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Abstract. In this paper we propose a complete method-
ology of printed text characterization for document la-
beling using texture features that have been inspired by
a psychovisual approach. This approach considers visual
human-based predicates to describe and identify text
units according to their visual saliency and their per-
ceptual attraction power on the reader’s eye. It supports
a quick and robust process of functional labeling used
to characterize text regions of document pages. The test
databases are the Finland MTDB Oulu base1 that pro-
vides a great panel of document layouts and contents
and our laboratory corpus that contains a large variety
of composite documents (about 200 pages). The perfor-
mance of the method gives very promising results.

Keywords: Texture analysis – Text characterization –
Functional labeling – Document layout – Psychovisual
exploration

1 Introduction

1.1 The document as message conveyer

A document editorial work is a necessary step to orga-
nize data, to represent an ideas hierarchy, and to give
readers a global impress of coherence and efficiency in
the document exploration. This work constitutes the ed-
itorial chief that precisely reveals the author’s will to
transmit a message. In that context, Maderlechner in
[16] claims that the reader’s attention and reading speed
strongly depend on the layout of a document. We can no-
tice that among the great variability of documents and
even normalized page layouts (scientific papers, newspa-
pers, advertisements, etc.), it is not easy to access re-
trieved information rapidly and correctly. Thus, for an
automatic system of information retrieval and page ob-
ject recognition, it becomes more and more difficult to

1 J. Sauvola and H. Kauniskangas (1999) MediaTeam Doc-
ument Database II, a CD-ROM document image collection,
Oulu University, Finland

recognize and analyze document layout: this expanding
research field needs an increasing number of dedicated
and specific approaches for each class of documents. In
that context, we believe that placing human beings at
the heart of document decoding process, like Nagy in
[18] and Doermann in [5], is an interesting way to char-
acterize documents with a particular focus on attractive
and emergent information. According to the document
type (Doermann speaks about functional class in [5]),
information is not perceived in the same manner by the
reader. As for Doermann, when documents are regarded
as message conveyers, they can be classified according
to the type of message that is conveyed. In a document
corpus, we can then be interested in categorizing doc-
uments according to their editorial proximity, which is
strongly correlated with the message sense. In our work,
we propose a functional description of documents based
on the interpretation of the physical structure by using
texture primitives.

1.2 Functional organization of documents

The functionality concept . In the field of document un-
derstanding, documents have traditionally been viewed
according to their geometric and semantic organizations.
Both organizations have a common content that repre-
sents the basic level of data (texts, graphics, and images).
The physical organization of a page can be obtained by
a low-level characterization of information that leads to
a geometric segmentation into blocks. So as to recover
the logical organization of a page, we need precise knowl-
edge on the kinds of documents under investigation. This
analysis leads to a complete high-level labeling that gives
a precise sense to the physical layout. Between these
two extremes we can define an intermediate level that
is known as functional organization. At this level, we are
interested in how physical features in the page can be
used by the author to organize and convey his message.
The functional level relates to the efficiency with which
the document transfers its information to the reader. The
physical representation of the message is supplementary
information to emphasize ideas in the page and to under-
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Fig. 1a,b. Examples of header black-surrounded blocks of
documents having a common functional description but a
different logical meaning

line their hierarchy. The constraints that will be taken
into account by the system dedicated to document logical
analysis are not the same as those for a functional anal-
ysis: in the first case, the system must recognize physical
objects according to their location on the page and their
conformity to the reference model, whereas in the sec-
ond case, it must be able to focus on eye-catching and
attractive information that will be useful for the reader.
The functional organization of documents that have been
recently introduced by Doermann in [5] is the starting
point of our work. In his research, Doermann has stud-
ied the relationships that exist between the physical, the
functional, and the logical descriptions of the document.

As an illustration of the relationship between the
physical, the functional, and the logical organizations of
documents, let us consider a text block at the top of a
page. The physical analysis of the block gives its pre-
cise dimensions and location on the page in relation to
other text blocks on the page. It also informs on the spa-
tial proximity of inner components that form the block.
The functional interpretation of the block based on the
block’s attributes concludes that the block is a header.
The logical interpretation gives more precise information
on the block class: it concludes that the block is a title.
In another context, a header block can also be a head
note, a letterhead, a subtitle, or many different things.
In Fig. 1a the heading block represents a head note us-
ing a bold font style and in Fig. 1b it corresponds to
the main title of the page. In both cases, the functional
description concludes that blocks are headers.

In his work [5], Doermann considers that the func-
tional description of a document is independent of the
document type: the categories of blocks can be chosen
from among headers, footers, lists, tables, graphics, i.e.,
generic categories that are common to many types of
documents. In our work, we give more precise functional
descriptions of blocks: we can speak about pseudological
descriptions of blocks. We have based this description
on three visual families: the family of headings (page
titles), the family of body paragraphs (standard para-

graphs of text), and the intermediate family of salient
and/or dense regions of text (like salient abstracts, sub-
titles). This description is derived from physical and tex-
ture properties that are presented in following sections.
Applications of the concept of functionality can be found
in the works of Schreyer and Maderlechner in [15] and
[16]. They propose a method based on the Julesz theory
([11]) to develop hierarchical bottom-up segmentation
and a texture-based font-style classifier by defining an
attractiveness indicator for text blocks.

