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Abstract

This paper studies fault tolerant algorithms for the problem of gathering N autonomous
mobile robots. A gathering algorithm, executed independently by each robot, must ensure
that all robots are gathered at one point within finite time. In a failure-prone system, a
gathering algorithm is required to successfully gather the nonfaulty robots, independently of
the behavior of the faulty ones. Both crash and Byzantine faults are considered. It is first
observed that most existing algorithms fail to operate correctly in a setting allowing crash
failures. Subsequently, an algorithm tolerant against one crash-faulty robot in a system of
three or more robots is presented.

It is then observed that all known algorithms fail to operate correctly in a system prone
to Byzantine faults, even in the presence of a single fault. Moreover, it is shown that in
an asynchronous environment it is impossible to perform a successful gathering in a 3-robot
system, even if at most one of them might fail in a Byzantine manner. Thus, the problem is
studied in a fully synchronous system. An algorithm is provided in this model for gathering
N ≥ 3 robots with at most a single faulty robot, and a more general gathering algorithm is
given in an N -robot system with up to f faults, where N ≥ 3f + 1.
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1 Introduction

Background. Systems of multiple autonomous mobile robots engaged in cooperative activities
have been extensively studied throughout the past decade [10, 5, 16, 17, 7, 11, 3, 27]. This subject
is of interest for a number of reasons. For one, it may be possible to use a multiple robot system
in order to accomplish tasks that no single spatially limited robot can achieve. Another advantage
of multiple robot systems has to do with the decreased cost due to the use of simpler and cheaper
individual robots. Also, these systems have immediate applicability in a wide variety of tasks,
such as military operations and space missions. Subsequently, studies of autonomous mobile
robot systems can be found in different disciplines, from engineering to artificial intelligence (e.g.,
[18, 4, 15, 19]).

Our interest is in problems related to the distributed control of systems of autonomous mobile
robots. Most studies on robot control problems resulted in the design of algorithms based on
heuristics, with little emphasis on formal analysis of the correctness, termination or complexity
properties of the algorithms. During the last few years, various aspects of this problem have been
studied from the point of view of distributed computing (cf. [5, 20, 25, 26, 23, 2]), where the focus
is on trying to model an environment consisting of mobile robots, and studying the capabilities the
robots must have in order to achieve their common goal. A number of computational models were
proposed in the literature, and some studies attempted to characterize the influence of the models
on the ability of a group of robots to perform certain basic tasks under different constraints.

The primary motivation of the studies presented in [23, 26, 20, 21, 25] is to identify the minimal
capabilities a collection of distributed robots must have in order to accomplish certain basic tasks
and produce interesting interaction. Consequently, the models adopted in these studies assume
the robots to be relatively weak and simple. In particular, these robots are generally assumed
to be dimensionless (namely, treated as points that do not obstruct each other’s visibility or
movement), oblivious (or memoryless, namely, do not remember their previous actions or the
previous positions of the other robots), have no common coordinate system, orientation or scale,
use no explicit communication, and are anonymous (some of these assumptions are modified in
order to achieve goals that are otherwise unfeasible). They operate in simple “look-compute-
move” cycles. Thus the robots base their movement decisions on viewing their surroundings and
analyzing the configuration of robot locations. A robot is capable of locating all robots within
its visibility range (which can be either limited or unlimited) and laying them in its private
coordinate system, thereby calculating their position (distance and angles) with respect to one
another and with respect to itself. Hence, from the “distributed computing” angle, such problems
are particularly interesting since they give rise to a different type of communication model, based
solely on “positional” or “geometric” information exchange.

A basic task that has received considerable attention is the gathering problem, defined as
follows. Given an initial configuration of N autonomous mobile robots, all N robots should
occupy a single point within a finite number of steps. The closely related convergence problem
is defined similarly, except that the robots are only required to converge to a single point, rather
than reach it. Namely, instead of demanding that the robots gather to one point within finite
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time, the convergence requirement is that for every ε > 0, there is a time tε by which all robots
are within distance of at most ε of each other.

Fault-tolerance. As the common models of multiple robot systems assume cheap, simple and
relatively weak robots, the issue of resilience to failure becomes prominent, since in such systems
one cannot possibly rely on assuming fail-proof hardware or software, especially when such robot
systems are expected to operate in hazardous or harsh environments. At the same time, one of the
main attractive features of multiple-robot systems is their potential for enhanced fault tolerance.
It seems plausible that the inherent redundancy of such systems may be exploited in order to
enable them to perform their tasks even in the presence of faults.

Following the common “f of N” classification often used in the area, a fault tolerant algorithm
for a given task is required to ensure that in a system consisting of N robots where it is assumed
that at most f robots might fail in any execution, the task is achieved by all nonfaulty robots,
regardless of the actions taken by the faulty ones. In the gathering task, for example, when faults
are introduced into the system, the requirement applies only for the nonfaulty robots, i.e., if f ′

robots fail, then all the remaining N − f ′ nonfaulty robots are required to occupy a single point
within a finite time.

Perhaps surprisingly, however, this aspect of multiple robot systems has been explored to very
little extent so far. In fact, almost all the results we are aware of in the literature rely on the
assumption that all robots function properly, and follow their protocol without any deviation.
One exception concerns transient failures. As observed in [26, 23, 13], any algorithm that works
correctly on oblivious robots is necessarily self-stabilizing, i.e., it guarantees that after any tran-
sient failure the system will return to a correct state and the goal will be achieved. Yet another
line of study concerns a fault model where it is assumed that restricted sensor and control failures
might occur, but if faults do occur in the system, then the identity of the faulty robots becomes
known to all robots [23]. This may be an unrealistic assumption in many typical settings, and it
clearly provides an easy means of overcoming the faults: each nonfaulty robot may simply ignore
the failed ones, effectively removing them from the group of robots, so the algorithm continues
to function properly. However, in case unidentified faults occur in the system, it is no longer
guaranteed that the algorithms of [23, 26] remain correct, i.e., the goal might not be achieved.
The only concrete attempt we’re aware of for dealing with crash faults is described in [29], where
an algorithm is given for the Active Robot Selection Problem (ARSP) in the presence of initial
crash faults. The ARSP creates a subgroup of nonfaulty robots from a group that includes also
initially crashed robots and makes the robots in that subgroup recognize one another. This allows
the nonfaulty robots in the subgroup to overcome the existence of faults in the system, and they
can further execute any algorithm within the group.

Hence the design of fault-tolerant distributed control algorithms for multiple robot systems is
still a largely unexplored direction, which the current paper aims at investigating.

Related work. A number of basic mobile robot coordination problems were considered in the
literature. One class of problems involves the formation of geometric patterns. The robots are
required to arrange themselves in a given geometric form, such as a circle, a simple polygon or
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a line, within finite time (see, e.g., [23, 9, 12]). The task of flocking, requiring the robots to
follow the movement of a predefined leader, was studied in [22]. The even distribution problem,
requiring the robots to spread out uniformly over a specified region of a simple geometric shape,
and the related task of partitioning the robots into groups, were studied in [23].

The problem of gathering autonomous mobile robots, dealt with in this paper, requires the
robots to gather to the same point within finite time (see, e.g., [24, 25, 14, 7, 6, 8]). This problem
was studied extensively in two computational models. The first is the model of [23, 26], hereafter
referred to as the semi-synchronous (SSYNC) model. The second is the closely related CORDA
model [20, 21, 25], hereafter referred to as the asynchronous (ASYNC) model.

The gathering problem was first discussed in [25, 26] in the SSYNC model. It was proven
there that it is impossible to achieve gathering of two oblivious autonomous mobile robots that
have no common sense of orientation under the SSYNC model. The algorithms presented therein
for N ≥ 3 robots rely on the assumption that a robot can identify a point p∗ occupied by two
or more robots (a.k.a. multiplicity point). This assumption was later proven to be essential for
achieving gathering in all asynchronous and semi-synchronous models [22]. Another necessary
requirement for solvability in the SSYNC and ASYNC models is that the input configuration
does not include more than one multiplicity point of nonfaulty robots (it is easy to show that if
two multiplicity points of nonfaulty robots are allowed, the situation is equivalent to the 2-robot
system, thus gathering is impossible). In fact, all known gathering algorithms for N ≥ 3 rely on a
strategy by which a single multiplicity point p∗ is formed during the execution of the algorithm,
and once this happens, all robots move to the point p∗. Under these assumptions, an algorithm
is developed in [26] for gathering N ≥ 3 robots in the SSYNC model. In the ASYNC model,
an algorithm for gathering N = 3, 4 robots is brought in [22, 7], and an algorithm for gathering
N ≥ 5 robots has been described in [6].

