p,ws,m
′
1, . . . ,m

′
r) is

a simplicial map. Note that μ is an embedding of D-skel(R′), i.e. an injective
simplicial map.

If both sets of runs come from the same protocol (B = A) and the same
synchrony model (M = M′), then the embedding is given by the inclusion
ι : D-skel(R′) → R with ι(p,w) = (p,w). This matches with the previous obser-
vation that R′
D R if and only if D-skel(R′) ⊆ D-skel(R) in this case. More
generally, we can formulate compatibility of runs in terms of D-view embeddings.

Lemma 2 (Compatible runs are D-view embedded). Let R and R′ be
sets of runs from algorithms A and B in model M and M′ respectively. Let S
be the set of common processes for R and R′ and D ⊆ S. Then R′
D R ⇔ R′
is D-view embedded in R.

The following Definition 6 is crucial for expressing the consequences of par-
titioning in our topological setting. Essentially, it says that it is reflected by a
splitting of the decision map.

Definition 6 (Decision map split). Let A be the protocol complex for a given
algorithm A on a model M = 〈Π〉 and A′ a non-empty subcomplex of A. Let
D ⊆ Π be a set of processes in M, D = Π\D and B = A|D the restriction of
algorithm A to D in a given model M′ = 〈D〉 with possibly different synchrony
assumptions and failure models, resulting in protocol complex B. We say that D
splits the decision map of A at A′ with respect to M′ if B is D-view embedded
in A′ and

μ|A′(p,w) = [μD ∗ μ|D](p,w) :=

{
μD(p,w) if p ∈ D,

μ|D(p,w) if p ∈ D.

A Topological Reduction of k-Set Agreement to Consensus 315

Herein, μ|A′ is the decision map μ of A restricted to A′, μD is the decision map
for restricted algorithm B at the extended complex AD, and μ|D is the decision
map μ restricted to D-skel(A′).

An illustration of decision map splitting for a fixed D = {r, q}, D̄ = {p}
can be found in Fig. 1b. Note that the subcomplex for D (at the bottom) is the
full 1-round subdivided complex for 2 processes, whereas the subcomplex for D̄
represents a process that only hears from itself. Figure 1a shows the analogous
splitting in the full one-round complex.

Fig. 1. 1-round protocol complex of d-solo runs for n = 3, d = 2: (a) full complex, (b)
zoom-in for D = {r, q}, D̄ = {p}. Nodes represent local process states (views), with the
color encoding the respective process and with the 3-tuple encoding (mp,mq,mr).

The following Lemma 3 shows that decision map splitting is equivalent to the
extended complex of the restricted algorithm being equal to the corresponding
D-skeleton:

Lemma 3 (Decision map splitting condition). Let A be the protocol com-
plex for a given algorithm A in a model M = 〈Π〉 and A′ a non-empty sub-
complex of A. Let D ⊆ Π be a set of processes in M, B = A|D a restriction
of algorithm A to D in a model M′ with possibly different synchrony assump-
tions and failure assumptions, AD the extended complex of B with respect to Π
and μ be the decision map for A, then D splits μ at A′ with respect to M′ ⇔
AD = D-skel(A′).

We will show in the next section that decision map splitting is equivalent
to finding a partition of Π into D,D and a set of runs where D decides inde-
pendently from D. However, notice that D could use information from D to
decide.

316 H. Rincon Galeana et al.

4 Topological BRS Theorem

Since we have already established an equivalence between topological conditions
and run compatibility, we can proceed to state a slightly more general version of
the BRS theorem from a topological perspective. The BRS theorem requires that
conditions (A)–(D), as stated in Theorem 1 below, hold, in order to guarantee the
k-set agreement impossibility. In the following lemmas, we will state topological
properties that are slightly weaker than the original conditions (A)–(D).

Let M = 〈Π〉 be a model and A an algorithm that runs in M. Assume that
each p ∈ Π starts with an input value taken from a set of at least k different
values.2 Also assume that there is a distinguished set D ⊆ Π, and a partition of
Π\D = D given by D1, . . . , Dk−1. Let {v1, . . . , vk−1} be a fixed set of different
values. Let MA denote the runs of algorithm A in model M.

