
On Evaluating Schema Matching and Mapping

Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Abstract The increasing demand of matching and mapping tasks in modern inte-
gration scenarios has led to a plethora of tools for facilitating these tasks. While the
plethora made these tools available to a broader audience, it led into some form of
confusion regarding the exact nature, goals, core functionalities expected features
and basic capabilities of these tools. Above all, it made performance measurements
of these systems and their distinction, a difficult task. The need for design and de-
velopment of comparison standards that will allow the evaluation of these tools
is becoming apparent. These standards are particularly important to mapping and
matching system users since they allow them to evaluate the relative merits of the
systems and take the right business decisions. They are also important to mapping
system developers, since they offer a way of comparing the system against com-
petitors, and motivating improvements and further development. Finally, they are
important to researchers since they serve as illustrations of the existing system lim-
itations, triggering further research in the area. In this work we provide a generic
overview of the existing efforts on benchmarking schema matching and mapping
tasks. We offer a comprehensive description of the problem, list the basic compari-
son criteria and techniques and provide a description of the main functionalities and
characteristics of existing systems.

Zohra Bellahsene
University of Montpellier II, France e-mail: bella@lirmm.fr

Angela Bonifati
CNR, Italy e-mail: bonifati@icar.cnr.it

Fabien Duchateau
CWI, The Netherlands e-mail: fabien@cwi.nl

Yannis Velegrakis
University of Trento, Italy e-mail: velgias@disi.unitn.eu

1

2 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

1 Introduction

The web has become the world’s largest database. Daily, thousands of organizations
and individuals are making their repositories available online. To exploit the full
potential of these sources, modern information systems and web applications must
be able to retrieve, integrate and exchange data. Unfortunately, the repositories and
applications are developed by different people, at different times, with varying re-
quirements in mind. Thus, the underlying data is inherently highly heterogenous.
To cope with the heterogeneity and achieve interoperability, a fundamental require-
ment is the ability to match and map data across different formats. These two tasks
are found in the literature under the names matching (Rahm and Bernstein, 2001)
and mapping (Miller et al, 2000), respectively. A match is an association between
individual structures in different data sources. Matches are the required components
for every mapping task. The mappings are the products of the latter. A mapping, in
particular, is an expression that describes how the data of some specific format is
related to data of another. The relationship forms the basis for translating the data in
the first format into data in the second.

Mappings can be found in almost every aspect of data management. In informa-
tion integration systems (Lenzerini, 2002) mappings are used to specify the rela-
tionships between every local and the global schema. In schema integration, map-
pings specify how an integrated schema is constructed from the individual input
schemas (Batini et al, 1986). In data exchange (Fagin et al, 2005) and P2P set-
tings (Halevy et al, 2003; Bernstein et al, 2002), mappings are used to describe how
data in one source is to be translated into data conforming to the schema of another.
A similar use is found in schema evolution (Lerner, 2000) where mappings describe
the relationship between the old and the new version of an evolved schema.

Mapping generation had been for a long time a manual task, performed mainly
by data professionals with good understanding of the semantics of the different
schemas and expertize in the transformation language. But as schemas have started
to become larger and more complicated, the process has become laborious, time
consuming and error-prone. On top of that, the modern mashup technologies (Wun,
2009) have given to regular Internet users the ability to build their own integra-
tion applications, systems and services. In this process, these users have to strive
with the complexities of the schemas, the peculiarities of the transformation lan-
guage, and the many other technical details of the data transformation specification.
The need for designing and developing tools to support the mapping designer in
the mapping specification task has been apparent. Thos tools are known as map-
ping tools, and they offer support in different styles and flavors. Certain tools raise
the abstraction level by providing sophisticated graphical interfaces (Altova, 2008)
or high level mapping languages (Bernstein and Melnik, 2007). Others offer ad-
vanced algorithms performing part of the reasoning the mapping designer has to
make (Popa et al, 2002; Do and Rahm, 2002; Mecca et al, 2009; Madhavan et al,
2001), while some offer designer guidance (Alexe et al, 2008a). Today there ex-
ists a plethora of such systems, including the Altova Mapforce (Altova, 2008), IBM
Rational Data Architect (IBM, 2006), Microsoft BizTalk Mapper which is embed-

On Evaluating Schema Matching and Mapping 3

ded in Microsoft Visual Studio (Microsoft, 2005), Stylus Studio (Stylus Studio,
2005), BEA AquaLogic (Carey, 2006), and the research prototypes Rondo (Do and
Rahm, 2002), COMA++ (Aumueller et al, 2005), Harmony (Mork et al, 2008), S-
Match (Giunchiglia et al, 2005), Cupid (Madhavan et al, 2001), Clio (Popa et al,
2002), Tupelo (Fletcher and Wyss, 2006), Spicy (Mecca et al, 2009) and HeP-
ToX (Bonifati et al, 2006).

Despite the availability of the many mapping tools, there has been no generally
accepted benchmark developed for comparing and evaluating them. As it is the case
with other benchmarks, such a development is of major importance for assessing the
relative merits of the tools. This can help customers in making the right investment
decisions and selecting among the many alternatives, the tools that better fit their
business needs. A benchmark can also help the mapping tool developers since it of-
fers them a common metric to compare their own achievements against those of the
competitors. Such comparisons can boost competition and drive the development
towards systems of higher quality. A benchmark is also offering the developers a
generally accepted language for talking to customers and describing the advantages
of their tools through well known features that determine performance, effectiveness
and usability. Furthermore, the benchmark can highlight limitations of the mapping
tools or unsupported features that may not have been realized by the developers. Fi-
nally, a benchmark is also needed in research community (Bertinoro, 2007). Apart
from a common platform for comparison, a benchmark allows researchers to evalu-
ate their achievements not only in terms of performance, but also in terms of appli-
cability in real world situations.

In this work, we summarize and present in a systematic way existing efforts
towards the characterization and evaluation of mapping tools, and the establishment
of a benchmark. After a quick introduction of the architecture and main functionality
of matching and mapping tools in Section 2, and we describe the challenges of
building a matching/mapping system benchmark in Section 3. Section 4 presents
existing efforts in collecting real world test cases with the intention of using them
in evaluating the matching and mapping systems. Section 5 addresses the issue of
creating synthetic test cases that are targeting the evaluation of specific features of
the mapping systems. Finally, Section 6 and Section 7 present different metrics that
have been proposed in the literature for measuring the efficiency and effectiveness
of matching/mapping systems, respectively.

2 The Matching and Mapping Problem

Matching is the process that takes as input two schemas, referred to as the source
and the target, and produces a number of matches, a.k.a., correspondences, between
the elements of these two schemas (Rahm and Bernstein, 2001). The term schema is
used with the broader sense and includes database schemas (Madhavan et al, 2001),
ontologies (Giunchiglia et al, 2009), or generic models (Atzeni and Torlone, 1995).
A match is defined as a triple 〈Ss,Et ,e〉, where Ss is a set of elements from the source,

4 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Et is an element of the target schema, and e is a matching expression that specifies a
relationship between the element Et and the elements in Ss. Note that the expression
e does not specify how the elements in Ss relate to each other. Most of the time a
match is as simple as an equality or a set-inclusion relationship between an element
of the source and an element of the target. There are, however, cases in which the
relationship can be more complex, e.g., a concatenation function, some arithmetic
operation, a relationship over scalars like = or ≤, a conceptual model relationship
such as the part-of, or some set-oriented relationships, such as overlaps or contains.
Schema matching tools employ a number of different techniques in order to dis-
cover this kind of relationships. They can range from structural (Madhavan et al,
2001) and name similarities, to semantic closeness (Giunchiglia et al, 2004) and
data value analysis (Doan et al, 2001, 2004). A schema matching tool accepts as in-
put the two schemas and generates the set of matches. Since any schema matching
process is based on semantics, its final output needs to be verified by a human ex-
pert. The matching process can be roughly divided into three phases: the pre-match,
the match, and the post-match phase. During the first phase, the matcher performs
some computations and processes the data. Typically this involves the training of
the classifiers in the case of machine learning-based matchers, the configuration of
the various parameters like thresholds and weight values used by the matching algo-
rithm, and the specification of auxiliary information, such as domain synonyms and
constraints (Giunchiglia et al, 2009). During the second phase, the actual discovery
of the matches takes place. At the end, the matcher outputs the matches between
elements of these data sources. During the post-match phase, the users may check
and modify the displayed matches if needed.

Given a source and a target schema, a mapping is a relationship, i.e., a constraint,
that must hold between their respective instances. For the mappings to be generated,
a fundamental requirement are the matches between the elements of the schemas.
These matches can be either generated automatically through a matching process, or
can be manually provided by an expert user. In contrast to matches, that specify how
instance values of individual source and target schema elements relate to each other,
a mapping additionally specifies how the values within the same instance relate to
each other. For example, a match may specify that the dollar price of a product in
the target corresponds to the multiplication of the price of the product in the source
(expressed in some foreign currency) multiplied by the exchange rate. The mapping
is the one that specifies that the exchange rate with which the product price in the
source is multiplied is the exchange rate of the currency in which the price of the
product is expressed. The mapping does so by specifying the right join path between
the price and the exchange rate attributes.

Mappings can be used in many different ways. In the case in which the target
schema is a virtual, i.e., not materialized, database as happens in virtual information
integration systems, in P2P applications, or in data repositories that publish an inter-
face schema, the mappings can be used for query answering by driving the transla-
tion of queries on the target schema to queries on the source (Lenzerini, 2002). An-
other major application of mappings is data exchange (Fagin et al, 2003) in which
given a source instance, the mappings are used to drive the materialization of a tar-

On Evaluating Schema Matching and Mapping 5

Fig. 1 Overview of the matching, mapping and data exchange tasks

get instance. Since mappings are inter-schema constraints, they may not be enough
to fully specify the target instance. In other words, given a source instance and a
set of mappings between a source and a target schema, there may be multiple target
instances that satisfy the mappings. Finding the best target instance is known in the
literature as the data exchange problem (Fagin et al, 2005). Once the right target
instance is decided, then the mappings can be converted into a transformation script
that translates an instance of the source schema into some target schema representa-
tion. This transformation script is typically expressed in some executable language
such as XQuery, XSLT or SQL.

A mapping tool is a tool that assists the mapping designer in generating the map-
pings using less effort, in less time and with fewer mistakes. Mapping tools can be
classified in two large categories based on what they consider as a mapping. The
first category is the one that makes a clear distinction between mapping genera-
tion, i.e., the generation of the inter-schema constraints, and the data exchange, i.e.,
the generation of the transformation script. Tools in this category include the re-
search prototypes Clio (Popa et al, 2002) and Spicy++ (Mecca et al, 2009). Their

6 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

main goal is the generation of the mappings in the form of constraints which can
then be used either for information integration, or for data exchange. To facili-
tate the latter case, the tools may be equipped with a data exchange module that
converts the generated mappings into some transformation script that can be exe-
cuted on the source instance to produce the target. The generated mappings are typ-
ically expressed through some declarative specification in a logic formalism. The
most widely used such formalism is the tuple generating dependency, or tgd for
short (Abiteboul et al, 1995). The second large class of mapping tools are those that
make no distinction between mapping generation and data exchange. For these tools
the notion of mapping generation is actually the creation in some native language
of the final transformation script that provides a full specification of the target in-
stance in terms of a source instance. Characteristic representatives in this category
are the commercial tools Altova MapForce (Altova, 2008) and Stylus Studio (Stylus
Studio, 2005).