The gathering problem was also studied (in both the SSYNC and ASYNC models) in a
system where the robots have limited visibility. The visibility conditions are modelled by means
of a visibility graph, representing the (symmetric) visibility relation of the robots with respect to
one another, i.e., an edge exists between Ri and Rj if and only if Ri and Rj are visible to each
other. It was shown that the problem is unsolvable in case the visibility graph is not connected
[14]. In [1] a convergence algorithm was provided for any N , in limited visibility systems. An
algorithm that achieves gathering in the ASYNC model is described in [14], under the assumption
that all robots share a compass (i.e., agree on a direction in the plane).

Our results. This paper presents a systematic study of failure-prone robot systems, through
examining the gathering problem under the crash and Byzantine fault models. An (N, f)-fault
system is a system consisting of N robots, at most f of which might fail at any execution. An
(N, f)-crash system (resp., (N, f)-Byzantine system), is an (N, f)-fault system where the faults
considered are according to the crash or Byzantine model. A fault tolerant algorithm for a given
task in an (N, f)-fault system is required to ensure that so long as at most f robots have failed,
the task is achieved by all nonfaulty robots, regardless of the actions taken by the faulty ones.

Under the crash fault model, we show that the gathering problem is solvable in current compu-
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tational models such as the SSYNC model, though most existing algorithms fail to deal correctly
with such faults and, in particular, there is currently no algorithm for N ≥ 4 that solves the
gathering problem in the presence of one faulty robot under the crash fault model. We propose
an algorithm that solves the gathering problem in (N, 1)-crash system, for any N ≥ 3, under the
SSYNC model.

We then consider (N, f)-Byzantine systems for N ≥ 3. We first observe that all existing
algorithms fail to deal correctly with this situation. Moreover, we show that it is impossible to
perform a successful gathering in (3, 1)-Byzantine systems under the SSYNC model. We then
introduce the fully synchronous (FSYNC) model, which is similar to the synchronous model
mentioned in [26], and present an algorithm solving the gathering problem under this model in
(N, f)-Byzantine systems for every 1 N ≥ 3f + 1.

2 The model

We follow the common computational model of distributed robot systems. In particular, we make
the following assumptions. The visibility range of the robots is assumed to be unlimited. The
robots are treated as points (dimensionless objects), which do not obstruct each other’s visibility or
movement. The robots are anonymous and cannot communicate with each other. For the sake of
analysis, denote the robots in the system by R1, . . . , RN . Each robot Ri has its private coordinate
system, consisting of the position of the origin, direction of the positive x-axis, and the size of
one unit distance. It is assumed that the direction of the positive y-axis is 90 ◦ counterclockwise
of the direction of the positive x-axis. The coordinate systems of the various robots might be all
different and do not share the same direction or scale.

Following most previous papers on the gathering problem in the literature [24, 25, 14, 7, 22],
the model adopted throughout this paper is the oblivious model, where it is assumed that the
robots cannot remember their previous states, and thus the decisions they make in each step are
based only on the current configuration. The main motivation for developing algorithms for the
oblivious model is twofold. First, solutions developed on the basis of assuming non-obliviousness
do not necessarily work in a dynamic environment where the robots are activated in different
cycles, or robots might be added/removed from the system dynamically. Secondly, as mentioned
earlier, any algorithm that works correctly for oblivious robots is inherently self-stabilizing, i.e.,
it withstands transient errors. More generally, it is advantageous to develop algorithms for the
weakest robot types possible, as an algorithm that works correctly for weak robots will clearly
work correctly in a system of stronger robot types. In contrast, our lower bounds serve mainly to
draw the borderlines where the various models become too weak to allow solutions.

Robot operation cycle. Each robot Ri in the system is assumed to operate individually in
simple cycles. Every cycle consists of three steps, “look”, “compute” and “move”. In the FSYNC
and SSYNC models the length of this cycle is uniform for all robots.

1A peculiarity of our algorithms is that N = 3 robots can tolerate f = 1 failures, but N > 3 robot systems

require N ≥ 3f + 1, rather than N ≥ 3f .
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• Look: Identify the locations of all robots in Ri’s private coordinate system; the result of
this step is a multiset of points P = {p1, . . . , pN} defining the current configuration. As the
robots are indistinguishable, each robot Ri knows its own location pi, but does not know
the identity of the robots at each of the other points.

• Compute: Execute the given algorithm, resulting in a goal point pG.
• Move: Move towards the point pG. The robot might stop before reaching its goal point

pG, but is promised to traverse a distance of at least S (unless it has reached the goal).

Note that the “look” and “move” steps are carried out identically in every cycle, independently
of the algorithm used. The differences between different algorithms occur in the “compute” step.
Moreover, the procedure carried out in the “compute” step is identical for all robots. If the
robots are oblivious, then the algorithm cannot rely on information from previous cycles, thus the
procedure can be fully specified by describing a single “compute” step, and its only input is the
current configuration P = {p1, . . . , pN}, giving the robot locations. Throughout, we may denote
the location of Ri in the configuration P by p(Ri). Also, whenever no confusion may arise, we
identify p(Ri) as the point pi.

Three synchronization models. As mentioned earlier, our computational model for studying
and analyzing problems of coordinating and controlling a set of autonomous mobile robots follows
two well studied models: the SSYNC model and the ASYNC model. The semi-synchronous
(SSYNC) model is partially synchronous, in the sense that all robots operate according to the
same clock cycles, but not all robots are necessarily active in all cycles. The activation of the
different robots can be thought of as managed by a hypothetical “scheduler”, whose only “fairness”
obligation is that each robot must be activated and given a chance to operate infinitely often in
any infinite execution. The fully asynchronous (ASYNC) model differs from the SSYNC model
in that each robot acts independently in a cycle composed of four steps: Wait, Look, Compute,
Move. The length of this cycle is finite, but not bounded. Consequently, there is no bound on the
length of the walk in a single cycle, and different cycles of the same robot may vary in length. In
contrast, in the SSYNC model a bound exists on the cycle length due to the common clock and
as a result the robot will not necessarily reach the target point p in the current cycle, but stop
somewhere on its trajectory to p.

In this paper we consider also the extreme fully synchronous (FSYNC) model. This model is
similar to the SSYNC model, where the robots operate according to the same clock cycles, except
that here all robots are active on all cycles. In this model we assume discrete time 0, 1, . . . , and let
pi(t) denote the position of Ri at time t, where pi(0) is the initial position of Ri. In each cycle t,
the set of positions is a multiset, as it is not disallowed for two robots to occupy the same position
simultaneously. In each cycle t, each robot Ri is capable of moving over distance at least S > 0
in one step (S is unknown to the robots). Therefore it is guaranteed that if dist(pi

G, pi(t)) ≤ S,
where pi

G is Ri’s goal point in the current cycle, then Ri will reach its goal in the current cycle.
Otherwise, it will traverse a distance of at least S towards pi

G.

Failure models. The fault models discussed throughout the paper are the crash fault model and
the Byzantine fault model. In the Byzantine fault model, it is assumed that a faulty robot might
behave in arbitrary and unforeseeable ways. For the sake of analysis, it is convenient to model
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the behavior of the system by means of an adversary which has the ability to control the behavior
of the faulty robots, as well as the “undetermined” features in the behavior of the nonfaulty
processors (e.g., the distance to which they move). Specifically, in each cycle the adversary has
the following roles. For each faulty robot, it determines its course of action in that cycle, which
can be arbitrary. For each nonfaulty robot, it determines the distance to which the robot will move
in this cycle (for a robot Ri located at pi and headed for the goal point pG, if dist(pi, pG) ≤ S,
then the robot must be allowed to reach pG; else, the adversary may stop Ri at any point on the
line segment pipG that is at least at distance S away from pi).

In the crash fault model, the behavior of the system is similar to the one described in the
Byzantine fault model, except that for each faulty robot the adversary is only allowed to stop
its movement. This may be done at any point in time during the cycle, i.e., either during the
movement towards the goal point or before it has started. Once the adversary crashed the faulty
robot, that robot will remain stationary indefinitely.

3 Gathering under the crash fault model

3.1 Inadequacy of known algorithms

Most gathering algorithms proposed in the literature fail to withstand even a single crash failure
because they depend, in certain configurations, on the movement of a single robot. More formally,
let A be a gathering algorithm for an N -robot system. In every configuration C, the algorithm
instructs some robots to move and some to remain stationary. Denote the number of robots A
instructs to move in configuration C by M(C,A), and let

M̌(N,A) = min{M(C,A) | C is a configuration in an N -robot system}.
Lemma 3.1. In an (N, f)-crash system, an algorithm A with M̌(N,A) ≤ f will fail in achieving
gathering or convergence.

Proof: Consider an (N, f)-crash system, and a gathering algorithm A with M̌(N,A) ≤ f , and
let C ′ be the configuration of the system realizing M̌ , i.e., such that M(C ′,A) ≤ f . Starting in
that configuration, the adversary can fail the (f or fewer) robots instructed by the algorithm to
move. This will cause the next configuration to be identical to C ′ again, and the N − f nonfaulty
robots will remain in the same configuration C ′ indefinitely.