Theorem 1 (Original BRS theorem [9]). We consider the following runs
of algorithm A in model M and a restricted model M′ = 〈D〉:

dec-D Any pj ∈ D receives no messages from any process in D until every
process in D has decided.
dec-D For every Di, there is some q ∈ Di that decides vi, which was proposed
by some p ∈ D.

R(D) denotes the set of runs from M where dec-D holds, R(D,D) denotes
the set of runs from M where both dec-D and dec-D hold. If all of the following
conditions (A) R(D) is nonempty, (B) R(D)
D R(D,D), (C) Consensus is not
solvable in M′, (D) M′

A|D
D MA, hold, then A does not solve k-set agreement.

We generalize the statement of the BRS theorem by slightly relaxing condi-
tions (A)–(D):

Lemma 4 (Condition equivalence). Let M, M′, A, D, D and Di be as
defined for the BRS theorem. Then, (A)-(D) imply (A’) R(D) is nonempty, (B’)
Consensus is not solvable in M′, (C’) M′

A|D
D R(D,D).

The following Lemma 5 is the key technical lemma for the topological equiv-
alence of a slightly stronger version of the BRS theorem established in Theorem
2 below.

Lemma 5 (BRS equivalence). Let M, M′, A, D, D and Di be as defined
for the BRS theorem. Then (A’)–(C’) are equivalent to the following :

(1) There exists a non empty subcomplex A′ of A such that D-skel(A′) = AD

(the extended complex for A|D with respect to M).
(2) For each Di, the decision map μ|A′ maps every view from Di into a decision

configuration that includes vi as a decision value.
2 Note that the original BRS theorem actually assumed that every process starts with

a unique value.

A Topological Reduction of k-Set Agreement to Consensus 317

(3) Each vi is the input value for some process p ∈ D at subcomplex A′.
(4) Consensus is not solvable in M′ = 〈D〉.

The following Theorem 2 provides the main result of this section, the topo-
logical version of a generalization of the BRS theorem.

Theorem 2 (Decision split theorem). Let M = 〈Π〉 be a model and A an
algorithm that runs in M. Let A be the protocol complex of A, M′ = 〈D〉 be a
model with D a subset of Π, and μ the decision map for A. Assume that the
following conditions hold:

(a) There exists a non-empty subcomplex A′, such that D splits μ at A′ with
respect to M′.

(b) Consensus is not solvable in M′.
(c) Processes in D = Π\D always decide at least k − 1 input values from D for

runs in A′.

Then, A does not solve k-set agreement.

We conclude this section with some corollaries of Theorem 2.

Corollary 1. Let M, M′, A, D, D and Di be as defined for the original BRS
theorem (Theorem 1). If conditions (1)–(4) given in Lemma 5 hold, then A does
not solve k-set agreement.

Corollary 2. Let M, M′, A, D, D and Di be as defined for the original BRS
theorem (Theorem 1). If conditions (A’)–(C’) in Lemma 4 hold, then A does not
solve k-set agreement.

5 Partition Compatibility in Shared Memory and Set
Agreement

In the previous sections, we developed a topological version of the BRS theorem
[9], which allows to reduce the impossibility of k-set agreement to the impossibil-
ity of consensus in a wide variety of message-passing systems. In this section, we
will transfer some of the resulting insights to the standard asynchronous shared
memory (ASM) model. We thus consider a set of processes Π = {p1, . . . , pn}
and a shared snapshot memory M = (e,m1, . . . ,mn), where e is a buffer for
global shared variables [not used in our protocols], and each mi corresponds to
the local memory portion of process pi in the snapshot memory. To simplify
our reasoning, we will assume that the protocols are full information immediate
snapshot layered protocols, which does not change the computability power of
our algorithms [17,20].

In this model, each process executes a predefined number r of asynchronous
rounds, called layers. Each layer i consists of concurrent write-read snapshots. A
write-read snapshot at layer i consists of writing the full view (the complete local
state) of a process into its corresponding part of the memory, and immediately

318 H. Rincon Galeana et al.

after writing, taking a snapshot of the views from processes at the same layer i.
The initial view of a process consists only of its input value; therefore, during the
first round, each process only writes its input value to the shared memory. Note
that each process’ current view contains the history of previous views, so we need
not be concerned with overwriting previous views in the shared memory. The
final view of a process in an r-round protocol is its view after round r, and the
protocol’s decision map μ maps the process’s final view to some output value.