Functionality concept for document labeling . We have
chosen to base our work of document interpretation on
the concept of functionality and pseudologic. The docu-
ment interpretation module of our system that is based
on text characterization leads to a pseudological descrip-
tion of text blocks of documents having a standard edi-
torial chief with a stable description of text components
on the same page: for example, typographical tools (size,
boldness) used to represent titles are the same on the
same page. This principle of editorial stability must be
applied not only to the whole page area but also to all
pages of the same document (in the case of multipage
documents). This situation is often encountered in our
test base. Especially here we have focused on Latin doc-
uments containing horizontally written text blocks with
some a priori knowledge, for example contrasted and
bold head titles, small written text paragraphs, the ex-
istence of legend beneath (and not above) each image or
graphics, etc. We have applied the functionality concept
to document labeling by defining generic functional fam-
ilies for text blocks. This concept can be then derived in
different applications starting from the text characteri-
zation module: for example, we are currently working on
a new approach to document classification based on the
analysis of the visual layout saliency of the page com-
position that is given by our functional description. The
text characterization process is based on the definition
of visual texture-based features that are interpreted as
complexity, visibility, and compactness indicators. They
are used to characterize text blocks of documents. In
our experiments, we consider characters, graphic blocks,
and images as basic component units. We also assume
that the document has been separated into basic blocks
of text, images, and graphics as is represented in the
MTDB Oulu test base and in our own laboratory cor-
pus.

1.3 Paper organization

The organization of the paper is as follows. In Sect. 2,
we present some psychovisual aspects of text percep-
tion including recent works on texture-based document
analysis. In Sect. 3, we present the text characterization
process by the global description of the successive steps
of page processing. Section 4 presents the texture-based
features that are applied to functional labeling. Section 5
presents in detail the labeling decision tree and the re-
sults obtained in the MTDB Oulu database and our per-
sonal corpus. Finally, Sect. 6 is an enlarged discussion
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of the proposed method of text characterization and its
application to page labeling and document classification.
The discussion presents a comparative analysis between
existing works in the field of document labeling and our
texture-based approach.

2 Text and texture as a psychovisual reality

2.1 Psychovisual approaches of text perception

Some recent approaches that are relevant to the percep-
tual organization of information present the fundamental
rules of “pregnancy”, “complexity”, and “good form”.
The gestalt theory has introduced some new concepts
dealing with the unity and the form stability. The princi-
ples of element organization and space arrangement have
been introduced. Those principles are at the basis of our
human perception. In this theory, elements are grouped
together according to proximity, good continuation, and
similarity principles. The global perception of text units
derives from the combination of those principles. For ex-
ample, when we use white spaces as separators, the prin-
ciple of proximity, which states that elements that are
closer tend to be merged together, is applied (Fig. 2). A
more recent formalism has been introduced to character-
ize the forms according to complexity, unity, symmetry,
and continuity. The authors have tried to find objective
criteria of “good form” such as the numbers of contin-
uous lines of the contour and the number of corners.
Those properties have been developed by David Marr
for the primal sketch description [17][3]. Another funda-
mental work has been proposed by Julesz on texture im-
age that confirms the basic hypothesis of stability, unity,
and good form [11]. Thus, because the transfer of infor-
mation to the reader of a document is done using vision
as the privileged medium, documents are often designed
in accordance with those perceptual principles. That is
why this work is strongly influenced by a physiological
and psychological approach to human visual perception.
The texture has been chosen as a privileged descriptive
tool because its definition relies on visual human-based
considerations. The texture is a powerful visual indica-
tor that has often been associated with a macroscopic
image analysis [20]. In the document analysis context,
the texture has been introduced to underline emergent
visual characteristics of text in different resolutions [10].
In this paper, we have tried to characterize the hierar-
chy of text areas in a document page by analyzing their
saliency and pregnancy and by featuring the text struc-
tural relief, the complexity, and the local density with
appropriate measures.

2.2 Texture-based approaches in document analysis

Currently, most of the font-classification methods (and
more generally most methods of document logical-
structure analysis) use approaches based on connected
components of word images and physical features of text
zones [26]. Most studies involve a geometric analysis such

Fig. 2. Application of the gestalt theory to text perception
[5]

as horizontal projections, word shapes [27], or histograms
of black pixels for each scan line [24]. These methods of
font classification are based on the detection of connected
components and on the creation of bounding boxes in
the preprocessing phase. This research is specialized in
script categorization and it uses a very local character-
ization of components. It also heavily depends on the
initial image quality, and the accuracy of local and geo-
metric methods is generally high [24]. Other studies in-
volve categorizing blocks into text and nontext classes.
For example, Bergler [1] uses spatial features such as
block size, distribution, and alignment of the bounding
boxes of connected components. In [12], the authors pro-
pose a multifont classification system based on a local
analysis of typographical attributes. In [21], the authors
extract features for each text zone such as run length
mean, spatial mean, or zone width ratio and use a de-
cision tree classifier to assign a zone class on the ba-
sis of its feature vector. Another example of geometric
and connected-component-based feature analysis is also
proposed in [14], where the authors have developed a
feature-based zone classifier using the knowledge of the
width and height of connected components. Finally, in
[13] a system for automatic text zone labeling using la-
bels such as titles, authors, affiliation, and abstracts is
proposed. The page layout and some generic typesetting
knowledge for Latin text characterization are used as in-
put data to a neural network.