In fact, every gathering algorithm A we’re aware of in the SSYNC and ASYNC models
[24, 25, 26, 7] has M̌(N,A) = 1 for N ≥ 4, and consequently, by Lemma 3.1, these algorithms
fail to achieve gathering even in the presence of one crash faulty robot. The algorithm described
in [6] for gathering N ≥ 5 robots in the ASYNC model can also fail in the presence of one crash
faulty robot, if that robot lies between some other robot and its goal point. On the positive side,
it turns out that the gathering algorithm given in [7] for N = 3 under the ASYNC model, can be
shown to operate correctly also in the presence of one crashed robot (we give a slightly simpler
algorithm for this case in the SSYNC model below), and the algorithm given therein for N = 4
can be transformed into an algorithm for (4, 1)-crash systems with some minor changes.
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An additional difficulty in handling a robot system with crash faults is caused by the assump-
tion, made by all current algorithms, that only a single multiplicity point is created throughout
the execution of the algorithm. In the presence of faults, the fact that the adversary has the
ability to stop the nonfaulty robots after traversing a minimal distance S and the ability to crash
the faulty robots at any step during the execution, makes it easy for the adversary to create a
second multiplicity point once the first was created, whenever the trajectories of two or more
robots moving towards their goals intersect. In particular, it is easy to see that in a collinear
configuration with N > 3 robots and given an algorithm that instructs all robots to move towards
a point on the line, the adversary can create two multiplicity points on the line, simply by crashing
some robot R at a point p between the multiplicity point and another robot R′, thus forcing R′

to pass through p, and stopping it there.

3.2 An algorithm for a (3, 1)-crash system

Consider the following Procedure 3-Gathercrash for gathering in a (3, 1)-crash system in the SSYNC
model. As discussed earlier, we only need to present the procedure used for the “compute” step.
The input to this procedure is the configuration P = {p1, p2, p3}. The procedure classifies the
configuration according to its state, and acts in each case as follows.

Procedure 3-Gathercrash(P )

1. State [Mult]: P contains a multiplicity point p∗:
Set pG ← p∗.

2. State [Collinear]: p1, p2, p3 are collinear (say, with p2 in the middle):
Set pG ← p2.

3. State [Obtuse]: ∃i ∈ {1, 2, 3} such that ∠pjpipk ≥ π/2:
Set pG ← pi.

4. State [Acute]: p1, p2, p3 form an acute triangle:
Set pG to be the intersection point of the three angle bisectors.

Note that state [Collinear] is redundant, since it is covered by state [Obtuse]. It is included
merely for convenience of presentation.

Analysis

In analyzing our algorithms, we use the following notation regarding points and lines in the
Euclidean plane. Denote the Euclidean distance between two points p and q by dist(p, q). Also,
denote the Euclidean distance between two current locations pi and pj of the two robots Ri and
Rj (respectively) by dist(Ri, Rj). Denote the line segment between the points p and q by pq. We
use the following well-known fact.
Lemma 3.2. In a triangle 4p1p2p3, the intersection point pM of the three angle bisectors satisfies
∠pipMpj ≥ π/2, for every 1 ≤ i < j ≤ 3.
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Proof: Let α = ∠pMp1p2, β = ∠pMp2p3, γ = ∠pMp3p1 and θ = ∠p1pMp2 (see Figure 1). It
follows that 2α + 2β + 2γ = π, hence α + β = π/2− γ < π/2, and since in the triangle 4pMp1p2,
θ + α + β = π, it follows that θ > π/2. A similar argument applies in 4pMp2p3 and 4pMp1p3.

θ

β β

α
α γ

γ

p1

p2

p3

pM

Figure 1: Proof of Lemma 3.2.

Lemma 3.3. If two robots R1 and R2, initially located at the points p1 and p2 (respectively),
move towards a common meeting point pG, and α = ∠p1pGp2 ≥ π/2, then the distance between
them decreases by at least 0.7S.

Proof: For i = 1, 2, let Si denote the distance traversed by the robot Ri, and let p′i denote the
new location of Ri. Consider the triangle 4p1p2pG, and let β = ∠p2p1pG (see Figure 2). Denote
the distance between the robot locations before and after the movement by d1 = dist(p1, p2) and
d2 = dist(p′1, p

′
2) respectively. Without loss of generality, suppose that p′1 is closer than p′2 to the

line p1p2. Draw a line parallel to d1 through p′1, denote its intersection with p2pG by p′′, and let
d3 = dist(p′1, p

′′).

β
α

p’’
2S

2p’

pG

1p’
1S

1p

p0

1d

2d

d3

p2

Figure 2: Proof of Lemma 3.3.

We need to prove that d1 − d2 > 0.7S. Since it is clear that d2 ≤ d3, it suffices to show that
∆ = d1 − d3 > 0.7S. Drop a perpendicular line from p′1 to p1p2, and let p0 be its intersection
point with the line p1p2. Let ∆′ = dist(p0, p1). It is also clear that ∆′ ≤ ∆, hence it remains
to prove that ∆′ ≥ 0.7S. Since α ≥ π/2, the remaining two angles in 4p1p2pG sum to at most
π/2. Without loss of generality, let β ≤ π/4. Also, according to our model assumption, each
robot moves a distance of at least S in each cycle, i.e., Si ≥ S for i = 1, 2. Therefore, by the
sine theorem on the triangle 4p1p

′
1p0 (see Figure 3), S ≤ S1 = S1

sin(π/2) = ∆′
sin(π/2−β) , and hence
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∆′ ≥ S · cos(β) ≥ S · cos(π/4) ≥ 0.7S, completing the proof.

β

∆’

S1

0p

1p’
p1

Figure 3: triangle enlargement from proof of Lemma 3.3.

Lemma 3.4. There exists a constant c > 0 such that given three robots R1, R2 and R3 located at
points p1, p2 and p3 respectively where 4p1p2p3 is an acute triangle, if one or more of the robots
traverses a distance of at least S towards the intersection point pM of the three angle bisectors,
then the circumference of the triangle decreases by at least cS.

Proof: By Lemma 3.2, pipMpj > π/2 for every 1 ≤ i, j ≤ 3. Thus, by Lemma 3.3, if two of the
three robots move towards pM , then the distance between them decreases by at least 0.7S, and as
the other distances do not increase, the circumference of the triangle decreases by at least 0.7S. It
remains to show that even if only one robot moves towards pM it decreases the distance between
itself and its neighbors by at least c′S for some constant c′, thus altogether the circumference of
the triangle decreases by at least 2c′S = cS.

Consider the triangle 4pipMpj , 1 ≤ i, j ≤ 3. Let α = ∠pipMpj , β = ∠pMpipj and γ =
∠pMpjpi (see Figure 4). Since 4p1p2p3 is acute, it follows that 2β < π/2, thus β < π/4 and
similarly γ < π/4. Assume, without loss of generality, that robot Ri traversed a distance Si ≥ S

towards pM and lies on a point p′i. Let d1 = dist(pi, pj), d2 = dist(p′i, pj) and ∆ = d1 − d2. By
the sine theorem on the triangles 4pipjpM and 4p′ipjpM it follows that d1

d2
= sin(\pjp′ipM )

sin β , and
since ∠pjp

′
ipM > β it follows that d1 > d2. Let p0 be the point on the segment pipj that creates

an isosceles triangle 4p0pjp
′
i, i.e., dist(pj , p0) = d2. Note that dist(p0, pi) = ∆. Let δ = ∠pip

′
ip0.

Since

3π/8 <
π − γ

2
<

π − ∠pipjp
′
i

2
= ∠pjp0p

′
i = ∠pjp

′
ip0 < π/2,

it follows that 3π/8 < β + δ < π/2, and as β < π/4 we have π/8 < δ < π/2 . By the sine theorem
on the triangle 4pip

′
ip0 it follows that

∆ = Si
sin δ

sin(δ + β)
≥ S

sin δ

sin(δ + β)
≥ S

sin(π/8)
sin(π/2)

> 0.3S.

Therefore by choosing c′ = 0.3, the lemma holds for c = 0.6.

Theorem 3.5. Algorithm 3-Gathercrash solves the gathering problem in a (3, 1)-crash system un-
der the SSYNC model.

Proof: Consider an initial configuration P = {p1, p2, p3}. It suffices to show that the algorithm
causes the system to reach state [MULT], i.e., either it gathers all robots together in one point,
or it causes the creation of one multiplicity point, since if the remaining robot is nonfaulty then
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α
d2
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p
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pij

M

β

p

Si
δγ

Figure 4: Proof of Lemma 3.4.

it will join the multiplicity point in finite time by step 1 of the algorithm, and if it is faulty then
gathering has been achieved. Consider the flow of states the system could be in. It suffices to
show that the states used for classifying the configurations in procedure 3-Gathercrash form a finite
connected DAG (possibly with self loops), where all paths lead to a final state [MULT] in which
a multiplicity point exists (see Figure 5), such that starting with a configuration in any of the
states, we reach the final state within a finite number of cycles.