In what follows, we will use the term mapping tool to describe a tool in either
category, and the term mapping to describe the output of such a tool, no matter
whether it is an interschema constraint or a transformation script. In the case we
want to emphasize that a mapping is not a transformation script we will use the term
mapping dependency.

The design of existing mapping tools is based on the idea of providing the
mapping designer with a graphical representation of the two schemas and a set of
graphical constructs representing high level transformation abstractions. Using these
graphical constructs, the mapping designer provides a specification of the desired
mappings. The level of abstraction of the graphical objects may vary from direct
correspondences (Popa et al, 2002; Mecca et al, 2009), i.e., matches, to graphical
representations of primitive operations of the transformation script language (Al-
tova, 2008; Stylus Studio, 2005). The high level graphical constructs provided by
the mapping designer are easy to use but they are inherently ambiguous. The map-
ping tool will have to interpret them and make an educated guess of a transformation
that the mapping designer had in mind to create (Velegrakis, 2005). An a-posteriori
verification is then necessary to ensure that the generated mappings are indeed those
intended by the designer. Clearly, the simpler the graphical constructs are, the easier
the task is for the designer, but at the same time, the more the intelligence required
by the tool to interpret these constructs and infer the desired mappings.

A number of mapping tools are equipped with a matching module which can
be used by the mapping designer to suggest possible matches. One such tool is
Clio (Popa et al, 2002) whose matching component is based on attribute feature
analysis (Naumann et al, 2002). It generates matches in the form of attribute corre-
spondences, i.e., interschema lines connecting atomic type schema elements, anno-
tated with some value transformation functions. Other tools (Bernstein and Melnik,
2007) have the matching task not as an add-on component, but as a fully integrated
and indistinguishable part of the tool. Spicy (Bonifati et al, 2006) is between these
two alternatives. It has a matching module similar to the one in Clio, but is used as
an integral part of the tool, allowing it to accept as input only the pair of source and
target schema, if needed.

On Evaluating Schema Matching and Mapping 7

Fig. 2 Overview of the schema integration task

Since matching and mapping tools try to guess the intentions of the designer
based on the provided input, it is natural to assume that their output is not always
the one anticipated by the designer. As already mentioned, an a-posteriori verifica-
tion is necessary. Nevertheless, there is a significant number of tools that allow the
active participation of the designer in the matching/mapping generation phase in or-
der to guide the whole process and arrive faster to the desired result. For example,
once some matchings/mappings have been generated, the designer can verify their
correctness. If she feels unsatisfied by the result, she can go back and modify some
intermediate steps, for instance, she she can tune the matcher, select a fraction of
the set of the generated matches, enhance the matches by introducing new matches
not automatically generated by the matcher, tune the mapping generation process by
accepting only a fraction of the generated mappings, or even edit directly the map-
pings. User participation is highly active in Tupelo (Fletcher and Wyss, 2006) where
mapping generation is studied as a search problem driven by input data examples.
Domain knowledge, that is usually an input to the matcher, is also used as input to
the mapping discovery module. User feedback can be used to improve the effective-
ness of the discovered semantic functions, i.e., the matches, and of the structural
relationships, i.e., the mapping dependencies, that in turn can be entrusted to a data
mapping module for generating the final transformation query.

Many mapping tools are used as schema integration tools. Schema integration is
the process of merging multiple source schemas into one integrated schema, a.k.a.,
the global or mediated schema. The integrated schema serves as a uniform interface

8 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Fig. 3 An ETL data flowchart

for querying the data sources. Nowadays, construction of integrated schemas has be-
come a laborious task mainly due to the number, size and complexity of the schemas.
On the other hand, decision makers need to understand, combine and exploit in a
very short time all the information that is available to them before acting (Smith
et al, 2009). This reality requires the rapid construction of large prototypes and the
flexible evolution of existing integrated schemas from users with limited techni-
cal expertize. Matching and mapping tools facilitate that goal. A mapping designer
may be presented with a number of source schemas and an empty target. Through
a graphical interface, source schema elements can be selected and “dropped” into
the target. When the elements are dropped in the target, the mappings specifying
how the target elements are related to those in the sources are automatically or semi-
automatically generated. This functionality is graphically depicted in Figure 2. Note
that schema integration involves additional tasks, however, here we concentrate only
on the part related to matching and mapping.

A special case of mapping tools are the ETL systems. An ETL system is a tool
designed to perform large scale extract-transform-load operations. The transforma-
tion performed by an ETL system is typically described by a graph-flowchart in
which each node represents a specific primitive transformation and the edges be-
tween the nodes represent flow of data produced as a result of a primitive operator
and fed as input in another. Figure 3 illustrates such a data flowchart. The triangles
represent transformation operators and the cylinders data stored in some media. Al-
though ETL systems are typically not considered mapping tools, they share many
similarities with them. First, their main goal is also to facilitate the designer in de-
scribing a data transformation from one format to another. Second, they often pro-
vide a graphical interface, and they produce as a final output transformation scripts.
Finally, there are mapping tools currently in the market (Stylus Studio, 2005) that
operate very close to the ETL model. Their graphical interface provides a set of

On Evaluating Schema Matching and Mapping 9

primitive transformations that the designer can combine together to provide a full
specification of the transformation that needs to be applied on the data. Their output
looks like an ETL flowchart. ETL systems require no large intelligent capabilities
since the input provided by the designer is so detailed that only a limited form of
reasoning is necessary. Similar to ETL systems are mashup editors (Heinzl et al,
2009) that try to facilitate the mashup designer. The operational goals of mashup
editors are similar to those of ETL systems, thus, we will not consider them as a
separate category.

We will use the term matching or mapping scenario to refer to a particular in-
stance of the matching or mapping problem, respectivelly. A scenario is represented
by the input provided to the matching or mapping tool. More specifically, a match-
ing scenario is a pair of source and target schema. A mapping scenario the pair
of source and target schema alongside a specification of the intented mappings. A
solution to a scenario is a set of matches, respectivelly mappings, that satisfy the
specifications set by the scenario.

3 Challenges in Matching and Mapping System Evaluation

A fundamental requirement for providing universal evaluation of matching and
mapping tools is the existence of benchmarks. A benchmark for a computer ap-
plication or tool is based on the idea of evaluation scenarios, i.e., a standardized
set of problems or tests serving as a basis for comparison.1 An evaluation sce-
nario for a matching/mapping tool is a scenario alongside the expected output of
the tool, i.e., the expected solution. Unfortunately, and unlike benchmarks for rela-
tional database management tools, such as, TPC-H (Transaction Processing Per-
formance Council, 2001), or for XML query engines, such as, XMach (Bohme
and Rahm, 2001), X007 (Bressan et al, 2001), MBench (Runapongsa et al, 2002),
XMark (Schmidt et al, 2002) and XBench (Yao et al, 2004), the design of a bench-
mark for matching/mapping tools is fundamentally different and significantly more
challenging (Okawara et al, 2006), mainly due to the different nature, goals and
operational principles of the tool.

One of the differences is the fact that given a source and a target schema, there
is not always one “correct” set of matches or mappings. In query engines (Transac-
tion Processing Performance Council, 2001; Bohme and Rahm, 2001), the correct
answer to a given query is uniquely specified by the semantics of the query lan-
guage. In matching/mapping tools, on the other hand, the expected answer depends
not only on the semantics of the schemas, that by nature may be ambiguous, but
also on the transformation that the mapping designer was intending to make. The
situation reminisces the case of web search engines, where there are many docu-
ments returned as an answer to a given keyword query, others more and others less
related to the query, but which document is actually the correct answer can only be

1 Source: Merriam Webster dictionary

10 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

decided by the user that posed the keyword query. For that reason, many evaluations
of matching or mapping tools are performed by human experts.

Another difficulty faced during the design of evaluation techniques for mapping
tools is the lack of a clear specification of the input language, i.e., a standardized for-
malism with well defined semantics. In contrast to benchmarks for relational (Trans-
action Processing Performance Council, 2001) and XML systems (Bohme and
Rahm, 2001) that could leverage from the respective SQL and XQuery standard
query languages, it is still not clear how to describe a scenario. Formally describing
the schemas is not an issue, but describing the intended transformation, i.e., the in-
put that the designer needs to provide, is. The best way to unambiguously specify
the intended transformation is through a transformation language script, or a map-
ping in some formalism, but there are two main issues with this option. First, there
are no guarantees that the mapping tool will be able to accept the specific formal-
ism as input, or at least that there will be an unambigius translation of the input
from the formalism into the input language supported by the mapping tool. The sec-
ond issue is that such an approach beats the purpose of a mapping tool which is
intended to shield the mapping designer from the complexity and the peculiarities
of the transformation language. It is actually for that reason that mapping tool de-
velopers have opted for simpler, higher level specification languages, such as visual
objects, direct lines between schema elements, or the output of the matching pro-
cess in general. Unfortunately, such specification is by nature ambiguous. Consider
one of the already identified (Alexe et al, 2008c) ambiguous situations, described in
Figure 4. It is a simple scenario in which the mapping designer needs to copy the
company data from the source into organizations data in the target. To specify this,
the designer draws the two interschema lines illustrated in Figure 4. When these
are fed to a popular commercial mapping tool, the tool generates a transformation
script which generates the target instance illustrated in Figure 5(a) when executed
on the instance of Figure 4. A different tool, for the same input, produces a trans-
formation script that generates the instance illustrated in Figure 5(b). A third one
produces a script that generates the instance of Figure 5(c) which is most likely the
one the mapping designer had in mind to create. These differences are not an error
from the side of the tools, rather a consequence of the fact that in the absence of a
global agreement on the semantics of the matches, or the input language in general,
different tools may interpret them differently and may require different inputs for
generating the same mappings. In the above example, the tool that generated the
instance in Figure 5(a) could have also produced the instance of Figure 5(c), if the
designer had provided one more match from the element Company to the element
Organization. This match (which is between non-leaf elements) is not allowed at all
in the tool that created the instance of Figure 5(c). The issue is also highly related to
the level of intelligence and reasoning capabilities that the tools are offering. Some
tools may require a minimum input from the user and through advanced reasoning
may be able to generate the intended mappings (Bonifati et al, 2008b; Fagin et al,
2009a). Others may require from the designer to be more explicit when describing
the transformation she has in mind to create (Altova, 2008; Stylus Studio, 2005).

On Evaluating Schema Matching and Mapping 11

<Source>
<Company>

<Name>IBM</Title>
<Location>NY</Address>

</Company>
<Company>

<Name>MS</Title>
<Location>WA</Address>

</Company>
</Source>

Fig. 4 A simple mapping scenario and the source schema instance

Even by considering only matches, there is a large variaty of specification options
as a recent classification of mapping tools illustrates (Legler and Naumann, 2007).

The input problem goes even further. Some mapping tools allow the designer to
edit the generated mappings or transformation scripts in order to correct or enhance
them. In that way, the generated output is restricted only by the expressive power of
the mapping language or of the transformation script. Under such circumstances, a
scenario should be extended to include, apart from the two schemas and the intended
mapping specification, the modifications/corrections that the designer does on the
generated output. However, allowing the designer to edit the output makes unfair
any comparison to mapping tools that operate under the principle that the designer
can only use the high level graphical input language (Altova, 2008).