A less common approach considers the problem of
printed writings in the more general context of texture
characterization [6,7,19,23]. The text is then considered
as a texture insofar as the character is defined as the
elementary entity of texture. More precisely, a page of
text can be considered as a set of small graphics, the
characters, that generate a macroscopic impression of
texture. Visual characteristics of this texture depend on
the arrangement of the letters, their frequency, font style,
boldness, italics, and alphabet (Fig. 3).
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a b c

Fig. 3. Examples of mixed texture using two alphabets –
Latin–Korean (a), Latin–Chinese (b) – and an arrangement
of boldness, font styles, and italics (c)

In our study, the texture elements are the text char-
acters, and our purpose is to analyze their drawings,
density, and organization in the blocks. Texture-based
methods have been proposed recently: they are more
generic, more global, and often content independent, like
the font-recognition method based on a 2D Gabor fil-
tering technique proposed in [28]. In that context, we
can also mention the work of Chetverikov, who proposes
[4] an approach based on the autocorrelation function to
characterize blocks. Jain and Zhong have also introduced
the concept of texture analysis in a context of text char-
acterization [8]. In those works, texture is a tool used to
format text units in segmentation modules or to discrim-
inate text and nontext blocks on the same page, whereas
in our work it is used to categorize text blocks in func-
tional families. We have attempted to use as generic a
treatment as possible in order to establish a hierarchical
and visual relation among the different text areas of the
same page. For the page labeling that is the goal of our
work, we do not need to precisely recognize the different
types of fonts used in text.

3 Fundamental working hypotheses

3.1 Page layout stability

The general principle of text characterization that is the
first step in the process of document labeling and clas-
sification is based on three fundamental hypotheses of
page layout stability:

– Hypothesis H1: On the same page, text blocks having
a common functionality (titles blocks, subtitles, text
paragraphs, headnotes, footnotes) are represented
with the same typographical tools. Thus, the hier-
archy of text blocks (page titles, subtitles, text para-
graphs, notes) is highlighted by a hierarchical typo-
graphical composition. In that context, it is possible
to define relative scales for text block representation
on the same page. This notion of relativity is funda-
mental here.

– Hypothesis H2: In the same category of documents
(scientific papers, information newspapers), page lay-
outs are stable. That means that several pages of
the same document category can be processed to-
gether and text block classification will be made for
the whole document. In that case, the classification

is generally more accurate because all the different
kinds of text categories are represented functionally
(titles blocks, subtitles, text paragraphs, headnotes,
footnotes). It is useful for the great corpus or multi-
page documents.

– Hypothesis H3: The last hypothesis consists in a
transversal stability in the whole corpus: the rules
that are developed for text block characterization can
be applied to diverse categories of documents that
also respect the first local stability hypothesis. That
means that documents having a stable representation
of text hierarchy can be correctly processed by our
system.

The diverse categories of page layouts that we have
chosen to take into account and that we have encoun-
tered in the corpus are characterized by the existence of
three main functional families having generic and stable
properties: a titles family called F1 (grouping page titles,
video inversed text areas, or especially thin titles), an in-
termediate family called F2 of salient texts including sub-
headings (also called subtitles) and pregnant paragraphs
that often correspond to salient abstracts. This second
family presents intermediate eye-catching characteristics
in the page layout. The last family, F3, is represented by
text paragraphs and contains elements such as standard
paragraphs (single or multicolumn) and figure captions
and includes all localized information in only one text
line such as headnotes, footnotes, or isolated text lines.
Figure 4 illustrates this separation in three families.

3.2 Ground truth document structure
and ideal page segmentation

Our system starts with segmented pages in homogeneous
regions that are then analyzed in their bounding boxes.
A region is homogeneous if its entire area is of one type:
text, figure, title, etc. Each text line of the page lies en-
tirely within one text region of the layout. In this work,
we have chosen to analyze documents that have already
been segmented so as to concentrate our efforts on text
block characterization (Fig. 5a). In the results presented
here, we will use the ground truth document structures
of the Oulu database and of our personal corpus. We note
here that segmentation greatly influences text character-
ization as well as text block labeling and page classifi-
cation. Consequently, segmentation has to be properly
realized.

As an illustration of the influence of text block seg-
mentation, we present in Fig. 5b an example of bad seg-
mentation that can lead directly to a wrong text charac-
terization. In these examples, some blocks, indicated by
gray arrows, contain information with different visual
pregnancy. A texture block analysis will give a unique
estimation for the whole block even if it is not homoge-
neous for that point of view. Those situations are often
encountered in complex structured pages, like advertise-
ment or magazine pages [9].
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Fig. 4. Families and application on a page of the MTDB
Oulu database

4 Block characterization process

Before text block characterization, we have to know
which blocks on the page are text blocks and which are
not. This discrimination is the first step of our labeling
process.

4.1 Text block/nontext block discrimination

In this step, we disregard all blocks whose areas are less
than 0.5% of the global image area. They are too small to
have representative texture features. The text and non-
text block discrimination process is based on the analysis
of the autocorrelation function, often used for texture
characterization. It allows one to determine the main
block orientation. We can mention here Chetverikov’s
works that lead to a classification method based on tex-
tural characteristics [4]. Strouthopoulos [23] proposes an
approach based on a set of primitives tuned in a neural
network to discriminate text and nontext blocks. In our
method, we use an autocorrelation function that corre-
lates an image with itself and highlights periodicities and

a

b

Fig. 5. a Examples of well-segmented pages in the OULU
database. b Example of bad segmentation that can lead to
misinterpretations

a b

Fig. 6. Privileged orientation of (a) a smoothed word and
(b) a set of connected components by autocorrelation [2]

orientations of texture. The definition of the autocorre-
lation function for a bidimensional signal is

Cxx(k, l) =
+∞∑

k′=−∞

+∞∑

l′=−∞
x(k′, l′).x(k′ + k, l′ + l) (1)

The autocorrelation function CII(i, j), applied to an
image I, combines this image I with itself after a trans-
lation of vector (i, j). The different translations that are
considered by the function give information on the differ-
ent privileged directions of the image. The data that are
relative to the same direction will be located in the same
line. This principle makes it possible to detect orienta-
tions of the texture blocks. For example, the translation
of a line in the same direction leads to a great correspon-
dence and is expressed by a great value of autocorrela-
tion in the line direction. Conversely, in the orthogonal
direction of this line the resulting value will be low. The
autocorrelation underlines the objects’ overlapping that
is obtained by translation (Fig. 6). This principle can be
generalized to a set of objects having a common direc-
tion: in our work, we use it to show that text lines can
be characterized by a horizontal privileged direction and
can also be considered with a possible skew variation.