If in the initial configuration p1, p2, p3 are collinear, then the configuration will remain collinear,
and within finite time, either both extreme robots will arrive to the location of the middle robot
(if both are nonfaulty), or only one of them will arrive (if one of the extreme robots is faulty),
thus in any case a multiplicity point will be created in the location of the middle robot, leading
to state [MULT].

Next, suppose that the initial configuration is not collinear but obtuse, i.e., there exists a point
pi such that ∠pjpipk ≥ π/2. Then the configuration remains obtuse until one robot reaches Ri.
Since at least one of the robots instructed to move towards Ri is nonfaulty, it will reach its goal
point within finite time, thus reaching state [MULT].

Finally, if p1, p2, p3 create an acute triangle in cycle t, then one of the following two cases
holds. In the first case, at least one robot was active in the current cycle and traversed a distance
of at least S towards pM . There are two subcases to be examined. If the system remains in state
[Acute], then by Lemma 3.4 the circumference of 4p1p2p3 decreases by at least 0.6S. Therefore,
if the robots remain constantly in state [Acute] then at least two robots will eventually meet in
pM , leading to state [MULT]. The other subcase is that this movement causes 4p1p2p3 to become
obtuse. In this case, the system changes to state [Obtuse]. In the second case, all active robots in
this cycle traversed a distance smaller than S towards pM , thus they are now located at pM . Again
there are two subcases. If two or more robots were active then they meet at pM , leading to state
[MULT]. Otherwise, only one robot, say Ri, is located in pM . Then by Lemma 3.2 ∠pjpipk ≥ π/2,
thus 4p1p2p3 becomes obtuse and the system changes to state [Obtuse], leading to gathering as
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discussed above.

2
P = {p , p , p  }

1
Configuration

3

MULT

Obtuse Collinear

Acute

Figure 5: Statechart for Procedure 3-Gathercrash.

3.3 An algorithm for an (N, 1)-crash system, N ≥ 3

Let us start with some terminology. A legal configuration in the (N, 1)-crash system is a set P of
robot locations that has at most one multiplicity point. Denote the smallest enclosing circle of
the set P by SEC(P ) and the points on its circumference by Ccir(P ) and let Cint(P ) = P \Ccir(P ).
For a circle C and the set of points P = {p1, . . . , pl} on its circumference, denote the partition of
the circle C into Voronoi cells according to the points in P by Vor(C,P ), and denote by Cell(pk)
the cell defined by the point pk ∈ P (see Figure 6). Two points q and q′ in C are said to share
the cell Cell(pk) if they both lie inside the cell or on its boundary.

Cell(p )

k+1

k-1

p

p

p

k

k

Figure 6: Example of a circle division according to the Voronoi cells.

Consider the following Algorithm Gathercrash for gathering all nonfaulty robots in an (N, 1)-
crash system under the SSYNC model. The input to this algorithm is a legal configuration
P = {p1, . . . , pN}. The algorithm classifies the configuration according to its state, and acts in
each case as follows. If there are no multiplicity points in the configuration, then each robot
performs Procedure Create Mult in order to reach a configuration with a multiplicity point. Once
a multiplicity point p∗ is detected, each robot performs Procedure GoTo Mult in order to achieve
gathering of all nonfaulty robots in p∗, while avoiding creation of additional multiplicity points.

The input to Procedure GoTo Mult is the configuration P = {p1, . . . , pN}. We say that robot
Ri, has a “free corridor” to the point p if no other robot is currently located on the straight line
segment pip. Note that as robots are viewed as dimensionless objects, the availability of a free
corridor is not necessarily a prerequisite for allowing a robot to get home free. However, allowing
a robot to follow a trajectory through the location of another robot makes the algorithm prone
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Algorithm Gathercrash(P )

1. State [Singletons]: The configuration P does not contain a multiplicity point:
Invoke Procedure Create Mult(P ).

2. State [MULT]: The configuration P contains a single multiplicity point p∗:
Invoke Procedure GoTo Mult(P ).

Procedure Create Mult(P )
State [N3]: N = 3:
Invoke Procedure 3-Gathercrash on p1, p2, p3.
State [N4+]: N ≥ 4:

1. Sub-State [IN0]: |Cint(P )| = 0:
Set pG to be the center of SEC(P ).

2. Sub-State [IN1]: |Cint(P )| = 1 with pj as the single point in Cint(P ):
Set pG ← pj

3. Sub-State [IN2]: |Cint(P )| = 2 with pi and pj as the two points in Cint(P ):
Each robot Rk in Ccir(P ) sets pG(Rk) ← p(Rk).
The two robots Ri and Rj in Cint(P ) do:

(a) Compute the Voronoi partition Vor(SEC(P ), Ccir(P )).

(b) Sub-State [IN2(a)]: pi and pj do not share cells:
Ri and Rj move towards the center of SEC(P ).

(c) Sub-State [IN2(b)]: pi and pj share a single cell, Cell(Rk):
Ri and Rj move towards Rk.

(d) Sub-State [IN2(c)]: pi and pj share two cells, i.e., both robots lie on the radius forming the
boundary between two adjacent cells Cell(Rk) and Cell(Rk+1):
The robot closer to the circle, say Ri, chooses the first of Rk, Rk+1 in its clockwise direction,
say Rk, and sets pG(Ri) ← p(Rk);
The other robot, Rj , sets pG(Rj) ← p(Ri).

4. Sub-State [IN3]: |Cint(P )| ≥ 3:
Each robot Rk in Ccir(P ) sets pG(Rk) ← p(Rk).
Each robot Rk in Cint(P ) recursively invokes Procedure Create Mult(Cint(P )).

(c)(b)(a)

Figure 7: Illustration of the three sub-states of sub-state [IN2] in Procedure Create Mult.
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to the creation of more than one multiplicity point. Therefore Procedure GoTo Mult attempts to
avoid such trajectories.

Procedure GoTo Mult(P ) (for robot Ri)
/* The configuration contains a multiplicity point p∗ */

1. State [Free]: Ri has a free corridor to p∗:
Set pG ← p∗.

2. State [Blocked]: There exist one or more robots on Ri’s trajectory towards p∗:

a. Translate your coordinate system to be centered at p∗.

b. Compute for each robot Rj the angle µj of −−→p∗pj counterclockwise from the x axis.

c. Find the robot Rk with smallest angle µk > µi.
Let µ = (µk + 2µi)/3, and d = dist(Ri, Rk) (see Figure 8(a)).

d. Let p′i be the point at distance d and angle µ from p∗.

e. Set pG ← p′i.

j

*p

p*

iR

i
k

µ
R

µ
µ

(a) (b)

Figure 8: Illustration of state [Blocked] in Procedure GoTo Mult.

Analysis

Lemma 3.6. If the initial configuration is in state [Singletons], i.e., contains no multiplicity
points, then Procedure Create Mult leads, within finite time, to a configuration in state [MULT],
i.e., including a single multiplicity point.

Proof: We prove the lemma by looking at the flow of states the system could be in. It suffices
to show that the states used for classifying the configurations in procedure Create Mult form a
finite connected DAG (possibly with self loops), where all paths lead to a final state [MULT] in
which a multiplicity point exists (see Figure 9), such that starting with a configuration in any of
the states, we reach the final state within a finite number of cycles.

State [N3]: If N = 3, then by Theorem 3.5, Procedure 3-Gathercrash achieves gathering, and in
particular one multiplicity point is created.

State [IN0]: If N ≥ 4 and |Cint(P )| = 0, then if not all robots move together to the same
distance, the system changes either to state [MULT], or to a state where |Cint(P )| ≥ 1, i.e.,
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N3 IN0 IN1

P = {p , ..., p  }

(b)(a)

1
Configuration

N

IN2(b)

IN2(c)IN2(a)

IN2

MULT

IN2

MULT

IN3

Figure 9: Statechart for Procedure Create Mult. (a) The general statechart. (b) The substates of

state [IN2].

[IN1], [IN2] or [IN3]. If robots on the circumference move to a new configuration P ′ in which
they are all again on SEC(P ′), then the system remains in the same state, [IN0], but the radius
of SEC(P ) is reduced by at least S, since each of the robots moved by at least S towards the
center of SEC(P ). Therefore the self loop at state [IN0] can be repeated only finitely many times,
ending in a configuration where either |Cint(P )| ≥ 1, two robots meet and create a multiplicity
point, or all robots meet. Note also that if a multiplicity point is created after this step, then it
is necessarily unique, as it could be created only by two or more robots from Ccir(P ) meeting at
the center point of SEC(P ), which is the only possible intersection point for the trajectories of
the robots.

State [IN1]: If N ≥ 4 and |Cint(P )| = 1, then a similar argument holds, thus also here the
self loop can be taken only finitely many times, or the system’s state changes to a state where
|Cint(P )| ≥ 2, namely, [IN2] or [IN3], or a multiplicity point is created, leading to state [MULT].
If a multiplicity point is created as a result of this step, then it is unique, as it could be created
only by one or more robots from Ccir(P ) and the inner robot Ri, since the trajectories of any two
robots moving towards the Ri intersect only at the location of Ri.