Another issue of inconsistency across different matching and mapping tools is
the lack of a standardized output. Some matching tools generate only 1-1 identity
function matches, i.e., simple interschema correspondences, while others generate
more complex relationships. Furthermore, some mapping tools generate mappings
as inter-schema dependencies only, while others produce also the transformation
scripts. The problem is becoming more crucial due to the fact that there is no unique
way of generating a target instance. Two different mapping tools may produce com-
pletely different transformation scripts, and yet, generate the same target instance.

Deciding the metrics with which success is measured is another challenging task.
Since a general goal of a mapping tool is to reduce the required programming ef-
fort, measuring the effort spent for a matching or a mapping task using a tool can

<Target>
<Organization>
<Title>IBM</Title>
<Title>MS</Title>
<Address>NY</Address>
<Address>WA</Address>

</Organization>
</Target>

<Target>
<Organization>

<Title>IBM</Title>
<Address>NY</Address>

</Organization>
</Target>

<Target>
<Organization>
<Title>IBM</Title>
<Address>NY</Address>

</Organization>
<Organization>
<Title>IBM</Title>
<Address>NY</Address>

</Organization>
</Target>

(a) (b) (c)

Fig. 5 Three different target instances generated by different tools

12 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

serve as an indication of the success of the tool. Unfortunately, such metrics are not
broadly accepted since they highly depend on the user interface. An advanced user
interface will lead to good evaluation results which means that the evaluation of a
mapping tool is actually a graphical interface evaluation. Furthermore, the fact that
there is no global agreement on the expressive power of the interface, poses limits
on the evaluation scenarios that can be run. A mapping tool with a simple interface,
may require less designer effort, but may also be limited on the kind of mappings or
transformations it can generate. This has led a number of researchers and practition-
ers into considering as an alternative metric the expressive power of the mappings
that the tool can generate, while others talked about the quality of the mappings
themselves (Bonifati et al, 2008b) or the quality of the integrated schema, for the
case in which the mapping tool is used for schema integration. The quality of the
integrated schema is important for improving query execution time, successful data
exchange and accurate concept sharing. Unfortunately, there is no broadly accepted
agreement on how mapping quality is measured, thus, in order to provide meaning-
ful comparisons an evaluation method should consider a number of different metrics
for that purpose.

Developing evaluation techniques for mapping tools is also limited by the non de-
terministic output of the scenarios. In contrast to query engines, different mapping
tools may generate different results for the same input, without any of the results
being necessarily wrong. In particular, for a given a high level mapping specifica-
tion, there may be different interpretation alternatives, and each tool may choose
one over another. The ability to effectively communicate to the mapping designer
the semantics of the generated output is of major importance in order to allow the
designer to effectively guide the tool towards the generation of the desired map-
pings. One way to do so, is to present the designer with the target instance that the
generated mappings can produce. This is not always convenient, practical, or even
feasible, especially for large complicated instances. Presenting the mapping to the
designer seems preferable (Velegrakis, 2005), yet it is not always convenient since
the designer may not be familiar with the language in which the mappings are ex-
pressed. An attractive alternative (Alexe et al, 2008a) is to provide carefully selected
representative samples of the target instance or synthetic examples that effectively
illustrate the transformation modeled by the generated mappings. This option is be-
coming particularly appealing nowadays that more and more systems are moving
away from exact query semantics towards supporting keyword (Bergamaschi et al,
2010) and approximate queries, or queries that embrace uncertainty in the very heart
of the system (Ioannou et al, 2010).

4 Real World Evaluation Scenarios

A close look at popular benchmarks can reveal a common design pattern. The
benchmark provides a number of predefined test cases that the tool under evalua-
tion is called to successfully execute. The tool is then evaluated based on the num-

On Evaluating Schema Matching and Mapping 13

ber of these cases that were indeed implemented successfully. The TPC-H bench-
mark (Transaction Processing Performance Council, 2001), for instance, consists of
a set of predefined queries on a given database, with each of these queries testing a
specific feature of the query language that the query engine is expected to support.
For each such query, the benchmark provides the expected correct answer against
which the results of the query execution on the under evaluation engine can be com-
pared. Accordingly, a mapping tool benchmark should provide a set of evaluation
scenarios, i.e., scenarios alongside the expected result.

There has been a number of efforts towards building collections of evaluation
scenarios. There is an unquestionable value to these collections. The ability of a
mapping method or tool to successfully execute the evaluation scenarios is a clear
indication of its practical value. By successful execution we mean that the tool is
able to generate the expected output as described by the evaluation scenario. Al-
though these collections are built based on criteria such as popularity, community
acceptance or by contributions of interested parties and by the user base, they of-
ten lack systematic categorization of the cases they test. For instance, they may
have multiple evaluation scenarios testing the same feature of the tool, or they may
provide no generalized test patterns. For that reason, this kind of collections are
typically termed as testbeds or standardized tests.

A complete and generic benchmark should go beyond a simple set of test cases.
It should offer a systematic organization of tests that is consistent, complete and
minimal. Consistent, means that the existence of every test case should be justified
by some specific feature upon which the tool or technique is evaluated through the
test case. Complete means that for every important feature of the mapping tool under
evaluation there is a test case. Minimal means that there are no redundant test cases,
i.e., more than one test case for the same feature.

To evaluate a matching tool on a given evaluation scenario, the scenario is pro-
vided to the tool that produces a solution. That generated solution, which in the case
of a matching tool is a set of matches, is then compared against the expected set
of matches that the evaluation scenario contains. If the two sets are the same, then
the tool is said to be successful for this scenario. The evaluation scenarios are typi-
cally designed to check a specific matching situation. Success or failure to a specific
scenario translates into the ability or not of the matching tool under evaluation to
handle the specific matching situation. This kind of evaluation is the one for which
testbeds are designed for. The Ontology Alignment Evaluation Initiative (Euzenat
et al, 2006), OAEI for short, is a coordinated international initiative that every year
organizes a matching competition for ontologies. Ontologies can be seen as seman-
tic schemas, thus, ontology matching is considered part of the general matching
problem. The initiative provides the contesters with a set of matching test scenar-
ios with which the contesters test their tools. Throughout the year, individuals may
also submit to the initiative various scenarios they meet in practice. As a result, the
collected scenarios of the initiative constitute a good representation of the reality. In
some recent evaluation of a number of matching tools (Kopcke and Rahm, 2010),
the number of real-world test problems that the matching tool could handle, was fea-
turing as one of the main comparison criteria. The OAEI scenarios may be further

14 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

enhanced with datasets. In a recent effort (Giunchiglia et al, 2009) an extension was
proposed that contains 4500 matches between three different Web directories and
has three important features, namely, it is error-free, has a low complexity and has
a high discriminative capability, a notion that will be explained later. Unfortunately,
despite the fact that there is a strong need for comparing matchers using identical
evaluation scenarios2, there has been no broadly accepted agreement until today on
what these evaluation scenarios should be.

The XBenchMatch (Duchateau et al, 2007) is a benchmark for matching tools.
It defines a set of criteria for testing and evaluating matching tools. It may focus
mostly on the assessment of the matching tools in terms of matching quality and
time performance but provides a testbed involving ten datasets that can be used to
quickly benchmark new matching algorithms (Duchateau, 2009). These matching
scenarios have been classified according to the tasks they reflect, either at the data
level, e.g. the structure or the degree of heterogeneity, or at the matching process
level, e.g., the scale. Although collaborative work can help providing new datasets
with their correct set of matches, the creation of such a large and complete set still
remains a challenge.

It is important to add here that one of the challenges during the creation of test
scenarios is deciding what the correct matches will be. As mentioned in the previous
section, for a given matching scenario there may be multiple correct answers. Opting
for one of them may not be fair for the others. For this reason, in cases like OAEI,
the test scenarios designers perform a careful selection so that the scenarios have no
multiple alternatives, or in the case that they have, the one that is considered as the
correct answer to the chosen scenario is the one that is most obvious or the one that
the exclusive majority of matching users would have considered as correct.

One of the first benchmarks for mapping tools is the STBenchmark (Alexe et al,
2008c). It contains a list of basic test scenarios, each consisting of a source schema,
a target schema and a transformation query expressed in XQuery. The choice of
describing the mapping specification in XQuery was made in order to avoid any
misinterpretation of the mapping that needs to be achieved. This of course does not
mean that the mappings that the mapping tool will generate will have to be nec-
essarily in XQuery, but they have to describe an equivalent mapping. Furthermore,
the selection of XQuery as a mapping specification language causes no major issues
to the mapping tool evaluators, since such users are in general more experienced
than regular mapping designers. They can easily understand the full details of the
expected transformation, and by using the mapping tool interface they can try to ma-
terialize it. For mapping tools that accept matches as input, conversion from XQuery
to matches is a straight forward task.

Each STBenchmark mapping scenario is carefully designed to test the ability of
the mapping tool to create transformations of a specific kind. The evaluator is ex-
pected to understand first the desired transformation by studying the transformation
script, and then try to implement it through the interface provided by the mapping
tool that wants to evaluate. Some of the scenarios provided by STBenchmark are

2 Netrics HD blog, April 2010: http://www.netrics.com/blog/a-data-matching-benchmark

On Evaluating Schema Matching and Mapping 15

Fig. 6 A mapping scenario for vertical partition

related to copying structures, constant value generation, horizontal and vertical par-
titioning, key generation, nesting and un-nesting of structures, different join path
selection, aggregation, value combination, and to many others. Figure 6 illustrates
an example of one of these scenarios. The list of scenarios has been collected by
a study of the related information integration literature and many practical appli-
cations. Definitely, one cannot build an exhaustive set of testing scenarios. There
will always be cases that remain untested. This is the case even with query engine
benchmarks. However, what is important for a benchmark is to cover the majority
of the cases that are met in practice (Alexe et al, 2008b).

An important issue that must be brought here is that general purpose evalua-
tion tools should contain examples from the domains the tool is intended to be
used (Kopcke and Rahm, 2010). It is a known fact that certain matching or map-
ping tools perform well on data with certain characteristics. Thus, such tools should
be evaluated using scenarios from that area. General purpose benchmarks should
provide scenarios from different domains. Each STBenchmark test scenario, for in-
stance, is accompanied by a source instance with data extracted from the DBLP
bibliographic server3, the BioWarehouse4 collection, and other similar real sources.

The approach of using predefined evaluation scenarios is also followed by
Thalia (Hammer et al, 2005), a benchmark for evaluating integration tools. Recall
that in the schema integration task, the input to the tool is a set of source schemas
for which the mapping designer is called to generate the integrated schema and the
mappings that populate it from source data. Thalia provides a rich set of test data
for integration problems exhibiting a wide variety of syntactic and semantic het-
erogeneities. It also provides twelve test queries each requiring the resolution of a
particular type of heterogeneity.

3 www.informatik.uni-trier.de/ ley/db/
4 biowarehouse.ai.sri.com

16 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

5 Synthetic Evaluation Scenarios

An important issue for a benchmark is to have not only fixed evaluation scenarios
but scenarios representing generic patterns. In a world where the data is becoming
increasingly complicated, it is crucial to stress test the tools for data and schemas of
different sizes. This means that matching and mapping benchmarks should support
dynamic generation of evaluation scenarios of different sizes with which one can
test how the tool under evaluation scale up.

Unfortunately, such a pluralism may be hard to find in real world applications,
mainly due to privacy reasons, or because they typically originate from a single
domain that restricts their pluralism and makes them unsuitable for general purpose
evaluations. Thus, a benchmark should be able to create synthetic test cases in a
systematic way that stress test the mapping tools and allow the evaluation of their
performance under different situations.