Figure 7 presents two examples of autocorrelation re-
sults for two different segmented blocks (a textual block
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and an image). The autocorrelation image on Fig. 7a is
representative of text lines with a uniform repartition of
horizontal gray-level lines. The autocorrelation image in
Fig. 7b presents a less uniform distribution of orienta-
tions: the second image cannot be assimilated as a text
block image. The autocorrelation result can be analyzed
by the construction of a corresponding directional rose.
This rose gives with great precision the privileged orien-
tations of the block. In [2], we propose an approach to
directional rose computation based on the mean value
computed from the autocorrelation result. Let us con-
sider I the block image and (x, y) the set of coordinates
in this image. We also consider θ as a privileged direc-
tion of the block. The mean value Eθ is then defined by
the following formula:

Eθ = {I(x, y).I(x + a, y + b)}, (2)

where θ = arctan(b/a).
The directional rose represents the sum R(θi) of dif-

ferent values CII(i, j) (defined in Eq. 1) in a given θi

direction. Thus, the directional rose corresponds to the
polar diagram where each direction θi that is supported
by the Di line is represented by the sum R(θi). For all
points (a,b) of the Di line we have the following relation:

R(θi) =
∑

Di

CII(a, b) . (3)

From this set of values, we only keep relative vari-
ations of all contributions of each direction. Thus the
relative sum R′(θi) is the following:

R′(θi) =
R(θi) − Rmin

Rmax − Rmin
. (4)

Examples of relative directional roses are given in
Fig. 7. With this approach, we keep only blocks that
are represented with a horizontal principal direction and
with isotropic values for all other directions (that are rep-
resented in a circular distribution of values in the rose;
see Fig. 7a). In the directional roses, we detect local ex-
treme values and keep the values that are greater than
the extremes’ average. The horizontal extreme value can
easily be detected with a tolerance percentage around
the horizontal direction. The tolerance angular domains
are [359, 1] and [179, 181]. All blocks that belong to these
domains are considered as text blocks. With this ap-
proach, the results of the autocorrelation function in seg-
mented text blocks are illustrated in Fig. 8.

4.2 The general principle

After this first step of nontext block extraction, we con-
sider that we only have text blocks to analyze and char-
acterize. The general principle of text block characteriza-
tion is summarized in the following scheme (Fig. 9). For
each text block, we determine a set of features: geomet-
rical measures, measures of complexity and visibility, di-
rectional compactness, and location values as described
in Sect. 4.3.

a

b

Fig. 7a,b. Two examples of directional roses: initial image,
autocorrelation results, and relative directional roses (from
left to right)

a b c

Fig. 8a–c. Results of block discrimination on a segmented
page. a Original image. b Result of autocorrelation in seg-
mented blocks. c Text block selection by autocorrelation anal-
ysis

On the basis of the two measures of complexity and
visibility, we build a 2D-feature space where each block
is represented by a point. A k-means method is then ap-
plied on that set of points, and each block is classified
into a visual cluster defined in the complexity/visibility
space. The number k of classes is fixed at 5. Section 5.1
presents this method in detail. This step leads to a de-
composition of pages in five visual classes – C1, C2 to C5
– that are strongly correlated to the initial functional
families Fi.

4.3 Texture features as expressions of text saliency

Relevant psychovisual text dimensions . In this section,
we present the different texture features that have been
chosen for their psychovisual properties, their relevance,
and their robustness to initial image quality. We have
formulated the hypothesis that there exists a hierarchy
of text blocks in a page according to their function (see
hypothesis H1). To highlight and quantify this hierar-
chy, we chose two complementary features: the complex-
ity and the visibility computed for each text block of a
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a

b

Fig. 9. a Text block characterization, labeling step, and ap-
plication to page classification. b Text classes considered dur-
ing the process

page. The complexity underlines the frequency of tran-
sitions between text components, whereas the visibility
estimates the density of these transitions. Complexity
and visibility are two complementary features that are
a priori not correlated. Nevertheless, a correlation exists
in practice: the boldness of a character is often linked
to its size and the greater characters are often the less
complex ones (in the normalized Latin typographies).
The combination of these two complementary measures
is expressed by a basic 2D-feature space (called saliency
graph) in which each text block is represented by a point.
It leads to a first classification into visual clusters (the
Ci iε{1..3}). In [5], Doermann pointed out the necessity
of considering both those dimensions to emphasize what
must be eye-catching in a page with a significant bold-
ness (which can be associated with our definition of text
visibility) and how the hierarchy of ideas must be un-
derlined with varying text character sizes (which is ex-
pressed by the text complexity).