State [IN2]: If N ≥ 4 and |Cint(P )| = 2, then the only outcome of this state could be a single
multiplicity point, as can be verified by inspecting the possible sub-states. In this state, only two
robots are active and move towards one goal point, thus the multiplicity point is unique.

State [IN2(a)]: If pi and pj do not share a cell, then both robots are instructed to go to the
center of SEC(P ). Eventually, either both robots will meet there, leading to state [MULT], or
only one will arrive at the center, thus the two robots now share a cell, leading to state [IN2(b)].

State [IN2(b)]: If pi and pj share a single cell, Cell(Rk), then either they meet on their way to
Rk, or one or both meet Rk at location pk, thus leading to state [MULT].

State [IN2(c)]: If pi and pj share two cells, then the following possibilities may occur. Either
the robot closer to Ccir(P ), say Ri, meets with its target, say Rk, or Rj will meet Ri on its way,
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thus a multiplicity point is created, leading to state [MULT], or Rj enters the interior of the
sector Cell(Rk), thus leading to state [IN2(b)].

State [IN3]: Finally, if N ≥ 4 and |Cint(P )| ≥ 3, then the procedure is applied recursively on the
inner robots, while the outer robots remain stationary. Thus, as seen above, a single multiplicity
point is created on the lowest level of the recursion.

Lemma 3.7. In an (N, 1)-crash system, if the initial configuration is in state [MULT], i.e.,
contains a single multiplicity point p∗, then procedure GoTo Mult guarantees that within finite
time all nonfaulty robots gather at p∗ while avoiding the creation of additional multiplicity points.

Proof: Every robot with a free corridor towards p∗ is instructed to go towards p∗, thus all
nonfaulty robots will arrive at p∗ within a finite time. If a robot Ri detects another robot on
its trajectory towards p∗, it looks for a free corridor by moving orthogonally to the multiplicity
point, while making sure that it does not obstruct the free corridor of any other robot. This is
ensured by moving only so as to change its angle with respect to the x axis and p∗ by a third
of the angle to the closest-angle neighboring robot Rj (see Figure 8(a)). Note that it is possible
that Rj will also enter the same sector, due to the lack of consistent coordinate system (and in
particular, the absence of common orientation, which may cause Rj ’th clockwise sector be the
same as Ri’th clockwise sector). However, even if Rj enters that clear sector, it will be in the
“far” third of the sector.

It is also possible for k ≥ 3 robots Ri1 , . . . , Rik to share a common corridor to p∗ (see Figure
8(b)). In this case the one of them closest to p∗, say Ri1 , will move towards p∗, and the others
might take the same new trajectory to p∗. However, on this new trajectory, only k − 1 robots
collide, so the closest to p∗ has a free corridor, and only k − 2 robots must shift orthogonally
again. Hence if a robot has more than one robot on its trajectory towards p∗, it will perform
instruction (2) finitely many times until it has a free corridor towards p∗, thus it will eventually
follow instruction (1) and arrive at p∗.

Theorem 3.8. Algorithm Gathercrash solves the gathering problem in an (N, 1)-crash system un-
der the SSYNC model for any N ≥ 3.

Proof: Since the initial configuration is legal, by Lemma 3.6 it is guaranteed that Procedure
Create Mult will lead to single multiplicity point. By Lemma 3.7, applying Procedure GoTo Mult

on a system with one multiplicity point leads to the gathering of all nonfaulty robots at that
point.

4 Impossibility of gathering under Byzantine faults

4.1 Impossibility results in the SSYNC and ASYNC models

In [21] it is shown that the class of problems solvable in ASYNC is contained in the class of
problems solvable in the SSYNC model. It follows that proving impossibility of gathering in an
(N, 1)-Byzantine system in SSYNC, proves impossibility also in ASYNC. We next prove that in
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the SSYNC model it is impossible for any algorithm to achieve either gathering or convergence
of three robots in the Byzantine fault model, even in the presence of at most one faulty robot.

Definition: A gathering algorithm A is called hyperactive if it instructs every robot to make a
move in every cycle until the task is achieved, i.e., M̌(N,A) = N .
Theorem 4.1. In a (3, 1)-Byzantine system under the SSYNC model, any non-hyperactive gath-
ering algorithm will fail in achieving gathering or convergence.

Proof: Suppose the system consists of three robots R1, R2, R3, and there exists a scenario σ in
which at some configuration C1, R1 is active, but the algorithm instructs it to stay in place. In
this system, the adversary can do the following. It designates R3 as faulty, and executes the
scenario σ with R3 acting correctly up to a configuration C1. At this cycle, it makes R1 active
and R2 passive. As a result, neither R1 nor R2 moves in this cycle. In addition, the adversary
moves R3 to create a configuration C2 that from R2’s point of view is equivalent to what R1 has
seen in C1 (see Fig. 10). The adversary now makes R1 passive and R2 active. Since R2’s state is
equivalent to R1’s state in the previous configuration, the algorithm will now instruct R2 to stay
in place. The adversary can now switch from configuration C1 to C2 and back, forcing R1 and
R2 to stay in place indefinitely. Therefore the algorithm fails to achieve gathering or convergence
of the nonfaulty robots.

2

1

C

C

R2

R2R1

1R

R3

R3

Figure 10: Theorem 4.1.

Definition: A distributed robot algorithm is N -diverging if there exists an (N, f)-Byzantine
system and a configuration in which the instructions of the algorithm combined with the actions
of the adversary can cause two nonfaulty robots to increase the distance between them. An
example for divergence caused by the instructions of the algorithm is illustrated in Figure 11(a).
An example for divergence caused by the intervention of the adversary is illustrated in Figure
11(b), where robot R1 is stopped short of reaching its goal point.

The premature-stopping technique: Our impossibility proofs make extensive use of the
following technique. In order to cause two robots to diverge in some given configuration C of a
given system T , the adversary can stop a nonfaulty robot Ri after traversing a relatively small
distance Si. Note that Si might be smaller than S in the current system, in which case the
adversary is not permitted to stop Ri prematurely. However, as the algorithm is required to be
valid in any system, it is intuitively clear that we may always consider a different system T ′ with
S small enough to allow a movement of distance Si. Moreover, since the algorithm is unaware of
the value of S, it cannot distinguish between identical configurations in the two systems T and
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T ′, and will issue the same instructions to each robot in configuration C in T and T ′. Therefore
the premature-stopping technique can be applied with any movement length greater than zero.
We make this argument more formal in the proofs that follow.

As for the applicability of the premature-stopping technique, the adversary can apply it to
cause the robots to diverge in any case where two robots move towards their respective goals on
nonintersecting trajectories (see Figure 11(c)). In addition, even if the trajectories do intersect,
the adversary can still apply the technique in some cases and again cause divergence, as seen in
Figure 11(b). (One example for a case in which the premature stopping technique cannot help
the adversary to force divergence is when the trajectories of the two robots R1 and R2 intersect
and the angle between p(R1), p(R1) and the intersection point is at least π/2, see Lemma 3.3 and
Fig. 2.)

(c)

R2R1

p
G

2

1

p
G

(b)

R1 R2

(a)

R1

1

p
G

R2p
G

2

Figure 11: Divergence of robots.

Lemma 4.2. In the SSYNC (or even the FSYNC) model, a 3-diverging algorithm will fail to
achieve gathering or convergence.

Proof: Suppose, towards contradiction, that there exists a 3-diverging algorithm A that solves
the gathering problem. Consider a (3, 1)-Byzantine system T with robots R1, R2 and R3, and a
configuration C0 on whichA’s instructions and the adversary’s actions cause R1 and R2 to increase
their distance. For t ≥ 0 and i = 1, 2, denote by pi(t) the location of robot Ri in configuration
Ct, and let dt = dist(p1(t), p2(t)). Let σ = {C0, C1, . . . , Ck} be the sequence of configurations
in an execution of the algorithm in which the adversary intervenes on the transition from C0

to C1 so as to increase dist(R1, R2), but does not intervene thereafter, and in Ck all robots are
gathered in one point. Note that d1 > d0. Let t′ = min{t | dt ≤ d0, 2 ≤ t ≤ k}. By continuity
considerations, as dt′−1 > d0 and dt′ ≤ d0, there must be a time during the transition from Ct′−1

to Ct′ in which the robots R1 and R2 were located in middle points pm
1 and pm

2 respectively at
distance exactly dist(pm

1 , pm
2 ) = d0. For i = 1, 2, let zi = dist(pi(t′ − 1), pm

i ) (see Figure 12), and
denote the minimum distance any robot traversed at any cycle 0 ≤ t ≤ t′ − 1 by z3.