Definition 7 (Views). The view for a given process p at round k is defined
as follows: If k = 0, the view consists of a tuple (p, s, v), where p is the process
id, s is the initial local state of p and v is the input value for p. If k > 0, the
view consists of a tuple (p, s, v1, . . . , vn), where each vj corresponds to either the
view of process pj at the end of round k − 1 if the write-read execution for round
k happened before or at the same time as the write-read execution for process p,
or else ⊥, which represents that p finished its write-read in round k before pj.

Note that this definition of the processes’ views is extremely useful, since it
has a nice combinatorial structure: Herlihy and Shavit showed in [20] that there
is an isomorphism between the standard chromatic subdivision of the input
complex and the protocol complex for a general 1-layer immediate snapshot
protocol. Since each layer i is only determined by the previous layers and the
scheduling of layer i, it follows by induction that a k+1 layered protocol complex
corresponds to the k + 1-th chromatic subdivision of the input complex.

We start our considerations by using the BRS theorem to show that d-set
agreement cannot be implemented in the d-solo model introduced in [18] if at
most d processes may crash. In the d-solo model for asynchronous shared mem-
ory, up to d processes may run solo, i.e., have no other process in their view in
every round of a run. The wait-free 1-solo model is equivalent to asynchronous
read-write shared memory, and any d-solo model can be simulated in the 1-solo
model. Since d-set agreement for d < n cannot be implemented in the wait-free
read-write model [20], it cannot be implemented in the wait-free d-solo model
either. The following Theorem 3 shows that this does not change if one strength-
ens the model by allowing only up to a single crash.

Theorem 3 (d-set agreement impossibility in d-solo model). In the d-
solo model, it is impossible to solve d-set agreement if just a single process may
crash, not even with a colored, i.e., non-anonymous, algorithm.

The remaining part of this section is devoted to the very different result
of translating the insights gained from the topological version of the BRS the-
orem to the way of how partitioning is reflected in protocol complexes. More
specifically, we show that set agreement can always be solved in ASM systems
with partition-compatible runs, which are runs that allow some processes to hide
their information from others. Our key insight is that partition-compatible runs
“pierce” a hole at the center of the protocol complex, which allows the border to
be retracted continuously to the center, thereby allowing to solve set agreement.

A Topological Reduction of k-Set Agreement to Consensus 319

One implication of this result is that partitioning arguments cannot be used
to prove the set-agreement impossibility in general: Assume that there is such
a proof, which necessarily relies on some set of partition-compatible runs. After
all, any partitioning argument rules out runs where every process has a complete
view of all other processes in all iterations. Since we can construct a correct set
agreement protocol for this set of runs, however, we have a contradiction.

The central idea of partitioning arguments, which exploit limited communi-
cation between sets of processes, stimulated the notion of partition-compatible
views and (sets of) runs:

Definition 8 (Partition compatibility). A view (pi, s, v1, . . . , vn) of a pro-
cess pi at the end of some round k ≥ 1 is called partition-compatible, if pi did not
get information from some pj during round k, i.e., when vj = ⊥. A set of runs
S is partition-compatible if, for every run α ∈ S, there exists some participating
process pi and a round k at the end of which pi’s view is partition-compatible.

Note that it is the presence of the complete-view run, i.e., the presence of
the complete-view simplex in the corresponding protocol complex, that makes a
set of runs not partition compatible. This, once made, obvious observation gave
us the idea for the following simple set agreement protocol:

We define the following 1-layer protocol P for the immediate snapshot model
with a set of processes Π = {p0, . . . , pn}.

Definition 9 (1-layer protocol). Let pi ∈ Π = {p0, . . . , pn} be a process and
(m0, . . . ,mn) its view. Since we are considering the iterated immediate snapshot
model, the protocol is determined just by the number of communication rounds
(1 in this case) and the decision map. We define

μ(pi,m0, . . . ,mn) =

{
mi if ⊥ = mj for some j ∈ {1, . . . , n},

m(i+1)mod n+1 otherwise.