In the case of a matching tool, generation of a synthetic test scenario involves
the creation of a source and a target schema, alongside the expected matches. The
construction of the two schemas, should be done in parallel so that for every part of
the source schema, the part of the target schema with which it matches is known.
For the case of a mapping tool, the situation is similar, but instead of the expected
matches, the synthetic test scenario should have the expected transformation. The
construction of the latter should also be orchestrated with the construction of the
two schemas. For mapping tools in schema integration a test scenario consists of a
set of source schemas, the expected integrated schema and the specification on how
the expected integrated schema is related to the individual source schemas.

Generation of synthetic scenarios has in general followed two main approaches:
the top-down and the bottom-up approach. The former starts with some large sce-
nario and by removing parts of it generates other smaller scenarios. The latter con-
structs each scenario from scratch. Both approaches can be applied in the case of
synthetic scenario generation for matching and mapping tools.

The top-down approach starts with an existing large source and target schema,
and systematically removes components to generate smaller scenarios satisfying
specific properties. The properties depend on the features of the matching or map-
ping task that needs to be evaluated. An example of an ontology matching evaluation
dataset that has been built using the top-down approach is TaxME2 (Giunchiglia
et al, 2009). In TaxME2, a set of original ontologies are initially constructed out of
the Google, Yahoo and Looksmart web directories. In the sequel, matches across
these ontologies are also defined and characterized. For every pair of ontologies,
portions are cut out alongside matches using elements from these portions. The re-
maining parts of the two ontologies are used as the source and the target, and the
remaining matches form the expected correct matches. The process is repeated mul-
tiple times, each time using a different portion that leads to the creation of a new
matching evaluation scenario. The selection of the portions was done in a way that
preserved five main properties: (i) the complexity of the matching operators; (ii) the
incrementality, i.e., the ability to reveal weaknesses of the matching tool under eval-
uation; (iii) the ability to distinguish among the different matching solutions; (iv)

On Evaluating Schema Matching and Mapping 17

the quality preservation, meaning that any matching quality measure calculated on
the subset of the schemas did not differ substantially from the measure calculated
on the whole dataset; and (v) the correctness, meaning that any matches considered
were correct.

A top-down approach has also been proposed for data exchange systems (Okawara
et al, 2006) and is the model upon which the THALIA (Hammer et al, 2005) integra-
tion benchmark is based. In particular, Thalia provides a large dataset and the filters
that can select portions of this dataset in terms of values and in terms of schemas.

eTuner (Lee et al, 2007) is a tool for automatically tuning matchers that utilizes
the instance data in conjunction with the schema information, and can also be used
to create synthetic scenarios in the top-down fashion. It starts with an initial schema,
and splits it into two, each keeping the same structure but half of the instance data.
The correct matches between the schemas generated by the split are known, and the
idea is to apply transformations to one of the two schemas to create a new schema.
The transformations are based on rules at three levels: (i) modifications on the struc-
ture of the schema, (ii) changes of the schema element names, and (iii) perturbations
of the data. The matchings between schema elements are traced through the whole
process so that they are known at the end and are used for evaluating the matchers.
A limitation of eTuner is that the user needs to create or find a reference ontology.
Furthermore, the set of modifications that can be performed on the data is limited,
making the perturbated data look less similar to natural real-world data.

In the bottom-up approach of synthetic scenario generation, some small sce-
nario is used as a seed for the construction of more complex scenarios. STBench-
mark (Alexe et al, 2008b) is based on this idea in order to provide synthetic map-
ping test scenarios, i.e., a synthetic source schema, a target schema, an expected
mapping between the source and the target schema, and an instance of the source
schema. The seeds it uses are its basic scenarios that were mentioned in the previ-
ous section. Given a basic scenario, STBenchmark constructs an expanded version
of it. The expanded version is an image of the original scenario but on a larger scale.
The scale is determined by dimensions specified through configuration parameters
representing characteristics of the schemas and the mappings. For instance, in a
copy basic scenario the configuration parameters are the average nesting depth of
the schemas and the average number of attributes of each element. In the vertical
partition scenario (ref. Figure 6) on the other hand, the configuration parameters
include additionally the length of join paths, the type of the joins and the number
of attributes involved in each such join. Expanded scenarios can then be concate-
nated to produce even larger mapping scenarios. Figure 7(a) illustrates an expanded
un-nest basic mapping scenario, and Figure 7(b) how a large synthetic scenario is
created by concatenating smaller scenarios. STBenchmark5 has also the ability to
create synthetic mapping scenarios that involve complex transformations coming
from a combination of transformations that the basic mapping scenarios describe.
For the generation of the instance of the source schema, STBenchmark generates a

5 www.stbenchmark.org

18 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Fig. 7 Basic Scenario Expansion and Synthetic Scenario Generation

ToXGene (Barbosa et al, 2002) configuration template with which one can invoke
ToXGene in order to produce the data of the source instance.

In the area of schema matching, the ISLab Instance Matching Benchmark (Fer-
rara et al, 2008) is also following a bottom-up approach. It uses several algorithms to
create different data sets. It initially requires the creation of a reference ontology for
a specific domain. Then, this ontology is populated with instances by querying web-
sites. For example, IMDB enables the population of a movie ontology. Subsequently,
a number of modifications on the data takes place, with three goals in mind: (i) to
introduce variations in the data values, e.g., typographical errors, (ii) to introduce
structural heterogeneity, e.g., properties represented by different structural levels,
aggregations, and others, and (iii) to introduce local heterogeneity, which mainly
includes semantic variations that requires ontological reasoning in order to cope
with. Once the modifications have been performed, the benchmark users are pro-
vided with the initial reference ontology and the modified one, against which they
evaluate matching tools.

6 Measuring Efficiency

6.1 Matching/Mapping Generation Time

Since one of the goals of mapping tools is to assist the matching/mapping designer
in performing the time-concuming matching and mapping tasks faster, time plays a
major role in measuring the performance of matching/mapping tools. Nevertheless,
mapping tools like Spicy (Bonifati et al, 2008b), HePToX (Bonifati et al, 2006) or
Clio (Popa et al, 2002), in their evaluation experiments make only a small reference
to mapping generation time, and evaluation techniques proposed by Spicy (Bonifati
et al, 2008a) or STBenchmark (Alexe et al, 2008c) do not elaborate extensively on

On Evaluating Schema Matching and Mapping 19

the issue. This is not an omission of their behalf. It reflects the fact that it is hard to
measure time when human participation, in our specific case for the verification and
guidance of the mapping tool, is part of the process. The time required by humans
to understand the mappings generated by the tool and provide feedback is orders of
magnitude higher than the one the tool requires for computing the mappings.

The situation is slightly different in matching tools where there is limited hu-
man intervention. Although computation time is still a central factor, it is not as
important as the quality of the generated matches. A recent evaluation on a number
of matching tools (Yatskevich, 2003) has extended previous evaluations (Do et al,
2003) by adding time measures for matching tasks on real-world matching scenar-
ios. Unfortunately, these metrics have yet to be materialized in an a benchmark. In
a more recent comparison (Kopcke and Rahm, 2010) of state-of-the-art matching
tools, generation time has been one of the main comparison criteria and is also one
of the metrics used by matching evaluation tools like XBenchMatch (Duchateau
et al, 2007) and the ISLab Instance Matching Benchmark (Ferrara et al, 2008).

6.2 Data Translation Performance

It has already been mentioned that one of the popular uses of mappings is to translate
data from one source to another, i.e., the data exchange task. This translation is
done by materializing the target or integrated instance from the data of one or more
source instances according to the mappings. Data sources typically contain a large
number of records. This means that if the mappings are noumerous and describe
complex transformations, then the time required to materialize the target instance
may be significant. Based on this observation, it is clear that one of the factors to
characterize the quality of a mapping tool is by the performance of the execution
of the transformations described by the generated mappings. Metrics that can be
used to measure such performance are the overall execution time and the degree of
parallelization.

[Time] The most general purpose metric is the time required to perform the overall
transformation time. Although this parameter is not explicitly stated in any match-
ing or mapping evaluation effort, certain extensive experiments found in the litera-
ture (Alexe et al, 2008c) illustrate its importance. The generation of good transfor-
mation scripts is actually a way to characterize good mapping tools. Note that in
order to avoid falling into the trap of evaluating the query execution engine instead
of the mapping tool, when measuring the performance of the generated transforma-
tion scripts all the comparison and evaluation experiments should be performed on
the same transformation engine.

There has been an increasing interest towards efficient methods for generating the
right target instance given a mapping scenario, and more specifically in generating
the “core”. The core (Fagin et al, 2003) is a minimum universal solution (Fagin et al,
2005). Core identification has been shown to be a co-NP hard problem (Fagin et al,

20 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

2005) for certain mapping dependencies. Despite these complexity results, there
have been successful developments of efficient techniques that given two schemas
and a set of mapping dependencies between them, in the form of tuple generating
dependencies, produce a set of transformation scripts, e.g., in XSLT or SQL, whose
execution efficiently generates a core target instance (Mecca et al, 2009; ten Cate
et al, 2009).

Time performance is becoming particularly critical in ETL tools that typically
deal with large volumes of data. Recent ETL benchmarks (Simitsis et al, 2009) con-
sider it as one of the major factors of every ETL tool evaluation. Other similar factors
that are also mentioned in ETL benchmarks are the workflow execution throughput,
the average latency per tuple and the workflow execution throughput under failures.
The notion of time performance in ETL tools extends beyond the end of the ETL
workflow construction by considering, apart from the data translation time, the time
required to answer business-level queries on the transformed data.

[Parallelization] One way to improve the data transformation time is to increase
parallelization by generating mappings with minimum interdependencies. There are
in general two broad categories of parallel processing: pipelining and partitioning.
In pipelining different parts of the transformation are executed in parallel in a sys-
tem with more than one processor and the data generated by one component are
consumed immediately by another component without the need of waiting for the
first component to fully complete its task. Pipelining works well for transformations
that do not involve extremely large amounts of data. If this is not the case, a different
parallelization mechanism called partitioning is preferable. In partitioning, the data
is divided in different parts and then the transformation described by the mappings
is applied on each partition independently of the others (Simitsis et al, 2009).

6.3 Human Effort

Since the goal of a matching or a mapping tool is to alleviate the designer from the
laborious task of matching and mapping specification, it is natural to consider as one
of the evaluation metrics of such a tool the effort required by the mapping designer.

In a schema matching task the input consists of only the two schemas. Since the
task involves semantics, the designer must go through all the produced matches and
verify their correctness. Consequently, the effort the designer needs to spend during
a matching task can be naively quantified by the number of matches produced by
the matcher and by their complexity.

A matcher may produce not only false positives, but also false negatives, which
the matching designer will have to add manually to the result of the matcher, or will
have to tune the tool in order to generate them. Two metrics have been proposed
in the literature for quantifying this effort. One is the overall, which is also found
under the name accuracy (Melnik et al, 2002) and is defined by the formula:

On Evaluating Schema Matching and Mapping 21

Overall = Recall×
(

2− 1
Precision

)
(1)

Recall and precision are metrics that will be presented later and evaluate the accu-
racy of the generated matches intuitively. The overall metric evaluates the amount
of work an expert must provide to remove irrelevant matches (false positives), and
to add those relevant that were not discovered (false negatives) (Do et al, 2003). The
metric returns a value between −∞ and 1. The greater the overall value is, the less
effort the designer has to provide. It is a general belief (Do et al, 2003) that a pre-
cision below 50% implies that more effort is required from the designer to remove
the false matches and add those missing than to manually do the matching. This is
why such situations have a negative overall value. A limitation of the overall metric
is that it assumes equal effort for removing an irrelevant match and for adding a
missing one, which is rarely the case in the real-world.