Now replace the (3, 1)-Byzantine system T by another system T ′ where S = min{z1, z2, z3},
and consider the following scenario. The adversary designates R3 as faulty, and executes the
scenario σ up to Ct′−1. At this cycle, it stops R1 and R2 at points pm

1 and pm
2 (respectively), and

moves the faulty robot R3 to the exact same position it was in C0. Thus, the new configuration
C̃t is identical to C0, hence the robots R1 and R2 will diverge again, and the system can be made
to cycle through the configuration sequence {C0, . . . , C̃t} indefinitely, thus R1 and R2 will never
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meet, contradicting the assumption.
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Figure 12: Lemma 4.2.

Observation 4.3. Let A be an algorithm operating in a (3, 1)-Byzantine system. Let ~Li,j be the
straight half line starting at pi and going through pj. Suppose that in some configuration C, A
instructs Ri and Rj to move on vectors ~vi and ~vj towards destination points gi and gj respectively.
Denote the angle between ~Li,j and ~vi (measured from ~Li,j in the counterclockwise direction) by µi,
and the angle between ~Li,j and ~vj by µj (see Figure 13). Then each of the following is a sufficient
condition for A to be 3-diverging:

(C1) 0 ≤ µj ≤ µi ≤ π.

(C2) π ≤ µi ≤ µj ≤ 2π.

(C3) 0 ≤ µi ≤ π ≤ µj ≤ 2π, or 0 ≤ µj ≤ π ≤ µi ≤ 2π.

(C4) 0 ≤ µi < µj ≤ π and either µi ≥ π/2 or µj ≤ π/2.

(C5) π ≤ µj < µi ≤ 2π and either µi ≤ 3π/2 or µj ≥ 3π/2.

jvvi

L i,j

i
p

j
p

iµ jµ

Figure 13: Observation 4.3.

Proof: To show that A is 3−diverging in each of these cases, we have to show a scenario in which
the instructions of A combined with the actions of the adversary will cause Ri and Rj to increase
the distance between them. Denote the current distance between Ri and Rj by d1, the location
of Ri after traversing a distance Si by p′i and the location of Rj after traversing a distance Sj by
p′j . Let d2 = dist(p′i, p

′
j).
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Case C1: It is easy to see that if µi = µj = π/2 and the robots move in different distances
towards their goals, then d2 > d1 (as the hypotenuse in a right angled triangle is the largest side
in the triangle). Therefore, in a system where S = min{Si, Sj}, Si 6= Sj , it is enough that the
adversary applies the premature-stopping technique, stops Ri after exactly distance Si, and stops
Rj after traversing Sj . If µi = µj < π/2, then, applying again the premature-stopping technique,
the adversary stops Rj after exactly a distance S, and lets Ri continue traversing any distance
greater than S. Similarly, if µi = µj > π/2 then the adversary stops Ri after traversing exactly
a distance S, and lets Rj traverse any distance greater than S. Finally, if 0 < µj < µi < π, then
the adversary can apply the premature-stopping technique and stop Rj after traversing a small
distance, and let Rj continue its movement as planned. In all cases, d1 > d2.

Case C2: This case is simply a reflection of case C1.

Case C3: It is easy to see that the trajectories of Ri and Rj diverge, and never intersect.
Traversing on those trajectories might not always cause divergence (for example if the trajectory
of Rj runs close to the current location of Ri as in Figure 11(c)), but by applying the premature-
stopping technique as explained earlier, the adversary can cause divergence.

Case C4: 0 ≤ µi < µj ≤ π and either µi ≥ π/2 or µj ≤ π/2, then ~vi and ~vj intersect at some
point, pI . Without loss of generality, let µi ≥ π/2. Drop a perpendicular line from pj to the line
going through pI and pi, and let q0 be the intersection point (see Figure 14). Let d3 = dist(pj , p

′
i).

Consider the triangle4p′ipjq0. Clearly d3 > d1, therefore as Sj → 0, d2 → d3, hence d2 > d1. Now
apply the premature-stopping technique by stopping Rj after traversing a distance of exactly S,
where S is very small (tending to 0), and allow Ri to traverse a distance Si, thus causing d2 > d1.

Case C5: This case is a reflection of case C4.

i

ip’
d
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d2

p
µjµi
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p I

vj
p’j

p
jd1q0

Figure 14: Observation 4.3, case C4.

Theorem 4.4. In a (3, 1)-Byzantine system under the SSYNC model it is impossible to perform
successful gathering or convergence.

Proof: Consider a gathering algorithm A and an initial setting in which the three robots R1, R2

and R3 are collinear, with R2 in the middle. If the algorithm instructs R2 to remain stationary,
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then it is non-hyperactive, and by Theorem 4.1 will not achieve gathering. From Observation
4.3 it follows that if 0 ≤ µ1, µ2, µ3 ≤ π, then in order to avoid being 3−diverging, necessarily
µ3 > µ2 > µ1 (see Figure 15). But under this assumption, if µ2 ≥ π/2 then applying case C4
of Observation 4.3 with respect to p2 and p3 yields that A is 3-diverging. If, on the other hand,
µ2 ≤ π/2, then applying case C4 of Observation 4.3 with respect to p1 and p2 yields the same
conclusion.

A similar argument applies in case π ≤ µ1, µ2, µ3 ≤ 2π. Finally, if µ1 > π and µ2, µ3 < π or
µ1, µ2 > π and µ3 < π then algorithm A is 3-diverging by case C3 of Observation 4.3. Thus, by
Lemma 4.2, algorithm A fails to achieve gathering or convergence.
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Figure 15: Illustration of proof of Theorem 4.4.

We remark that in the FSYNC model, an N -diverging algorithm for N > 3 will not necessarily
fail. In particular, the algorithms suggested in Subsection 5.3 for the FSYNC model might be
diverging, yet still achieve gathering. Also, in the FSYNC model, a non-hyperactive algorithm
will not necessarily fail. In particular, the gathering algorithm for N = 3 suggested in Section 5
for the FSYNC model is not always hyperactive (for example, when the 3 robots are collinear,
the robot lying in the middle is instructed to remail still). In fact, the converse may hold, namely,
in the FSYNC model, a hyperactive algorithm might be problematic. For example, it is shown
in the following lemma that in a one-dimensional setting, the adversary can cause failure of every
hyperactive algorithm.
Lemma 4.5. In the FSYNC model, a hyperactive algorithm for a one-dimensional (3, 1)-Byzantine
system will fail to achieve gathering or convergence.

Proof: Consider a (3, 1)-Byzantine system on the line. Consider an arbitrary configuration C in
which all robots are instructed by the algorithm to move. Without loss of generality suppose that
at least two of the robots, say R1 and R2, are instructed to move in the right direction. Let εi

denote the distance traversed by the robot Ri in the current round, and w.l.o.g. suppose ε1 ≤ ε2.
Then the same behavior will occur in a robot system in which S ≤ ε1. In such a system, the
adversary can stop R2 after traversing a distance of only ε1. The adversary can also fail the third
robot R3, making it move in the right direction to distance ε1. The resulting configuration is
identical to the original C, implying that the adversary can keep the system at this configuration
indefinitely.
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4.2 Intuition: problems with previous approaches

The difficulty of handling a system of autonomous mobile robots with Byzantine faults lies, among
other reasons, in the conventions regarding multiplicities which most existing algorithms rely on.
In particular, these algorithms are based on enforcing the following conventions: (a) No more
than one multiplicity point is created throughout the execution of the algorithm, until successful
gathering is achieved. (b) All robots lying in a multiplicity point remain stationary. (c) Robots
lying in a multiplicity point are never separated again. These conventions are used for both
gathering algorithms and other pattern formation algorithms, see [9].

All the above assumptions no longer hold in a system where Byzantine faults might occur.
First, the adversary could create a second multiplicity point as soon as it detects one such point,
by “failing” a robot that does not lie in the multiplicity point and sending it to the location of yet
another currently single robot. As a result, in the gathering problem assumption (b) cannot be
relied on. Assumption (c) is violated even if the algorithm instructs all robots lying on the same
point to move towards the same destination point, as the adversary could stop their movement
in different locations.

Since all known algorithms rely on conventions (a)-(c) listed above, which can be violated
in a system consisting of N robots with even one Byzantine faulty robot, it is clear that those
algorithms fail to achieve gathering.

To get a feeling for the possible complications that may occur in this model, let us consider
some simple solutions one might propose for the problem. One natural general approach for
attacking the problem is to try to gradually reduce the number of distinct points where the robots
reside, by gathering partial subsets of robots at different points. A possible algorithm attempting
to achieve that is one that requires each robot, in each cycle, to move towards its closest neighbor.
This may lead to deadlocks once the robots pair up, since their closest neighbor already resides
at the same location. Therefore the algorithm should instruct each robot to move towards the
closest robot among those currently residing at locations other than its own. One problem that
arises is that sets of robots that have already met might break up again, hence “progress” is hard
to measure. Another obvious problem is that of symmetry-breaking. Even ignoring this problem,
this approach can still lead to non-converging scenarios. For instance, suppose that the N robots
are located on a straight line, with Ri at location xi = i(i − 1)/2. Then the algorithm requires
R1 to move towards R2 and Ri to move towards Ri−1 for every 2 ≤ i ≤ N . However, if R1 is
faulty, and chooses to move away from R2, and all robots traverse exactly distance S, then the
configuration is translated by S in the −x direction, and is otherwise unchanged. (See Fig. 16.)
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Figure 16: Bad scenario for nearest-neighbor algorithm.