The expression of text complexity . Our complexity fea-
ture is directly correlated to the visual impression of
“complexity” we have during the observation. A text
made of small letters seams more “complex” than a text
with big letters. Our study quantifies this complexity
with a measure of entropy. For that purpose, we com-
pute the number of transitions from the background to
the text that can be found on horizontal lines. That leads
to the estimation of transition probability occurrence on
a pixel for each horizontal line. We only keep the maxi-
mum probability p in a considered text block because it
is representative of how much complex the analyzed text
block can be. The texture in the global text block area
is called Γ . The entropy E(Γ ) is then defined for each

Fig. 10. Entropy scale in a page extracted from the MTDB
database

block by the following formula:

E(Γ ) = p log
1
p

+ (1 − p) log
1

1 − p
. (5)

E(Γ ) always has a positive or null value between extreme
normalized values 0 and 1. E(Γ ) is null if there is no
transition between the background and the text, and it
is maximal in 1 if p is equal to 1/2. This situation can be
encountered when a line is alternately composed with a
background pixel and an object pixel. Consequently, the
more text is written in small font, the more complex is
the curve and, as a result, the higher is the entropy. In
the following examples in Fig. 10, we present estimated
entropies for different types of text.

The given examples highlight the influence of the size
of characters and line spacing. Entropy is a measure of
complexity directly influenced by font style and text size.
For example, a text with large characters is less complex
than a text with small characters. In this example, we
also have underlined the miscorrelation that exists be-
tween entropy and boldness (see the first examples with
E(Γ ) = 0.15). This result illustrates Doermann’s hy-
pothesis on significant boldness and hierarchy in a text.

The expression of text visibility . The difference between
two characters, one boldface and one lightface, is linked
to a perception of visibility. Visibility is the expression
of the scriptural stamp that is defined in our method
by the width of object segments measured from inter-
sections between multidirectional random lines (called
computation lines) and the text itself. In Fig. 11, we
show an illustration of visibility V (Γ ) computed in a
bold written text block with the following formula:

V (Γ ) =
1
Nl

.

Nl∑

j=1

[
1

Ntj

Ntj∑

i=1

segi] , (6)

where Nl is the total number of computation lines used
for the estimation of V (Γ ), Ntj is the total number of
transitions in the j-th computation line, and Segi is the
width of an object segment (a black transition) as shown
in Fig. 11.

In Fig. 12, we propose five samples of texts blocks
representative of varying boldness on the same page. For
practical purposes, we will normalize this measure by
dividing it by the maximal computed value.

The expression of text vertical compactness V Co . We
know that the global text structure is essentially charac-
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Fig. 11. Visibility computation principle

Fig. 12. Visibility scale with text samples on a page of the
MTDB database

VCo = 24 VCo = 15
NTL = 15.79 NTL = 9.87

VCo = 12 VCo = 10
NTL = 7.89 NTL = 6.58

Fig. 13. Examples of V Co and NTL values for a set of text
samples

terized by two privileged directions: the horizontal and
the vertical ones (when skew lines have been detected).
The V Co(Γ ) value is then computed on the basis of ver-
tical computation lines. The V Co feature corresponds
to the maximal number of vertical transitions on the
height of a block. We do not take into account 1% of the
highest values, in case of noise artifacts This approach
provides a realistic estimation of the number of lines in
the considered block. This number is proportional to the
vertical compactness of the entire block. A precise statis-
tical study has shown that the average ratio between the
maximal number of vertical transitions and the number
of text lines is 1.52. With this principle, the compactness

formula is as follows:

V Co(Γ ) = max
jε{1..width}

(Ntj) , (7)

where Ntj is the number of transitions in the j-th col-
umn. The estimated number of text lines NTL is then
deduced by the simple relation NTL = V Co/1.52. Wood
[27] and Spitz [22] have proposed a similar approach
based on horizontal projections to categorize different
scripts. Examples of V Co and NTL values are given in
Fig. 13.

All these features can be computed at the same time
because they are based on the same principle: the use of
intersecting lines.

The expression of the relative location of blocks on a page
. A text analysis based only on textural features cannot
lead to a complete document labeling system without
taking into account additional physical information on
page organization. For this reason, we propose to intro-
duce geometrical features for each text block correspond-
ing to the height, width, and location on the page. The
location model as it is proposed in our work is dependent
on the type of document under investigation. We distin-
guish two categories of pages: the simple linear struc-
tured and the complex nonlinear pages (as presented in
Fig. 14b).

In this work, the physical location is used to avoid
some confusion during the labeling process: the confu-
sion can be linked to the misinterpretation of single text
lines (which may be legend figures, headnotes or foot-
notes, simple isolated lines, titles, or subtitles) and of
little text paragraphs (which can also be figure captions,
abstracts, or body text paragraphs). In those situations
the y-axis is relevant enough to raise the ambiguities.
Figure 14 presents the physical segmentation of a doc-
ument into significant numbered blocks and the block
location model based on the description of previous and
subsequent block lists (PF-List) according to the y-axis.
In our study, we use a simplified tool derived from the
XY-tree description when it is suitable, especially for
simple document structures (Fig. 14a).

In Fig. 14c we propose the list of previous (resp. sub-
sequent) ordered blocks of block number 4 as P − List4
(resp. as F − List4) and the corresponding XY-tree of
the document (Fig. 14a). The two opposite arrows give
the sense of the PF-List constitution (from the near-
est to the more distant block) that also corresponds
to the tree skimming. In more complex pages, blocks
are not necessarily vertically and horizontally organized:
in those cases, we only keep vertical relations between
blocks that give efficient information on block organiza-
tion (Fig. 14b). The PF-List can be easily completed.