Another metric to measure the human effort is the human-spared resources
(HSR) (Duchateau, 2009). It counts the number of designer interactions required
to correct both precision and recall, i.e., to manually obtain a 100% F-measure, a
quality metric that will be discussed later. In other words, HSR takes into account
not only the effort to validate or invalidate the discovered matches, but also to dis-
cover those missing. HSR is sufficiently generic, can be expressed in the range of
[0,1] or in time units (e.g., seconds), and does not require any input other than the
one for computing precision, recall, F-measure or overall. The only limitation is that
its does not take into account the fact that some matching tools may return the top-K
matches instead of all of them.

In the schema mapping process, if the mapping specification is provided by the
designer and is not taken from the output of an automatic matching task, the sit-
uation is different. The designer is required to provide input to the mapping tool
through its interface, not only at the beginning but also throughout the mapping
generation process since the designer will have to continuously verify the tool gen-
erated mappings and provide the respective modifications. Thus, the effort of the
mapping designer can be measured by the number of inputs the designer provides
to the tool.

This evaluation criterion is essentially an evaluation of the graphical interface of
the tool. It is true, that the more intelligence a tool incorporates in interpretting the
mapping designer input, the less input effort is required by the designer. However,
certain interfaces may be so well-designed that even if there are many tasks the
mapping designer needs to do, the human effort is kept to the minimum.

STBenchmark introduces a simple usability (SU) model, intended to provide a
first-cut measure on the amount of effort required for a mapping scenario. It is based
on a rough counting of the mouse clicks and keystrokes to quantify effort. This is
important even if the time required for the mapping specification is much smaller in
comparison to the time needed by the generated mappings to become transformation
scripts and be executed. The click log information describing a mapping design for
STBenchmark looks like this: Right mouse click to pull up menu, left mouse click
to select a schema element, typing a function into a box, etc. Since different actions
may require more effort than others (MacKenzie et al, 1991), for example, a point-

22 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

and-click is much easier than dragging or typing, weights can be assigned to each
type of action in order to build a cost model for quantifying the total required effort.

One of the limitations of the above model is that it does not distinguish between
clicks leading to the final mapping design and corrective actions, such as, undo or
delete operations. It assumes that the mapping designer is familiar with the mapping
tool and makes no mistakes. Another limitation is that the model does not capture
the time the designer spends on thinking. A mapping tool that requires the design-
erdesignerthink for long time before designing the mapping with only few clicks,
should not be considered more efficient than others that require less thinking by the
designer but a few more clicks. A final limitation of this idea is that the model does
not consider features such as presentation layout, visual aids, access to frequently
used tasks etc.

In the area of schema integration, the Thalia benchmark (Hammer et al, 2005)
can be used for objectively evaluating the capabilities of integration technology by
taking into account, besides the correctness of the solution, the amount of program-
matic effort (i.e., the complexity of external functions) needed to resolve any hetero-
geneity. For a fair comparison, any measurement of the needed effort must be done
on the implementation of the twelve queries that Thalia provides. However, Thalia,
does not provide any specifications on how this “effort” is to be measured.

7 Measuring Effectiveness

Measuring the effectiveness of a mapping or matching tool means measuring
whether (or how much) the tool can fulfill its expectations for a given task. In the
case of matching, an expert user typically knows what the correct matches are and
the matching tool is expected to find them. Thus, evaluating its effectiveness boils
down to a comparison between the expected set of matchings and the set of match-
ings that the tool generated. The situation is slightly different for the case of mapping
systems. Since the expected output of a mapping system is a set of mappings that
are used to generate the target (or global) instance, evaluating whether the mapping
system has fulfilled its expectations can be done by checking whether the generated
mappings can produce the expected target instance, or how close to the expected
instance is the one that the generated mappings produce. This comparison can be
done either extensionally, by comparing instances, or intensionally, by comparing
the generated transformation expressions, i.e., the mappings. In this section we pro-
vide an overview of metrics that have been used in the literature for measuring such
effectiveness.

On Evaluating Schema Matching and Mapping 23

7.1 Supported Scenarios

One way to evaluate a matching or mapping tool is by counting the percentage of
scenarios it can successfully implement from a provided list of scenarios. A basic
assumption is that there is an oracle providing the ground truth for each of these
scenarios, i.e., the set of expected matches/mappings. This oracle is typically an
expert user. A match/mapping generated by a tool is characterized as correct if it is
part of the ground truth, or incorrect, otherwise. The successful implementation of
a scenario by a tool is the generation of the expected matches/mappings.

Provided with a rich set of mapping scenarios, one can test different aspects of
a mapping tool. The effectiveness of the tool is the percentage of these scenarios
that the tool could successfully implement. This approach is the one followed by
STBenchmark (Alexe et al, 2008b). The scenarios the benchmark provides have
been collected from the related scientific literature and real-world applications.

The characterization of the effectiveness of a tool based on the notion of the
successful or unsuccessful implementation of scenarios, may not be the optimal ap-
proach especially in the case of systems. Very often, a mapping tool may not be able
to produce exactly the expected mappings, yet it may be able to generate a pretty
good approximation of them, or mappings that produce a target instance very close
to the expected one. Under the above model, such a tool will be unfairly penalized
as unsuccessful even though the final result is very close to the one expected. For
this reason, a metric measuring proximity of the produced results to the expected is
becoming an increasingly popular alternative.

7.2 Quality of the Generated Matchings/Mappings

Four metrics that have been used extensively in the area of matching tool evaluation
are the precision, recall, f-measure and the fall-out (Euzenat and Shvaiko, 2007).
They are all intended to quantify the proximity of the results generated by a match-
ing tool to those expected. They are based on the notions of true positives, false
positives, true negatives and false negatives. Given two schemas S and T , let M
represent the set of all possible matches that can exist between their respective ele-
ments. Assume that an oracle provides the list of expected matches. These matches
are referred to as relevant, and all the other matches in M as irrelevant. The match-
ing tool provides a list of matches that it considers true. These are the tool rele-
vant matches, while the remaining matches in M are the tool irrelevant matches.
A match in M is characterized as true positive, false positive, true negative or false
negative, depending on which of the above sets it belongs. The respective definitions
are illustrated in Table 1.

The precision, recall and f-measure (Van-Risbergen, 1979) are well-known from
the information retrieval domain. They return a real value between 0 and 1 and have
been used in many matching evaluation efforts (Duchateau et al, 2007; Do et al,
2002). Figure 8 depicts a matching example. It illustrates two schemas related to

24 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

(a) COMA++

(b) Similarity Flooding

Fig. 8 Correspondences discovered by two schema matchers

Relevant Matches Irrelevant Matches
Tool Relevant Matches TP (True Positive) FP (False Positive)
Tool Irrelevant Matches FN (False Negative) TN (True Negative)

Table 1 Contingency table forming the base of evaluation measures

hotel reservations and the relevant matches (illustrated by the inter-schema lines)
generated by two matching tools, COMA++ (Aumueller et al, 2005) and Similarity

On Evaluating Schema Matching and Mapping 25

Flooding (Melnik et al, 2002), denoted as SF for short. COMA++ has discovered 9
matches while SF has discovered 7. Note that for SF, the matches between the root
elements of the schemas are not considered.

[Precision] The precision calculates the proportion of relevant matches discovered
by the matching tool with respect to all those discovered. Using the notation of
Table 1, the precision is defined as

Precision =
T P

T P+FP

An 100% precision means that all the matches discovered by the tool are relevant.
In the particular example of Figure 8, both tools achieve a 100% precision:

PrecisionCOMA++ =
9

9+0
= 100% PrecisionSF =

7
7+0

= 100%

[Recall] Recall is another broadly used metric. It computes the proportion of
matches discovered by the tool with respect to all the relevant matches. It is defined
by the formula

Recall =
T P

T P+FN

A 100% recall means that all relevant matches have been found by the tool. For the
scenario of Figure 8, COMA++ has discovered 9 matches but missed 4 relevant.
These missed matches are the false negatives. SF, on the other hand, discovered 7
relevant matches out of the 13. These results give the following recall values:

RecallCOMA++ =
9

9+4
= 69% RecallSF =

7
7+6

= 54%

[F-measure] F-measure is a trade-off between precision and recall. It is defined as:

f −measure(β) =
(β 2 +1)×Precision×Recall

(β 2×Precision)+Recall

The β parameter regulates the respective influence of precision and recall. It is often
set to 1 to give the same weight to these two evaluation measures. Back to our
running example, using a β equal to 1, the f-measure values obtained for COMA++
and SF, are respectively

f −measureCOMA++ =
2×1×0.69

1+0.69
= 82%

and

26 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

f −measureSF =
2×1×0.54

1+0.54
= 70%

[Fall-out] Another metric that is often used in the literature is the fall-out (Eu-
zenat et al, 2006)(Ferrara et al, 2008). It computes the rate of incorrectly discovered
matches out of the number of those non-expected. Intuitively, it measures the prob-
ability that a irrelevant match is discovered by the tool. The fall-out is defined by
the formula:

Fallout =
FP

FP+T N

In the running example of Figure 8, the number of non-expected, i.e., irrelevant,
matches equals 253 (there exist a total of 266 possible matches including the 13
that are relevant). However, since neither tool discovered any irrelevant match, their
fallout equals to 0%.

FalloutCOMA++ =
0

0+253
= 0% FalloutSF =

0
0+253

= 0%

The matching benchmark XBenchMatch (Duchateau et al, 2007) and the ontol-
ogy alignment API (Euzenat, 2004) are based on the above metrics to evaluate the
effectiveness of matching tools. They assume the availability of the expected set of
matches through an expert user. Based on that set and the matches that the matching
tool produces, the various values of the metrics are computed.

A limitation of the above metrics is that they do not take into consideration any
post-match user effort, for instance, tasks that the user may need to do in order
to guide the matching tool in the matching process, or any iterations the user may
perform to verify partially generated results.

Measuring the quality of mappings, turns out to be more challenging than mea-
suring the quality of the matches. The reason is that it requires comparisons among
mappings which is not a straightforward task. Finding whether a generated map-
ping belongs to the set of expected mappings requires a comparison between this
mapping and every other mapping in that set. This comparison boils down to query
equivalence. Apart from the fact that query equivalence is a hard task per-se, it is
also the case that a transformation described by a mapping may be also implemented
through a combination of more than one different mapping. This means that it is not
enough to compare with individual mappings only, but combinations of mappings
should also be considered. For this reason, direct mapping comparison has typi-
cally been avoided as evaluation method of mapping tools. Researchers have instead
opted for a comparison of the results of the mappings, e.g., the target instances.