Another natural algorithm is based on computing the center of gravity pG of the configuration,
and going to pG. This algorithm can be failed by the adversary in similar manner, by failing a
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robot located far from the rest, and taking it to a walk towards infinity, forcing the entire pack
of nonfaulty robots to drag along.

5 Fault tolerant gathering in the FSYNC model

5.1 Preliminaries

We now discuss the problem of gathering N autonomous mobile robots in an (N, f)-Byzantine
system under the fully synchronous model. We use the following notation. Denote the geometric
span (or diameter) of the set of points P by

Span(P ) = max{dist(p, q) | p, q ∈ P}.

Denote the convex hull of a multiset of points P by H(P ), and the set of vertices of H(P ) by
VH(P ). Denote the set of (N to N − f) nonfaulty robots by RNF . Denote the center of gravity
(or barycenter) of a multiset P of n ≥ 3 points pi = (xi, yi), i = 1, . . . , N by

Cgrav(P ) =

(∑N
i=i xi

N
,

∑N
i=i yi

N

)
.

Define the sum of distances between all pairs of nonfaulty robots as

Dtot(P ) =
∑

Ri,Rj∈RNF

dist(Ri, Rj).

Note that for any set of points P , while the center of gravity Cgrav(P ) is defined in terms of
the point coordinates in some specific coordinate system, the resulting point is independent of
the particular coordinate system in use. Hence for a set of robots in some arbitrary configuration
C in the plane, whenever each of the robots computes Cgrav(P ), the resulting point computed by
the different robots is the same, even if each robot has its own coordinate system.

Definition: A robot algorithm is concentrating if it satisfies the following properties:

1. It is non-diverging, i.e., no two nonfaulty robots will increase the distance between them in
any round.

2. There exists a constant c > 0 such that at each step, at least one pair of nonfaulty robots
that are at different locations either meets or decreases the distance between them by at
least c.

Lemma 5.1. Let A be a concentrating algorithm. Then in a (3, 1)-Byzantine system under the
FSYNC model, A achieves gathering.

Proof: If in each cycle Dtot decreases by a constant amount c, then within a finite number of
cycles A achieves gathering of all nonfaulty robots (since Dtot must reach 0). If there is indeed one
faulty robot, then there may be only one pair of nonfaulty robots. The algorithm A ensures that
the distance between the two nonfaulty robots decreases by at least a constant c in each cycle,

22



hence Dnew
tot ≤ Dold

tot − c and therefore these two robots will eventually meet. If all three robots are
nonfaulty, then A ensures that the distance between at least one pair, say R1 and R2, decreases
by at least c while dist(R1, R3) and dist(R2, R3) do not increase (since A is non-diverging), hence
Dnew

tot ≤ Dold
tot − c, and A achieves gathering.

Definition: A distributed robot algorithm A is said to dictate 2-pair convergence in a given
cycle if in that cycle it instructs two distinct pairs of robots to decrease the distance between
them by a constant amount. A distributed robot algorithm A is said to dictate triple convergence
in a given cycle if in that cycle it instructs three robots to decrease the distance between every
pair of them by a constant amount.

Note that for N = 3, triple convergence implies also non-divergence and hence also concen-
tration. Note also that these conditions do not require that the robots involved be nonfaulty;
in particular, one of them may fail and disobey the algorithm’s instructions, in which case its
distances will not decrease as needed. Nevertheless, these conditions turn out to be sufficient for
gathering in certain settings.
Lemma 5.2. Consider two robots R1 and R2, initially located at the points p1 and p2, which
traverse the same distance S′ towards a common meeting point pG, and let α = ∠p1pGp2. If
α ≤ π/2 then the distance between them decreases by at least S′(1− cosα).

Proof: Let p′1 and p′2 denote the new location of R1 and R2 after moving a distance S′ towards
pG, and let d1 = dist(p1, p2), d2 = dist(p′1, p

′
2), a = dist(p′1, pG) and b = dist(p′1, pG) (see Figure

17).

α

b

a S

S

1
p

p
2

p
G

1
p’

2
p’

1
d

2
d

Figure 17: Proof of Lemma 5.2.

By the cosine theorem on the triangles 4p1pGp2 and 4p′1pGp′2 it follows that

d2
1 = (a + S′)2 + (b + S′)2 − 2(a + S′)(b + S′) cosα

d2
2 = a2 + b2 − 2ab cosα.

Therefore

d1 − d2 =
2a + 2b + S′

d1 + d2
· S′(1− cosα).

By the triangle inequality on triangles 4p1pGp2 and 4p′1pGp′2 it follows that a+ b+2S′ > d1 and
a + b > d2. Therefore 2a+2b+S′

d1+d2
> 1, so d1 − d2 > S′(1− cosα). In the range (0, π/2] this value is

always greater than 0, and is equal to 0 if and only if α = 0.

23



5.2 Gathering on a (3, 1)-Byzantine system in the FSYNC model

Let us next describe a gathering algorithm for three robots in a FSYNC model with at most one
Byzantine fault. The input to this procedure is a configuration P = {p1, p2, p3}.

Procedure 3-GatherByz(P )

1. State [Collinear]: p1, p2, p3 are collinear with p2 in the middle:
Set pG ← p2.

2. State [Triangle]: The three points form a triangle:
Set pG to be the intersection point of the three angle bisectors of the triangle 4p1p2p3.

Observe that the case of two robots residing at the same point, say p1 = p2, is handled by
step 1 of the procedure. In this case, pG = p1, so R1 and R2 stay in place and R3 is required to
move towards them.

Analysis

Theorem 5.3. Algorithm 3-GatherByz solves the gathering problem in a (3, 1)-Byzantine system
under the FSYNC model.

Proof: Let us first consider the case when R1, R2 and R3 are collinear, say, with R2 in the middle.
Since both extreme robots are instructed to move towards R2, and R2 is instructed to stay in
place, it is clear that the instructions of the algorithm ensure that dist(R1, R3) decreases in each
cycle by at least S (or they meet), and also that dist(R1, R2) and dist(R2, R3) decrease by at least
S (or they meet). Hence the algorithm dictates triple convergence in each cycle.

Next, suppose that R1, R2 and R3 are not collinear. By Lemma 3.2, the angle between every
two robots and pG is greater than π/2. Therefore, by Lemma 3.3, we again have triple convergence.

Therefore in each cycle, whether the robots are collinear or not, triple convergence is ensured.
As for N = 3, triple convergence implies non-divergence as well, the algorithm achieves gathering
by Lemma 5.1.

5.3 Gathering for f ≥ 1 and N ≥ 3f + 1 in the FSYNC model

In this section we propose an algorithm for solving the gathering problem in an (N, f)-Byzantine
system, where N ≥ 3f + 1 in the FSYNC model. The main idea of the algorithm is to ensure
that the goal point selected in each cycle falls in the convex hull of the nonfaulty robot locations.
As shown later on, this ensures that the geometric span of the set of locations of the nonfaulty
robots decreases by at least 0.25S, thus the robots will meet within a finite number of cycles. Due
to its high complexity, this algorithm is only of theoretical merit, except for small values of f .

Definition: The hull intersection Hk
int(P ) is the convex set created as the intersection of all

(
N
k

)

sets H(P \ {pi1 , . . . , pik}), for 1 ≤ k ≤ N , pij ∈ P . (See Figure 18 for k = 1.)
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Figure 18: Illustration of H1
int.

The algorithm

Consider the following Procedure GatherByz for determining the goal point pG in each cycle. The
input to this procedure is a configuration P = {p1, . . . , pN}, and f is the maximum number of
faulty robots.

Procedure GatherByz(P )

1. Compute Q ← VH(Hf
int(P )).

2. Set pG ← Cgrav(Q).

To illustrate the algorithm, let us consider a number of possible configurations of a (5, 1)-
Byzantine system (see Figure 19).

(a) p1 = p2 and p3 = p4 = p5. Then H1
int(P ) is the segment p1p3, and pG is its midpoint.

(b) p1 = p2 = p3 = p4 6= p5. Then H1
int(P ) = {p1}, and pG = p1.

(c) p1 = p2, p3 = p4 and p5 is distinct. Then H1
int(P ) is the segment p1p3, and pG is its midpoint.

(d) p1 = p2, and p3, p4, p5 are distinct. Then H1
int(P ) is some segment qp1, and pG is its

midpoint.

(c) (d)(b)(a)
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Figure 19: Illustration of Procedure GatherByz in a (5, 1)-Byzantine system.