5 Labeling technical description

The functional labeling of a page is based on the ex-
ploitation of the 2D space that is obtained with the
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a b

c

Fig. 14. Example of (a) simple and (b) nonlinear document
structure. c XY-tree decomposition and resulting PF-List for
a simple organized page

results of complexity (on the horizontal axis) and vis-
ibility (on the vertical axis). It represents the saliency
graph of the document under investigation. For the la-
beling process, this graph is then completed by a set of
visual features defined in Sect. 4: vertical compactness,
physical features, and specific measures that are derived
from the saliency graph. These features are also used as
transitions for the labeling decision tree process.

Fig. 15. Illustration of the five clusters with significant text
block samples

5.1 Saliency graph and k-means classification

We have chosen to apply a k-means algorithm to detect
the pregnant regions of the saliency graph from the lo-
cation of points that are representative of blocks. The
number k of clusters for the k-means classification has
been chosen to represent, as best as possible, all pos-
sible distributions of points on the page in four corner
regions and one central area (Fig. 15). Thus, this value
has been fixed at 5. The k-means algorithm is initialized
in those five referenced positions that correspond to the
four square corners and the central square point, even if
there is no point/block in those positions (a more classi-
cal use of the k-means algorithm initialized the barycen-
ter positions on already existing points). The conver-
gence of the process leads to a resulting partition of point
blocks into at most five clusters. The influence decreases
with the eccentricity of the cluster center. In the C1 clus-
ter, blocks are essentially characterized by low complex-
ity and great visibility. This cluster is representative of
page titles (with a bold and big typography). In the C2
cluster, we essentially find section headings, subtitles,
and salient text paragraphs (like salient abstracts). In
the C3 cluster, the great complexity is representative of
standard text paragraphs. The two other extreme C4 and
C5 clusters are generally less represented in usual docu-
ment formats. The C4 cluster contains all eventual thin
main titles (with a thin and large typography), whereas
the C5 cluster contains video inversed texts.

Figure 15 summarizes the visual specificity of each
cluster with significant text block samples. The k value
that we have chosen guarantees a good coherence of re-
sults in regard to the great diversity of page layouts and
specialized typographical tools.

In a cluster, the blocks have common characteristics
but their functional label can be different. In this graph,
we have obtained three clusters, C1, C2, and C3. The C4
and C5 clusters do not have any representative points on
the test page. Figure 16c represents the visual saliency of
text blocks in a hierarchy starting with text paragraphs
(lower right corner) to main titles (upper left corner).
Between these two extremes, we find all blocks belonging
to the family of subtitles and salient paragraphs.
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a b

Fig. 16. a Composite document of the Oulu MTDB.
b Saliency graph for the corresponding set of points. c K-
means cluster decomposition

In Fig. 16, we present the results of the saliency
graph that is obtained on a document extracted from
the MDTB Oulu database. This page is the test page
of this paper. Note that blocks 1, 13, and 15 have not
been taken into account because they have not been rec-
ognized as text blocks in the text block detection step.
Block 1 has also been disregarded because it does not
contain any text (it is an isolated continuous line).

5.2 Confidence rate

Each cluster contains points that characterize text blocks
of the page. Some of these points are near the center
of the cluster, others are much further from the cen-
ter. In practice, the cluster centers are computed as the
barycenter of the cluster points (they are inherited from
the k-means process). To take this variable distribution
into account, we propose to weight each point (each
block) with a confidence rate that reveals its cluster be-
longing: a high confidence rate for the points near the
center, a much lower one for distant points. This confi-
dence rate will be used in the decision tree process. The
closer a point/block Pi is to the barycenter Bk of the
cluster Ck, the more we consider that it has been well
classified. Conversely, there are many intermediate situ-
ations where a point Pi is located on the border between
two clusters: in those cases, the initial cluster can be put
into doubt and the influence of adjacent clusters must

a b

Fig. 17a,b. Confidence rate representation for Fig. 16 ex-
ample. a Representation by level curves for points in the
complexity/visibility plane to belong to cluster C3. b Rep-
resentation in percent by a surface

Table 1. Confidence rate in percent for some points of Fig. 16
example to belong to each cluster

(%) 6 7 8 9 11 12 14

C1 0.2 1.5 0.1 0.1 0.1 0.1 0.0
C2 2.0 17.3 1.1 0.7 0.7 1.1 0.6
C3 97.8 81.2 98.8 99.2 99.2 98.8 99.4

be taken into account. The confidence rate αik of the
classification of Pi in the cluster Ck is then computed
using distances dij = dist(Pi, Bj) between the points Pi

and all the barycenters Bj of existing clusters Cj .

αik =
1
D

.
1

(dik + ε)2
, (8)

with αikε[0, 1] ,
∑

j αij = 1,

D =
∑

j

1
(dij + ε)2

, and dij = dist(Pi, Bj).
In Eq. 8, ε is a constant value arbitrarily small used

to avoid computing problems of division by zero. If the
point Pi is superposed to Bk, the distance dik is null and
the confidence rate is equal to 1 (or 100% if expressed
in percent). Figure 17 shows the evolution of the confi-
dence rate for the test page of Fig. 16. We present here
the confidence rate as belonging to the C3 cluster. Ta-
ble 1 gives the values (in percent) for some points/blocks
of Fig. 16. The classes C4 and C5 are not mentioned be-
cause no block belongs to them.