Nevertheless, the precision, recall and the f-measure can be used to evaluate the
large class of tools that do not differentiate among the matching and the mapping
process but consider the whole task as a monolithic procedure. Spicy (Bonifati et al,
2008a) is an example of such tools, as it pipelines a matching module and a map-

On Evaluating Schema Matching and Mapping 27

ping generation module and allows the mapping designer to reiterate between the
two processes to improve the quality of the generated mappings. In Spicy, the map-
ping tasks were designed in such a way that the source always contains a mapping
that covers the entire target, meaning that no subset of the target schema remains un-
mapped. The set of mapping scenarios in the system are built in such a way that for
a target schema, the correct set of matches that will generate a given predetermined
mapping is internally identified. These matches are called the ideal match Mid . At
this point, the mapping generation algorithm can be run and a single transforma-
tion, Tbest , i.e., the mapping that has the best scores in terms of instance similarity
(cfr. next section for details), can be generated. Then the matches MTbest on which
this mapping is based upon are identified. In the ideal case, these matches are the
same as the ideal match Mid . The quality of the tool can be measured in terms of
precision and recall of MTbest with respect to Mid . However, Spicy reports quality
only in terms of precision. The reason is that in all cases the tool returns a number
of matches that is equal to the size of the target, as mentioned above. As a con-
sequence, precision and recall are both equal to the number of correct matches in
MTbest over the size of the target, which means that either precision or recall suffices
to characterize the quality of the generated mappings.

The cases in which the source does not contain a mapping that covers the entire
target are more complex and have not so far been addressed. It is believed that the
most general case in which the target schema is not entirely covered by the mapping
entails a new class of mapping tasks in which the target instance is partially filled
with data exchanged with the source and partially filled with its own data.

The problem of characterizing mappings in a quantitative way has also been stud-
ied (Fagin et al, 2009b) through the notion of information loss which is introduced
to measure how much a schema mapping deviates from an ideal invertible mapping.
An invertible mapping is a mapping that given the generated target instance, it can
be used to re-generate the original source instance. A first definition of invertibility
has considered only constants in the source instance, and constants alongside la-
beled nulls in the target (cfr. (Fagin et al, 2010)). Labeled nulls are generated values
for elements in the target that require a value but the mapping provides no specifica-
tion for that value. In the inversion, these labeled nulls can propagate in the source
instance, resulting into an instance that has less information that the original one. To
capture in a precise way such an information loss, the notion of maximum extended
recovery has been introduced for tgds with disjunction and inequalities (Fagin et al,
2009b). This new metric clearly identifies a viable approach to precisely compare
schema mappings, but the full potential of this metric in benchmarking mapping
tools still remains to be explored.

Another step towards the design of meaningful and high-quality schema map-
pings has been tackled recently (Alexe et al, 2010a) by using a MapMerge operator
to merge multiple small mappings into a large ones. The evaluation of such an op-
erator is done by using a novel similarity metric, that is able to capture the extent
to which data associations are preserved by the transformation from a source to a
target instance. The metric depends on the natural associations that exist among data
values in the source instance, discovered by looking at the schema structures and by

28 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

following the schema referential integrity constraints. The idea behind the metric
is that these associations must be preserved by the transformation that the mapping
describes.

7.3 Quality of the Generated Target Instance

In systems that do not differentiate between the matching and the mapping task,
an alternative to measuring precision, recall or f-measure would have been prefer-
able. One such approach is to use the final expected result of the mapping process,
which is the actual target instance generated by the transformation described by the
mappings. This kind of evaluation is also useful in cases where one needs to avoid
comparisons among mappings for reasons like those provided earlier. The expected
target instance is typically provided by an expert user. Once the expected target in-
stance is available, the success of a mapping task can be measured by comparing
it to the actual target instance produced by the generated mappings. The approach
constitutes an appealing verification and validation method, mainly due to its sim-
plicity.

The comparison between the actual and the expected target instance can be done
by considering an ad-hoc similarity function, such as tree edit distance, or by em-
ploying a general-purpose comparison technique (Bonifati et al, 2008a). Defining
such a customized comparison technique is a promising direction for future devel-
opments in this area. The Spicy system ¡¡¡¡¡¡¡ .mine offers a comparison method
based on circuit theory (Bonifati et al, 2008a), which is called structural analysis.
Figure 9 shows an example of a circuit for a tree, that is easily constructed starting
from building blocks corresponding to atomic attributes; more specifically, for each
intermediate node n in a tree representation of the schema t, a resistance value, r(n)
can be defined. Such value cannot be based on instances, since intermediate nodes
do not have a sample of instances, but rather on the topology of the tree. More specif-
ically, r(n) = k× level(n), where k is a constant multiplicative factor, and level(n)
is the level of n in t, defined as follows: (i) leaves have level 0; (ii) an intermediate
node with children n0,n1, . . .nk has level max(level(n0), level(n1), . . . level(nk))+1.
======= offers a comparison method based on circuit theory (Bonifati et al,
2008a), called structural analysis. Figure 9 shows an example of a circuit generated
by the tree representation of a schema, as shown on the left-hand side. The circuit is
based on building blocks corresponding to atomic attributes. More specifically, for
each intermediate node n in the schema tree, a resistance value r(n) is defined. Such
a value cannot be based on instances, since intermediate nodes of the tree represent
higher structures, but it is rather based on the topology of the tree. In particular,
r(n) = k× level(n), where k is a constant multiplicative factor, and level(n) is the
level of n in the tree, defined as follows: (i) leaves have level 0; (ii) an intermediate
node with children n0,n1, . . .nk has level max(level(n0), level(n1), . . . level(nk))+1;
¿¿¿¿¿¿¿ .r3386

On Evaluating Schema Matching and Mapping 29

¡¡¡¡¡¡¡ .mine The complete circuit is defined by means of a circuit mapping func-
tion, circ(t) over a tree t. For a leaf node A, circ(A) is defined by mapping a sam-
pled attribute to a circuit. Intuitively, circ(A) is assembled by assigning a set of
features to a number of resistor and voltage generators. For a tree t rooted at node
n with children n0,n1, . . .nk, circ(t) is the circuit obtained by connecting in parallel
circ(n0),circ(n1), . . .circ(nk) between ground and an intermediate circuit node ntop,
and then adding a resistor of value r(n) from node ntop to output. Examples of such
transformation are given in Figure 9. Note that the circuit mapping function makes
the resulting circuits isomorphic to the original trees. ======= The complete cir-
cuit is defined by means of a circuit mapping function, circ(t) over a tree t. For a
leaf node A, circ(A) is defined by mapping a sampled attribute to a circuit. Intuitiv-
elly, circ(A) is assembled by assigning a set of features to a number of resistors and
voltage generators. For a tree t rooted at node n with children n0,n1, . . .nk, circ(t) is
the circuit obtained by connecting in parallel circ(n0),circ(n1), . . .circ(nk) between
ground and an intermediate circuit node ntop, and then adding a resistor of value
r(n) from node ntop to the output. Examples of such transformation are illustrated
in Figure 9. Note that the circuit mapping function makes the resulting circuits iso-
morphic to the original trees. ¿¿¿¿¿¿¿ .r3386

flat structure

r(project) = k

r(projectDB) = 3 k

name : string

amount: real

company: string

project: tuple

circ(company)

Schema Corresponding circuit

circ(name) circ(amount)

nested structure

r(project) = 2 k

r(company) = k

name : string

amount: real

company: tuple

project: tuple

projectDB: set

cname: string

budget: real

circ(name) circ(amount)

circ(cname) circ(budget)

Fig. 9 Examples of circuits for flat and nested structures.

In Spicy, similarly to the opaque schema matching (Kang and Naughton, 2003),
labels are ignored by the circuit mapping function, and values are basically treated
as uninterpreted strings. Furthermore, values correspond to alphanumeric data in
the underlying Spicy data model. The circuit features discussed above reflect this

30 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

choice. However, the circuit model is sufficiently flexible to allow the treatment of
special data, like large texts or multimedia, as discussed in other orthogonal usage
of circuits (Palmer and Faloutsos, 2003).

Given two trees t1 and t2, a measure of their similarity can be computed by map-
ping t1 and t2 to the corresponding circuits, circ(t1),circ(t2), as depicted in Figure 9,
solving the two circuits to determine their currents and voltages, and choosing a
number of descriptive features of the corresponding circuits, f0, f1, . . . fi. A notion
of comparator for each feature fi as a module that computes the index of similarity
∆i between the two structures with respect to feature fi, is defined in Spicy as fol-
lows ∆i = abs(fi(circ(t1))− fi(circ(t2)))/ fi(circ(t1)). Finally, the overall similarity
of the two trees is computed based on the values of ∆0,∆1, . . .∆i (Bonifati et al,
2008a).

The quality of the target instance is also an important factor in the case of ETL
systems. For these systems, the quality is typically determined by the data fresh-
ness, the resiliency to occasional failures and the easy of maintenance (Simitsis
et al, 2009). Data freshness means that the effect of any modification in the source
instance is also implemented in the target. Resiliency to failures measures whether
different transformation routes or recovery procedures can guarantee that in the case
that a part of the transformation fails, the data that was to be generated can be gener-
ated either through different routes or by repetition of the failed procedure. Finally,
the maintainability is affected, among others, by the simplicity of the transforma-
tion. A simple ETL transformation is more maintainable, whereas in a complex
transformation it is more difficult to keep track of the primitive transformations that
take place. Occasionally, the compliance to business rules is also one of the consid-
ered factors for measuring the quality of an ETL system.

7.4 Data Examples

Generating the expected target instance for evaluating a mapping system may not
always be the most desired method. The size of the target schema may be pro-
hibitively large and its generation at mapping design time may not be feasible. Even
if its generation is possible, due to its size, even an expert mapping designer may
find hard to understand the full semantics of the generated transformation, since it is
practically impossible to always obtain a full view of the target data. The generated
mappings between a source and the target schema may also be numerous, ambigu-
ous and complicated to a degree that the designer is not able to understand what
and how some target data was created from data in the source. To cope with these
issues and help the designer in quickly and fully understanding the semantics of
the mapping system generated transformations and validate them, carefully selected
representative samples of the target instance can be used. Samples of the expected
target instance can be used to drive the mapping process, while samples of the gen-
erated target instance can be used to communicate to the designer the semantics of
the mappings the system has generated.

On Evaluating Schema Matching and Mapping 31

The importance of data examples in mapping generation has long ago been rec-
ognized (Yan et al, 2001). In the specific work, each mapping is considered a trans-
formation query and is interpreted as an indirectly connected graph G = (N,E),
where the set of nodes N is a subset of the relations of the source schema and the
set of edges E represents conjunctions of join predicates on attributes of the source
relations. Typically, joins are inner joins but they can also be considered as outer
joins or combinations of inner and outer joins. Given a query graph G, the full and
the possible data associations can be computed. A data association is a relation that
contains the maximum number of attributes whose data are semantically related
through structural or constraint, e.g., foreign key, constructs. A full data association
of G is computed by an inner join query over G and it involves all nodes in G. Given
an induced, connected subgraphs of G, a data association can be constructed in the
same way, but since it is based on a subgraph of G, the data association is referred
to as a possible association. Full and possible data associations can be leveraged to
understand what information needs to be included into a mapping.

From a different perspective, one could think of a wizard or a debugging tool that
allows to better understand the semantics of the mappings by illustrating the flow of
tuples from source to target in a schema mapping task. The notion of routes (Chiti-
cariu and Tan, 2006) captures this idea and is useful in the mapping debugging pro-
cess to understand the behavior of mappings. Routes can be created between original
source and target instances or between illustrative data examples. Ultimately, routes
can be used in conjunction with data examples to help the user dig in the semantics
of a mapping.