Obviously, since μ always chooses the input value for pi unless all other input
values have been observed, μ satisfies the validity condition. In fact, we can prove
the following result:

Lemma 6 (Correctness of the 1-round protocol). Let S be a set of parti-
tion compatible runs for a 1-round immediate snapshot protocol. Then, μ solves
set agreement in S.

An immediate consequence of Lemma 6 is that a partitioning argument can-
not be used for showing n-set agreement impossibility for 1-round immediate
snapshot protocols. However, in order to show that a partitioning argument can-
not be used for a general shared memory protocol, we need to show this result
for any number of layers. In order to do so, we define a k-round set agreement
protocol for any value of k:

Definition 10 (k-layer protocol). Consider a general k-layered immediate
snapshot protocol. Let pi ∈ Π be a process, and (m0, . . . ,mn) its final view. We

320 H. Rincon Galeana et al.

denote L�(m0, . . . ,mn) as the view for pi at layer
. Alternatively, if α is a run
of an r-layered protocol and s < r then Ls

α denotes the s-layered protocol run
induced by α. We say that a view v = (m0, . . . ,mn) of a process at a layer s
is incomplete if either ⊥ ∈ v or if there exists
 < s and 0 ≤ r ≤ n such that
L�(mr) is an incomplete view; recall that mr is pr’s view in round s − 1 or ⊥.
Let

µ1 = µ,

µk+1(pi,m0, . . . ,mn) =

{
µk(pi, L

k(m0, . . . ,mn)) if (m0, . . . ,mn) is incomplete,

µk(pi+1, L
k(m0, . . . ,mn)) otherwise.

We can prove the following result:

Lemma 7 (Correctness of the k-round protocol). Let S be a set of par-
tition compatible runs for a k-round immediate snapshot protocol. Then, the
decision map μk solves n-set agreement in S.

We can thus state the main result of this section:

Theorem 4. Let S be any set of partition compatible runs in the iterated imme-
diate snapshot model. Then, there exists a protocol P that solves set agreement
for any run in S.

6 Conclusions

We developed a topological version of a generalization of the BRS theorem.
Our findings reveal that partitioning is reflected by a “color splitting” of the
algorithm’s decision map, which separates the sub-complexes representing the
partitioned processes. We used these insights to show that the impossibility of
wait-free set agreement in the layered immediate snapshot model cannot be
proved using partitioning arguments: For any set of partition compatible runs it
is possible to construct a simple protocol that solves set agreement.

Extending the latter to k-set agreement and investigating the applicability
of the BRS theorem to alternative shared memory systems remain as open ques-
tions.

References

1. Afek, Y., Gafni, E., Rajsbaum, S., Raynal, M., Travers, C.: The k-simultaneous
consensus problem. Distrib. Comput. 22(3), 185–195 (2010). https://doi.org/10.
1007/s00446-009-0090-8

2. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based
proofs fail. CoRR abs/1811.01421 (2018)

3. Alistarh, D., Aspnes, J., Ellen, F., Gelashvili, R., Zhu, L.: Why extension-based
proofs fail. In: Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2019, Phoenix, AZ, USA, 23–26 June 2019, pp. 986–
996 (2019). https://doi.org/10.1145/3313276.3316407

https://doi.org/10.1007/s00446-009-0090-8
https://doi.org/10.1007/s00446-009-0090-8
https://doi.org/10.1145/3313276.3316407

A Topological Reduction of k-Set Agreement to Consensus 321

4. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Brief announcement: new
bounds for partially synchronous set agreement. In: Lynch, N.A., Shvartsman,
A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 404–405. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15763-9 40

5. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995). https://doi.org/10.1145/200836.200869

6. Attiya, H., Castañeda, A.: A non-topological proof for the impossibility of k-set
agreement. Theor. Comput. Sci. 512, 41–48 (2013)

7. Attiya, H., Paz, A.: Counting-based impossibility proofs for renaming and set
agreement. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 356–370.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5 25