The confidence rate is the starting point of the com-
plete labeling process: for each block, the functional la-
bel is expressed as a specialization of the cluster for
which the block has the maximal confidence rate. When
the specialization with the higher rate is unsuccessful, a
new specialization begins in the cluster corresponding to
the second best confidence rate. The process is repeated
until the convergence to a specialization or sometimes
to a reject. The following section presents the complete
method.
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5.3 Labeling decision tree LDT

LDT formal specification . The labeling process is based
on a knowledge representation model described by a de-
cision tree: it starts from an initial root that is the text
block followed by a first link of saliency dimension (com-
plexity, visibility). From the following node correspond-
ing to the class the block belongs to (one of the five visual
classes Ciiε{1..5} defined in the k-means section), a set of
five possible nodes can be reached according to the con-
fidence rate CR computed for each class. For each block,
we order the confidence rates from the best to the lowest
and skim the branch corresponding to the higher rate.
Each node is then followed by conditional specialization
links that lead to label propositions. These specialization
links are based on feature combination including the ver-
tical compactness and physical primitives. The decision
tree is described in Fig. 18 and the combination features
are numbered just above.

When the tree skimming does not lead to any label
with the first best confidence rate, we consider the second
best rate only if this rate is more than 50% of the initial
best confidence rate (this value has been experimentally
calculated on the test base). We then test the conditional
links corresponding to the second best cluster. If the sec-
ond rate is not enough, the block is rejected. When the
process is unsuccessful after the second confidence rate,
we also reject the current block and consider that it can-
not be labeled with the proposed method. This situation
can be encountered for too small blocks (whose area is
inferior to 0.1% of the total image area) and for horizon-
tally oriented images or graphics that have been initially
classified as text blocks.

LDT evaluation and stable threshold definition . The
considered links are the followings: saliency dimension
(complexity, visibility), Max(CRik)kε{1..5} correspond
to the maximal rate of the ordered list, V Co is the ver-
tical compactness, P corresponds to the list of previ-
ous blocks in the page (the P-List), and F is the list
for the subsequent blocks (the F-List), W is the block
width, and A is the block area. We have also defined
some thresholds for conditional links: Tmin is the max-
imal V Co of a page title (this value is proportional to
the maximum number of lines accepted in a title block
and is fixed at 3), Wmax is the middle width of the an-
alyzed entire page, and Amin is the minimum required
block area that corresponds to 10% of the total average
text block areas on the considered page.

In the decision tree, the possibility of rejection is pro-
posed when the block does not have the required char-
acteristics for its specialization in any of the two best
considered classes or when the block area is inferior to
the threshold Amin.

At the end of the decision tree skimming, we obtain
for each block a functional label (or a nonclassification
result when the block is rejected). The decision tree can
also be visually interpreted with multidimensional fea-
ture spaces by considering the saliency graph as the basis
of these spaces (Fig. 19).

Fig. 18. Principle of functional labeling based on a decision
tree

a b

Fig. 19a,b. Projection of features in 3D graphs for func-
tional labeling. a Illustration with V Co, and b W as third
dimension
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In Figs. 19a and b, we have represented two 3D
graphs that are visual representations of block special-
ization in multicolumn or single-column paragraphs be-
longing to the C3 class represented in Fig. 16c. The mea-
sures have been computed on all blocks of the test page,
but the only ones that are used for the labeling are repre-
sented in bold lines in Fig. 19a and b. Note that all points
of the C3 class (except blocks 7 and 14) have a common
width that corresponds to the column width. All com-
pactness values (V Co) are high and represent the global
number of lines for each paragraph. In this process, the
results are not influenced by the order in which blocks
are considered. Also note that the proposed thresholds in
the decision tree are not dependent on the kind of docu-
ments under investigation: the test bases propose a great
panel of documents that can be processed with the same
approach without changing any threshold value. What
is more, our approach is based on a relativity notion be-
tween blocks: it allows characterizing blocks in regard to
all other blocks of the page. The resulting labels express
the relative hierarchy between textual components.

6 Results, discussion, and prospective work

6.1 Labeling results

Examples extracted on the test corpus . The system
leads to results that are illustrated in six examples
that have been extracted from the same newspaper of
the MTDB database and from our test base (Figs. 20
and 21). Figure 20a corresponds to the test page. In
Fig. 21a, blocks 1 and 3 were rejected during the text
block selection step developed in Sect. 4.2. Those blocks
are not text blocks, but they contain plenty of continuous
separation lines.

Block 15 was also rejected before the decision tree
process because it had not been segmented like other
homogeneous text blocks on the page: the footnote is
surrounded by a large bounding box that recovers the
whole page width, so it contains a small line of text and
a wide background area.

In Fig. 21b, the real ground truth subtitle of the page
(block 2) has been labeled “single text line” because the
visibility of the text is weak compared to the main title
of the page. Block 10 has been rejected because the block
area is not efficient to compute the complexity and vis-
ibility measures. In Fig. 21c, there are two rejects that
correspond to a nontextual block (block 12) and a non-
homogeneous text block with a large background area
(block 10). The results obtained in the Oulu database
are qualitatively similar to those obtained in our per-
sonal corpus. The labeling results can be compared to
the ground truth labels that are proposed as references
in the database. In our corpus, we have applied the same
approach with the same referenced labels.

Results analysis and method accuracy . The analysis of
the MTDB database and our corpus (both are called test
base) leads to the following results, which are reported

a

b

Fig. 20. a Functional labeling results on the test page. b
Results from our personal corpus

in Table 2. Table 2 shows the categorization and labeling
accuracy of our approach.