To understand what a data example represents, assume a mapping generation
situation with a source schema S, a target schema T and a set of mappings Σ . It
is said that a data example (I,J) is satisfied by the set of mappings Σ , denoted as
(I,J) |= Σ , if I is a fraction of an instance of S, J is a fraction of an instance of T , and
there is a mapping m∈Σ such that m(I) = J. Such a data example is called a positive
data example. If I is a fraction of an instance of S, J is a fraction of an instance of T ,
but (I,J) 6|= Σ , then the data example is called negative. Positive examples are used
to illustrated intended transformed data in the instance while negative examples can
be used to describe undesired mapping transformations.

In the special case that the data J of a data example (I,J) is a universal solu-
tion (cfr. (Bonifati et al, 2010)), the example is called a universal data example.
Universal data examples are of major importance due to their generality. A recent
study (Alexe et al, 2010b) has highlighted that if the only kind of mappings con-
sidered are source-to-target tgds, a mapping can be characterized by a finite set of
positive and negative data examples if and only if the source and the target schema
contain only unary relation symbols. Nevertheless, the study has also shown that
the universal examples may characterize the entire class of local-as-view (Lenzerini,
2002) source-to-target tgds.

In short, data examples have already found their way into mapping systems as a
way of helping the designer understand and refine the generated mappings (Alexe
et al, 2008a) and in certain cases select a subset of those mappings that the mapping
system produces (Yan et al, 2001). They can also become an asset in mapping sys-

32 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

tem evaluation as indicated by some first efforts towards this direction (Alexe et al,
2010b). In particular, the mapping system Clio is employing debugging tools like
Routes (Chiticariu and Tan, 2006) to build a mapping designer evaluation frame-
work that is based on data examples. There are still many challenging research is-
sues around that topic, for instance, a deeper study of the use of positive, negative
and universal examples.

7.5 Quality of the Generated Target Schema

When the mapping system is used to create an integrated (or target) schema, a tech-
nique to evaluate the quality of the system is to measure the quality of the generated
integrated schema. This can be done mainly by measuring its relationship to the
schema that the designer had in mind to create, i.e., the intended integrated schema.
The relationship can be measured in terms like the amount of information in the
source schema that is also described in the integrated schema, the difference in the
schema structures, etc. Three metrics have been recently proposed: the complete-
ness, minimality and structurality.

Completeness Let Sitool represent the target schema generated by the mapping tool
and Siint the intended target schema that models the integration. The notation |S| is
used to refer to the number of elements in a schema S. The completeness (Batista
and Salgado, 2007) is a metric in the range of 0 to 1, that intuitively measures how
many of the concepts that can be modeled by the source schema(s) can also be
modeled by the target schema, i.e., the integration. More formally,

Completeness =
|Stool ∩Sint |
|Sint |

Minimality The minimality (Batista and Salgado, 2007) is another metric also in
the range of 0 to 1, that indicates the redundancy that may appear in the integrated
schema. The higher minimality, the lower the redundancy. Minimality is defined
by the following expression, which basically calculates the percentage of extra el-
ements in the integrated schema produced by the mapping tool with respect to the
intended instance. In particular:

Minimality = 1− |Stool |− |Stool ∩Sint |
|Sint |

On Evaluating Schema Matching and Mapping 33

Structurality The structurality has been introduced (Duchateau, 2009) to intuitively
measure the “qualities of the structure an object possesses”6. In the case of schemas,
this notion is translated to the set of ancestors of a schema structure. In other words,
the structurality measures whether the elements of the generated and the intended
schema contain the same set of ancestors. To compute structurality, the schemas
are viewed as trees. Let Sint and Sgen denote the intended and the generated target
schema, respectively. Assume also that in the tree representation of a schema S,
PS(e) is the set of elements in the path from the root to the element e, exclusively.
The structurality of an element e is defined as:

Structurality(e) = max
(

0,
α|PSint (e)∩PSgen(e)|− (|PSgen(e)|− |PSint (e)∩PSgen(e)|)

α|PSint (e)|

)
Intuitivelly, the formula checks that an element shares most ancestors both in

the generated and the intended integrated schemas. Besides, it takes into account
the insertion of incorrect ancestors in the generated integrated schema. Note that
the structurality of an element e of the intended schema that does not appear in
the schema generated by the tool is zero. The parameter α is a constant factor that
allows higher importance to be given to ancestors that have been created in the
generated schema, as opposed to those that have not. Since the number of ancestors
Pgen may be large, an element structurality may become negative, which explains
the existence of the max function in the above formula. A negative value would be
difficult to interpret by end-users, as this is the case for the overall measure when
dealing with matching quality.

The structurality of a schema Sgen generated by the mapping tool is the average
of the structuralities of the individual elements in the intended schema, i.e.,

Structurality o f Sgen =
∑e∈Sint Structurality(e)

|Sint |

The completeness, minimality and structurality metrics can be combined into a
weighted sum to provide an overall metric for the proximity of the generated schema
and the intended, i.e.,

Proximity = w1 ∗Completeness+w2 ∗Minimality+w3 ∗Structurability

with w1 +w2 +w3 = 1.
To illustrate the above metrics, consider the abstract schema shown on the left-

hand side of Figure 10, and assume that it is the schema generated by the mapping
tool. The schema that was intended to be created is the one on the right-hand side
of the same figure. The number of common schema elements between these two
schemas are 6, thus, Completeness= 6

7 and Minimality=1− 8−6
7 = 5

7 . Assuming an α

factor with value 2, the structuralities of the elements of the intended schema are

6 http://en.wiktionary.org/wiki/structurality

34 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Fig. 10 An abstract example of a schema generated by a mapping tool (left) and the intended

Element Pint Pgen Element Structurality

B A A max(0, 2×1−(1−1)
2×1) = 1

D A A max(0, 2×1−(1−1)
2×1) = 1

E A,D A,D max(0, 2×2−(2−2)
2×2) = 1

G A,D /0 max(0, 2×0−(0−0)
2×2) = 0

C A,B A,D max(0, 2×1−(2−1)
2×2) = 1

4

F A,D A max(0, 2×1−(1−1)
2×2) = 1

2

Table 2 Element Structuralities for the intended schema of Figure 10

illustrated in Table 2. According to these values, the structurality of the generated

schema with respect to the intended schema is 1+1+1+0+ 1
4 + 1

2
6 = 0.625. Giving equal

weight to completeness, minimality and structurality, the overall proximity of the
generated schema to the intended is: 0.86+0.71+0.625

3 = 0.73
There has been an interesting set of experimental results (Duchateau, 2009)

on computing the above metrics using a number of different datasets with the
two popular matching systems: COMA++ (Aumueller et al, 2005) and Similarity
Flooding (Melnik et al, 2002). The former system builds integrated schemas using
an ASCII-tree format (then converted into XSD using a script (Duchateau et al,
2007)) while the latter system directly generates an XSD integrated schema. The
matches discovered by the tools before building the integrated schema have not been
checked. The experiments include a dataset extracted from the XCBL7 and OAGI8

collections, a dataset on university courses provided by the Thalia benchmark (Ham-
mer et al, 2005), a Biology dataset from Uniprot9 and GeneCards10, a currency and

7 www.xcbl.org
8 www.oagi.org
9 http://www.ebi.uniprot.org/support/docs/uniprot.xsd
10 http://www.geneontology.org/GO.downloads.ontology.shtml

On Evaluating Schema Matching and Mapping 35

Betting Dataset Currency Dataset

SMS Dataset University Courses Dataset

Fig. 11 Experimental Results for the Evaluation of the Target Schema Quality

sms dataset11 , and a university department dataset (Duchateau et al, 2008). These
datasets present various features that reflect real-world scenarios. For instance, the
biology dataset contains a specific vocabulary which is not usually found in common
dictionaries. The dataset about university courses describes a case in which many
schemas have to be integrated. A part of the experimental results obtained from that
effort are illustrated in Figure 11. It has been noticed that the tools can obtain a high
completeness in most cases, mainly because the tools promote precision during the
matching phase. On the contrary, the minimality is more difficult to achieve, since
it depends on the recall. Finally, structurality is mostly preserved because the tools
try to keep the same structure that they find in the source schemas.

8 Conclusion

We have presented a retrospective on key contributions in the area of evaluating
matching and mapping tools. Schema matching and mapping is a relatively new
area that has received considerable attention in the last few years. Since these no-
tions may not have yet matured in the minds of researchers and of the commercial
developers and users, and in order to avoid confusions, we have first attempted to
provide a complete description of the architectural components, tasks, and goals
of matching and mapping tools. Then we motivated the importance of evaluation
methods and benchmarks for researchers, developers, businesses and users.

11 www.seekda.com

36 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Schema matching is a topic that has been extensively studied. There is already a
long list of research prototypes and tools. Since the matching task involves seman-
tics, evaluating the correctness of the output of a matching tool is a task requiring
human intervention. The major issue in all these matching cases is deciding what is
the correct answer, i.e., the intended matches. This is a challenging task since, due to
the semantic heterogeneity, different perspectives may give different answers. Eval-
uation techniques for matching tasks have focused on the development of metrics
that will allow a common evaluation base and effective communication of the eval-
uation results. We have provided a description of these metrics and have highlighted
features and limitations.

Schema mapping seems to be a problem for which there is still some confusion
as to what constitutes a mapping tool, what is its input, in what form, and what is its
output. Different research prototypes and commercial tools have followed different
approaches, something that makes their direct comparison and evaluation difficult.
We have attempted to provide a definition of what a mapping tool is and the param-
eters one should consider when evaluating such tools. We have highlighted the lack
of evaluation standards and have provided a complete picture of what an evalua-
tion standard (or benchmark) should contain, alongside existing efforts towards the
creation of such a standard.

Mapping tools have been mainly designed for data exchange. Nevertheless, they
have been extensively used in integration systems for constructing an integrated
global schema. Based on this dimension, we have also provided a number of metrics
for measuring the success of the schema integration task performed by mapping
tools.

Acknowledgments: We are grateful to B. Alexe, L. Chiticariu, A. Kementsietsidis,
E. Rahm and P. Shvaiko for their valuable comments and suggestions.