8. Biely, M., Robinson, P., Schmid, U.: Weak synchrony models and failure detectors
for message passing (k -)set agreement. In: Abdelzaher, T., Raynal, M., Santoro, N.
(eds.) OPODIS 2009. LNCS, vol. 5923, pp. 285–299. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10877-8 23

9. Biely, M., Robinson, P., Schmid, U.: Easy impossibility proofs for k -set agreement
in message passing systems. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.)
OPODIS 2011. LNCS, vol. 7109, pp. 299–312. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25873-2 21

10. Bonnet, F., Raynal, M.: On the road to the weakest failure detector for k-set
agreement in message-passing systems. Theor. Comput. Sci. 412(33), 4273–4284
(2011). https://doi.org/10.1016/j.tcs.2010.11.007

11. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993: Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, pp. 91–100. ACM, New York (1993). https://
doi.org/10.1145/167088.167119

12. Bouzid, Z., Travers, C.: (anti–Ωx ×Σz)–based k -set agreement algorithms. In: Lu,
C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 189–204.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1 16

13. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of
the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2000. ACM, New York (2000). https://doi.org/10.1145/343477.343502

14. Fich, F., Ruppert, E.: Hundreds of impossibility results for distributed computing.
Distrib. Comput. 16, 121–163 (2003). https://doi.org/10.1007/s00446-003-0091-y

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

16. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33(2), 51–59 (2002). https://
doi.org/10.1145/564585.564601

17. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Com-
binatorial Topology. Morgan Kaufmann, Burlington (2013). https://store.elsevier.
com/product.jsp?isbn=9780124045781

18. Herlihy, M., Rajsbaum, S., Raynal, M., Stainer, J.: From wait-free to arbitrary
concurrent solo executions in colorless distributed computing. Theor. Comput. Sci.
683, 1–21 (2017). https://doi.org/10.1016/j.tcs.2017.04.007

19. Herlihy, M., Rajsbaum, S., Tuttle, M.R.: An overview of synchronous message-
passing and topology. Electron. Notes Theor. Comput. Sci. 39(2), 1–17 (2000).
https://doi.org/10.1016/S1571-0661(05)01148-5

20. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999). https://doi.org/10.1145/331524.331529

https://doi.org/10.1007/978-3-642-15763-9_40
https://doi.org/10.1145/200836.200869
https://doi.org/10.1007/978-3-642-33651-5_25
https://doi.org/10.1007/978-3-642-10877-8_23
https://doi.org/10.1007/978-3-642-25873-2_21
https://doi.org/10.1007/978-3-642-25873-2_21
https://doi.org/10.1016/j.tcs.2010.11.007
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/167088.167119
https://doi.org/10.1007/978-3-642-17653-1_16
https://doi.org/10.1145/343477.343502
https://doi.org/10.1007/s00446-003-0091-y
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://doi.org/10.1016/j.tcs.2017.04.007
https://doi.org/10.1016/S1571-0661(05)01148-5
https://doi.org/10.1145/331524.331529

322 H. Rincon Galeana et al.

21. de Prisco, R., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous
systems. IEEE Trans. Parallel Distrib. Syst. 12(1), 7–21 (2001). https://doi.org/
10.1109/71.899936

22. Rincon, H., Winkler, K., Schmid, U., Rajsbaum, S.: A topological view of parti-
tioning arguments: reducing k-set agreement to consensus. Technical report TUW-
281149, TU Wien (2019). https://publik.tuwien.ac.at/files/publik 281149.pdf

23. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000). https://doi.org/10.
1137/S0097539796307698

https://doi.org/10.1109/71.899936
https://doi.org/10.1109/71.899936
https://publik.tuwien.ac.at/files/publik_281149.pdf
https://doi.org/10.1137/S0097539796307698
https://doi.org/10.1137/S0097539796307698

	A Topological View of Partitioning Arguments: Reducing k-Set Agreement to Consensus
	1 Introduction
	2 Topological Modeling of Distributed Systems
	3 BRS Basic Definitions
	4 Topological BRS Theorem
	5 Partition Compatibility in Shared Memory and Set Agreement
	6 Conclusions
	References