Analysis

Let us first prove that the algorithm is well-defined. For this we have to show that the set Q is
nonempty.
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Helly’s Theorem for d = 2 (cf. [28, Theorem.4.1.1]): Let A be a finite family of at least
three convex sets in R2. If every three members of A have a point in common, then there is a
point common to all members of A.
Lemma 5.4. For a multiset P = {p1, . . . , pN}, N ≥ 3k + 1, Hk

int(P ) is convex and nonempty.

Proof: Hk
int(P ) is convex as it is the intersection of

(
N
k

)
convex sets. We prove that it is nonempty

by Helly’s Theorem. Consider three arbitrary sets P l = {pl
1, . . . , pl

k} ⊆ P, 1 ≤ l ≤ 3, and let
Ql = H(P \ P l), 1 ≤ l ≤ 3. Then Q1 ∩ Q2 ∩ Q3 contains at least P ′ = P \ (P 1 ∪ P 2 ∪ P 3). As
|P | ≥ 3k + 1, |P ′| ≥ 1. It follows that the intersection of every three such sets is nonempty, and
by Helly’s Theorem VH(Hk

int(P )) is nonempty as well.

The analysis of Procedure GatherByz is based on showing that if a set of K robots R1, . . . , RK

initially located at the points P = {p1, . . . , pK} move towards a point pG in their convex hull
H(P ), and their new positions are at the points P ′ = {p′1, . . . , p′K}, then their geometric span
decreases by at least cS for some constant c ≥ 1/4, i.e., Span(P ′) ≤ Span(P )− cS. Consequently,
the robots will meet within a finite number of cycles.
Lemma 5.5. Let P = {p1, . . . , pk} be a set of points in the plane.

1. Span(P ) ≥ dist(p, p′) for every two points p, p′ in the convex hull H(P ).

2. The geometric span is attained by two points pa, pb ∈ P that occur as vertices in H(P ).

3. Moreover, for every point pG in H(P ), ∠papGpb ≥ π/4.

Proof: Consider two arbitrary points p, p′ inside H(P ). By the definition of the convex hull, it
is clear that the segment pp′ falls entirely within the convex hull of P . Therefore this segment
can be extended in both directions towards the circumference of H(P ), hitting it at the points
q, q′. Hence dist(p, p′) ≤ dist(q, q′). If the points q and q′ are vertices of the convex hull, then
q, q′ ∈ P and we are done. So now suppose this is not the case. If q is not a vertex of H(P ),
then it occurs on an edge pipi+1. In this case, at least one of the two adjacent vertices of the
convex hull, w.l.o.g. pi, satisfies that dist(q′, pi) > dist(q′, q). Similarly, if q′ is not a vertex,
then it occurs on an edge pjpj+1, and again w.l.o.g. dist(pj , pi) > dist(q′, pi). Hence combined,
Span(P ) ≥ dist(p, p′). Therefore for each such segment pp′ there exists a segment pipj , pi, pj ∈ P ,
whose length is greater than or equal to dist(q, q′).

The proof used to establish the first claim of the lemma yields also the second claim, as it
shows that for any two points q, q′ that are not both vertices of H(P ), there exist two vertices
pi, pj ∈ P of H(P ) satisfying dist(pi, pj) > dist(q, q′), hence Span(P ) cannot be attained by those
points q, q′.

The third claim of the lemma is proved as follows. Let pa, pb be the two vertices of H(P )
attaining Span(P ), and suppose, towards contradiction, that there exists a point pG in H(P ) such
that α = ∠papGpb < π/4. Consider the triangle 4papGpb. Let β = ∠papbpG and γ = ∠pbpapG.
Without loss of generality assume that β ≥ γ. Then

α < π/4 < 3π/8 < (π − α)/2 = (β + γ)/2 < β < β + γ = π − α.
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Hence sinβ > sinα. Also, by the sine theorem on the triangle 4papGpb,

dist(pa, pb)
dist(pa, pG)

=
sinα

sinβ
.

It follows that dist(pa, pG) > dist(pa, pb). By part (1) of the lemma, Span(P ) ≥ dist(pa, pG) >

dist(pa, pb), contradicting the assumption.

Lemma 5.6. For every two sets of points P and Q, if H(P ) ⊆ H(Q) then Span(P ) ≤ Span(Q).

Proof: Let pa, pb ∈ P be the vertices attaining the geometric span of P . As P ⊆ H(P ) ⊆ H(Q),
also pa, pb ∈ H(Q). Thus by Lemma 5.5, Span(P ) = dist(pa, pb) ≤ Span(Q).

Lemma 5.7. If a set of K robots R1, . . . , RK initially located at the points P = {p1, . . . , pK}
traverse the same distance S towards a point pG in the convex hull H(P ), and their new positions
are at the points P ′ = {p′1, . . . , p′K}, then their geometric span decreases by at least cS for some
constant c ≥ 1/4, i.e., Span(P ′) ≤ Span(P )− cS.

Proof: Let pa, pb be the two vertices of H(P ) attaining Span(P ), and let p′i, p
′
j be the two

vertices of H(P ′) attaining Span(P ′). Note that pG is internal also to H(P ′). Hence, by part (3)
of Lemma 5.5, it follows that α = ∠papGpb ≥ π/4. If π/4 ≤ α < π/2 then according to Lemma
5.2 dist(p′a, p′b) ≤ dist(pa, pb)− (1− cosα) ≤ dist(pa, pb)− 0.25S. Also, if α ≥ π/2 then by Lemma
3.3 dist(p′a, p′b) ≤ dist(pa, pb) − 0.7S. Therefore, in any case dist(p′a, p′b) ≤ dist(pa, pb) − 0.25S.
Also, since pa, pb attains Span(P ), it follows that dist(pa, pb) ≥ dist(pi, pj), therefore

Span(P ′) = dist(p′i, p
′
j) ≤ dist(pi, pj)− S/4 ≤ dist(pa, pb)− S/4 = Span(P )− S/4 .

Corollary 5.8. If a set of K robots R1, . . . , RK initially located at the points P = {p1, . . . , pK}
move towards a point pG in the convex hull H(P ), and their new positions are at the points
P ′ = {p′1, . . . , p′K}, then their geometric span decreases by at least cS for some constant c ≥ 1/4,
i.e., Span(P ′) ≤ Span(P )− cS.

Proof: By the model assumption, each robot traverses a distance of at least S towards pG. Let p′′i
denote the point at distance exactly S from pi in the direction of pG, and let P ′′ = {p′′1, . . . , p′′K}.
Clearly H(P ′) ⊆ H(P ′′). By Lemma 5.6, Span(P ′) ≤ Span(P ′′). By Lemma 5.7, Span(P ′′) ≤
Span(P )− cS. The claim follows.

Lemma 5.9. If a set of K robots R1, . . . , RK moves in every cycle t towards a point pG in their
convex hull, then the robots will meet within a finite number of cycles.

Proof: For t ≥ 1, denote by Ht the convex hull of the robot configuration at the beginning of
cycle t. In each cycle, the robots move a distance of at least S towards a point pG in the convex
hull. Thus, by Corollary 5.8, Span(Ht+1) ≤ Span(Ht) − 0.25S, for every t. Therefore within at
most 4 ·Span(H1)/S cycles the geometric span of the robot configuration will be 0, thus all robots
meet.

Theorem 5.10. Algorithm GatherByz solves the gathering problem in an (N, f)-Byzantine system
under the FSYNC model for any N ≥ 3f + 1.

Proof: By Lemma 5.9 it is sufficient to show that the goal point pG selected in the cycle falls
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in H(RNF ), the convex hull of the nonfaulty robots. To prove that, we check the goal point pG

determined in each cycle.

By definition, the set Hf
int(P ) is contained in its entirety in H(P ) as well as in the convex hull

of every N − f points of P , thus, in particular, it falls in H(RNF ). Since the center of gravity of
a set of points is inside its convex hull, it follows that pG is in H(RNF ). By Lemma 5.4, it follows
that Hf

int(P ) is nonempty, thus the center of gravity of the set VH(Hf
int(P )) is well defined.

6 Open problems

The design of fault-tolerant distributed control algorithms for multiple robot systems is yet far
from being fully explored. Directions for future research include the following. To begin with, it
may be useful to study other kinds of fault models in addition to the crash and Byzantine models,
such as a model in which the robots might lose some of their movement control (for instance, lose
control of their movement length), or a model in which robots might diverge from their original
movement direction up to a certain percentage of error. It is also needed to develop fault-tolerance
algorithms for tasks other than gathering (e.g., formation of geometric patterns). The maximum
number of faults under which a solution is still feasible, for gathering and other tasks, has yet to
be established. Finally, it would be interesting to examine the effect of changes in some initial
assumptions of the model on its fault-tolerance properties. Examples for possible model changes
include partial non-obliviousness of the robots (e.g., robots equipped with a small amount of
memory, say, allowing them to remember the subsequence of X most recent cycles), robots capable
of partial agreement on their orientation, or robots capable of explicit communication (perhaps
under certain limitations, e.g., only with nearby robots).
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