References

Abiteboul S, Hull R, Vianu V (1995) Foundations of Databases. Addison-Wesley
Alexe B, Chiticariu L, Miller RJ, Tan WC (2008a) Muse: Mapping Understanding

and deSign by Example. In: ICDE, pp 10–19
Alexe B, Tan WC, Velegrakis Y (2008b) Comparing and evaluating mapping sys-

tems with STBenchmark. Proceedings of VLDB 1(2):1468–1471
Alexe B, Tan WC, Velegrakis Y (2008c) STBenchmark: towards a benchmark for

mapping systems. Proceedings of VLDB 1(1):230–244
Alexe B, Hernandez M, Popa L, Tan WC (2010a) MapMerge: Correlating Indepen-

dent Schema Mappings. Proceedings of VLDB 3(1)
Alexe B, Kolaitis PG, Tan W (2010b) Characterizing Schema Mappings via Data

Examples. In: PODS
Altova (2008) MapForce. Http://www.altova.com

On Evaluating Schema Matching and Mapping 37

Atzeni P, Torlone R (1995) Schema Translation between Heterogeneous Data Mod-
els in a Lattice Framework. In: IFIP, pp 345–364

Aumueller D, Do HH, Massmann S, Rahm E (2005) Schema and ontology matching
with COMA++. In: SIGMOD, pp 906–908

Barbosa D, Mendelzon AO, Keenleyside J, Lyons KA (2002) ToXgene: a template-
based data generator for XML. In: SIGMOD, p 616

Batini C, Lenzerini M, Navathe SB (1986) A Comparative Analysis of Methodolo-
gies for Database Schema Integration. ACM Comp Surveys 18(4):323–364

Batista M, Salgado A (2007) Information Quality Measurement in Data Integration
Schemas. In: Workshop on Quality in Databases, pp 61–72

Bergamaschi S, Domnori E, Guerra F, Orsini M, Lado RT, Velegrakis Y (2010) Key-
mantic: Semantic Keyword based Searching in Data Integration Systems. Pro-
ceedings of VLDB 3(2)

Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer map-
pings. In: SIGMOD, pp 1–12

Bernstein PA, Giunchiglia F, Kementsietsidis A, Mylopoulos J, Serafini L, Za-
ihrayeu I (2002) Data Management for Peer-to-Peer Computing : A Vision. In:
WebDB, pp 89–94

Bertinoro (ed) (2007) Bertinoro Workshop on Information Integration,
www.dis.uniroma1.it/˜lenzerin/INFINT2007

Bohme T, Rahm E (2001) XMach-1: A Benchmark for XML Data Management. In:
BTW, pp 264–273

Bonifati A, Chang EQ, Ho T, Lakshmanan LV, Pottinger R (2006) HePToX: Marry-
ing XML and Heterogeneity in Your P2P Databases. In: VLDB, pp 1267–1270

Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008a) Schema Map-
ping Verification: The Spicy Way. In: EDBT, pp 85 – 96

Bonifati A, Mecca G, Pappalardo A, Raunich S, Summa G (2008b) The Spicy sys-
tem: towards a notion of mapping quality. In: SIGMOD, pp 1289–1294

Bonifati A, Mecca G, Papotti P, Velegrakis Y (2010) Advances in Schema Matching
and Mapping by Z. Bellahsene, A. Bonifati, E. Rahm, Data-Centric Systems and
Applications 5258, Springer, chap Discovery and Correctness of Schema Map-
ping Transformations, pp XX–YY

Bressan S, Dobbie G, Lacroix Z, Lee M, Li YG, Nambiar U, Wadhwa B (2001)
X007: Applying 007 Benchmark to XML Query Processing Tool. In: CIKM, pp
167–174

Carey MJ (2006) Data delivery in a service-oriented world: the BEA AquaLogic
data services platform. In: SIGMOD, pp 695–705

ten Cate B, Chiticariu L, Kolaitis P, Tan WC (2009) Laconic Schema Mappings:
Computing Core Universal Solutions by Means of SQL Queries. Proceedings of
VLDB 2(1):1006–1017

Chiticariu L, Tan WC (2006) Debugging Schema Mappings with Routes. In: VLDB,
pp 79–90

Do HH, Rahm E (2002) COMA - A System for Flexible Combination of Schema
Matching Approaches. In: VLDB, pp 610–621

38 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Do HH, Melnik S, Rahm E (2002) Comparison of Schema Matching Evaluations.
In: Web, Web-Services, and Database Systems, pp 221–237

Do HH, Melnik S, Rahm E (2003) Comparison of Schema Matching Evaluations.
In: Revised Papers from the NODe 2002 Web and Database-Related Workshops
on Web, Web-Services, and Database Systems, Springer-Verlag, London, UK, pp
221–237

Doan A, Domingos P, Halevy AY (2001) Reconciling schemas of disparate data
sources: A machine-learning approach. In: SIGMOD, pp 509–520

Doan A, Madhavan J, Domingos P, Halevy AY (2004) Ontology Matching: A Ma-
chine Learning Approach. In: Handbook on Ontologies, pp 385–404

Duchateau F (2009) Towards a Generic Approach for Schema Matcher Selection:
Leveraging User Pre- and Post-match Effort for Improving Quality and Time
Performance. PhD thesis, Universite Montpellier II - Sciences et Techniques du
Languedoc

Duchateau F, Bellahsene Z, Hunt E (2007) XBenchMatch: a Benchmark for XML
Schema Matching Tools. In: VLDB, pp 1318–1321

Duchateau F, Bellahsene Z, Roche M (2008) Improving quality and performance of
schema matching in large scale. Ingenierie des Systemes d’Information 13(5):59–
82

Euzenat J (2004) An API for Ontology Alignment. In: ISWC, pp 698–712
Euzenat J, Shvaiko P (2007) Ontology matching. Springer-Verlag, Heidelberg (DE)
Euzenat J, Mochol M, Shvaiko P, Stuckenschmidt H, Svab O, Svatek V, van Hage

WR, Yatskevich M (2006) Results of the Ontology Alignment Evaluation Initia-
tive. In: OM

Fagin R, Kolaitis PG, Popa L (2003) Data exchange: getting to the core. In: PODS,
pp 90–101

Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data exchange: semantics and query
answering. Theoretical Computer Science 336(1):89–124

Fagin R, Haas LM, Hernandez M, Miller RJ, Popa L, Velegrakis Y (2009a) Con-
ceptual Modeling: Foundations and Applications by A. Borgida, V. Chaudhri, P.
Giorgini, E. Yu, Springer, chap Clio: Schema Mapping Creation and Data Ex-
change, pp 198–236

Fagin R, Kolaitis PG, Popa L, Tan WC (2009b) Reverse data exchange: coping with
nulls. In: PODS, pp 23–32

Fagin R, Kolaitis P, Popa L, Tan W (2010) Advances in Schema Matching and Map-
ping by Z. Bellahsene, A. Bonifati,E. Rahm, Data-Centric Systems and Applica-
tions 5258, Springer, chap Schema Mapping Evolution through Composition and
Inversion, pp XX–YY

Ferrara A, Lorusso D, Montanelli S, Varese G (2008) Towards a Benchmark for
Instance Matching. In: OM

Fletcher GHL, Wyss CM (2006) Data Mapping as Search. In: EDBT, pp 95–111
Giunchiglia F, Shvaiko P, Yatskevich M (2004) S-Match: an Algorithm and an Im-

plementation of Semantic Matching. In: ESWS, pp 61–75
Giunchiglia F, Shvaiko P, Yatskevich M (2005) S-Match: an algorithm and an im-

plementation of semantic matching. In: Semantic Interoperability and Integration

On Evaluating Schema Matching and Mapping 39

Giunchiglia F, Yatskevich M, Avesani P, Shvaiko P (2009) A large dataset for the
evaluation of ontology matching. Knowledge Eng Review 24(2):137–157

Halevy AY, Ives ZG, Suciu D, Tatarinov I (2003) Schema Mediation in Peer Data
Management Systems. In: ICDE, p 505

Hammer J, Stonebraker M, Topsakal O (2005) THALIA: Test Harness for the As-
sessment of Legacy Information Integration Approaches. In: ICDE, pp 485–486

Heinzl S, Seiler D, Unterberger M, Nonenmacher A, Freisleben B (2009) MIRO: a
mashup editor leveraging web, Grid and Cloud services. In: iiWAS, pp 17–24

IBM (2006) Rational Data Architect. Www.ibm.com/software/data/integration/rda
Ioannou E, Nejdl W, Niederee C, Velegrakis Y (2010) OntheFly Entity-Aware Query

Processing in the Presence of Linkage. Proceedings of VLDB 3(1)
Kang J, Naughton JF (2003) On Schema Matching with Opaque Column Names

and Data Values. In: SIGMOD, pp 205–216
Kopcke H, Rahm E (2010) Frameworks for entity matching: A comparison. DKE

69(2):197–210
Lee Y, Sayyadian M, Doan A, Rosenthal A (2007) eTuner: tuning schema matching

software using synthetic scenarios. VLDB Journal 16(1):97–122
Legler F, Naumann F (2007) A Classification of Schema Mappings and Analysis of

Mapping Tools. In: BTW, pp 449–464
Lenzerini M (2002) Data Integration: A Theoretical Perspective. In: PODS, pp 233–

246
Lerner BS (2000) A Model for Compound Type Changes Encountered in Schema

Evolution. TPCTC 25(1):83–127
MacKenzie IS, Sellen A, Buxton W (1991) A comparison of input devices in ele-

mental pointing and dragging tasks. In: CHI, pp 161–166
Madhavan J, Bernstein PA, Rahm E (2001) Generic Schema Matching with Cupid.

In: VLDB, pp 49–58
Mecca G, Papotti P, Raunich S (2009) Core schema mappings. In: SIGMOD, pp

655–668
Melnik S, Garcia-Molina H, Rahm E (2002) Similarity Flooding: A Versatile Graph

Matching Algorithm and Its Application to Schema Matching. In: ICDE, pp 117–
128

Microsoft (2005) Visual Studio. Msdn2.microsoft.com/en-us/ie/bb188238.aspx
Miller RJ, Haas LM, Hernandez MA (2000) Schema Mapping as Query Discovery.

In: VLDB, pp 77–88
Mork P, Seligman L, Rosenthal A, Korb J, Wolf C (2008) The Harmony Integration

Workbench. JODS 11:65–93
Naumann F, Ho CT, Tian X, Haas LM, Megiddo N (2002) Attribute Classification

Using Feature Analysis. In: ICDE, p 271
Okawara T, Morishima A, Sugimoto S (2006) An Approach to the Benchmark De-

velopment for Data Exchange Tools. In: Databases and Applications, pp 19–25
Palmer C, Faloutsos C (2003) Electricity Based External Similarity of Categorical

Attributes. In: Proc. of PAKDD
Popa L, Velegrakis Y, Miller RJ, Hernandez MA, Fagin R (2002) Translating Web

Data. In: VLDB, pp 598–609

40 Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis

Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema match-
ing. VLDB Journal 10(4):334–350

Runapongsa K, Patel JM, Jagadish HV, Al-Khalifa S (2002) The Michigan Bench-
mark: A Microbenchmark for XML Query Processing Systems. In: EEXTT, pp
160–161

Schmidt AR, Waas F, Kersten ML, Carey MJ, Manolescu I, Busse R (2002) XMark:
A Benchmark for XML Data Management. In: VLDB, pp 974–985

Simitsis A, Vassiliadis P, Dayal U, Karagiannis A, Tziovara V (2009) Benchmarking
ETL Workflows. In: TPCTC, pp 199–220

Smith K, Morse M, Mork P, Li M, Rosenthal A, Allen D, Seligman L (2009) The
Role of Schema Matching in Large Enterprises. In: CIDR

Stylus Studio (2005) XML Enterprise Suite. Www.stylusstudio.com
Transaction Processing Performance Council (2001) TPC-H Benchmark. Tpc.org
Van-Risbergen C (1979) Information Retrieval. 2nd edition, London, Butterworths
Velegrakis Y (2005) Managing Schema Mappings in Highly Heterogeneous Envi-

ronments. PhD thesis, University of Toronro
Wun A (2009) Mashups. In: Encyclopedia of Database Systems, Springer, pp 1696–

1697
Yan L, Miller RJ, Haas LM, Fagin R (2001) Data-Driven Understanding and Re-

finement of Schema Mappings. In: SIGMOD, pp 485–496
Yao B, Ozsu T, Khandelwal N (2004) XBench benchmark and performance testing

of XML DBMSs. In: ICDE, pp 621–633
Yatskevich M (2003) Preliminary evaluation of schema matching systems. Tech.

Rep. DIT-03-028, University of Trento