This table must be understood as follows: the diag-
onal bold values correspond to the real accuracy of the
k-means clustering, whereas the horizontal last line val-
ues give the real labeling accuracy that is obtained on
the basis of the previous results, which is why those last
results are very high. The k-means results are not homo-
geneous for all block types: there is a notable difference
between the rates of correct categorization in the differ-
ent Ci classes. These differences are linked to the page
visual presentation. The categorization in the C2 class
is 92.4% correct: this low value is linked to the category
of analyzed pages where there are no main titles but
only subtitles or body paragraphs (Fig. 22a). In those
situations, the hierarchy of visual text elements is dif-
ferent and is translated in the sense where the subtitles
are considered as titles not represented on the page. In
the same manner, the categorization in the C3 class is
95.3% correct: the relative great boldness of some text
paragraphs leads the analysis to consider them as salient
paragraphs (like salient abstracts), whereas they are sim-
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a

b

c

Fig. 21a–c. Typical examples of page labeling in newspaper
pages extracted from the MTDB database

Table 2. Statistical results of functional labeling on the test
database

Ground truth distribution
C1 C2 C3 C4 C5

Categorization C1 97.2 3.8 0.1 4.8 2
after C2 1.2 92.4 2.6 3.5 2.6
k-means C3 0.1 2.5 95.3 1.4 2.2
step in C4 0.8 0.8 0.6 90.2 0.2
class: C5 0.7 0.5 1.4 0.1 94.0

Final well-labeled
blocks (%) among the 98.2 97.4 96.8 98.2 97.4
well-categorized blocks

ple body paragraphs. Conversely, a low relative boldness
of a real salient abstract will lead to an erroneous cate-
gorization in the C3 class. The categorization in the C4
class is only 90.2% correct: this result is linked to the
rare situations where a thin title is obtained in standard
documents. When this situation is encountered, the title
is sometimes categorized in the C3 class.

The final labeling results (the last line of the table)
are high because there are only a few situations where an
error can be made once the block is correctly categorized
in one of the five classes. The definitive labeling accuracy
corresponds to the combination between the class cate-
gorization rate and the correct labeling percentage. The
table does not show the relationship that exists between
the number of blocks in the page and labeling accuracy.
In fact, there is an increasing error rate that is propor-
tional to the increasing number of blocks contained in
a document. Two main parameters influence this phe-
nomenon: the number and the size of blocks on the page.
Documents with complex structures very often contain
numerous blocks of varying area. In small blocks (like
short paragraphs of text or single lines), statistical re-
sults are no longer relevant, and the resulting labels are
inappropriate because small blocks contain few charac-
ters that are not efficient for a statistical analysis. This
situation can be encountered in documents containing
more than 40 blocks; this situation is rare. In the oppo-
site case, when there are less than ten blocks on a page,
our approach becomes less relevant because the deter-
mination of the functional classes cannot be based on a
too small number of blocks. In this case, we have chosen
to analyze several pages together, i.e., we built a unique
saliency graph for different pages corresponding to the
same journals or magazines. Finally, the best results are
obtained for an intermediate category of pages contain-
ing less than 40 blocks and more than 10 blocks a page,
which corresponds to the majority of pages in our test
corpus. In Table 2, we present the average results of our
method.

6.2 Limits of the approach

Figure 22 provides different relevant and typical exam-
ples of mislabeling linked to occasionally unexpected
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Fig. 22a–d. Typical errors produced by the system

page layouts. The rare errors produced by this labeling
system invariably involve unusual document layouts and
were found in the following examples: the system pro-
poses the label page title for the single bold line in the
middle of the page even though it is a contrasted line
that presents the author paper (Fig. 22a); in the same
way, a title at the bottom of the page with low visibility
is labeled footnotes (Fig. 22b).

The first error is due to the great visibility of the
block compared with all surrounding text paragraphs.
By including a coherence analysis based on the visibility
dynamic in the whole page, we are able to avoid such
errors. The remaining errors are generally caused by the
presence of unusual blocks like formulas in mathemat-
ics documents that are not considered in our approach
(22c) and by text block shapes linked to the initial seg-
mentation (22d). This last case has been encountered
in the MTDB database where blocks having different

functional meanings are merged into a single block: in
Fig. 22d the last block of the page contains a figure leg-
end, author name, and page number.

6.3 Comparative approach

Region classification and text block labeling have been
addressed by other authors with different methods based
on an accurate parameterization of document types
(Sect. 1). For example, in [21] the authors propose to
build a decision tree classifier on the basis of feature
vectors and local measures. Their subsequent works, de-
veloped in [25], also show that they need a complete
training set of feature vectors with true class labels. In
our work, the labeling is only based on some assumptions
corresponding to the visual hierarchy of text elements
on pages, but no precision on typographical features is
used. In their work, the authors also used discriminant
thresholds to specialize the description of blocks that
are computed on the basis of the training set. In our
proposition, the thresholds are independent of the kind
of documents under investigation: the only hypotheses
correspond to the page stability (Sect. 3.1), and no local
measures are necessary to determine the functional label
of each text block. In comparison with this approach,
we do not need any training set to build the decision
tree: we only use knowledge about the physical hierar-
chy of text block entities (that knowledge is gathered
in the {Fi}iε{1..3} functional family description). We can
also mention the work of Liang, who proposes a docu-
ment zone classification approach by using local sizes of
connected components [14]. In [13], the authors have de-
veloped an automated labeling system by using generic
typesetting knowledge of English text. All those methods
suppose a local analysis of text zones and an accurate a
priori knowledge about the kinds of documents under
investigation. This is not the case with our method. A
texture-based work has been proposed by Zhu [28] and
is conceptually closer to our labeling approach, but the
authors break any visual hierarchy of text components
by normalizing all zones and by creating uniform text
block in sizes and spaces. Finally, we also note that, in
contrast to all the works mentioned above, our labeling
system can process several pages of the same document
(journal, newspapers, proceedings) in the same process
step because the functional hierarchy of text components
is preserved.

7 Conclusion

This work is part of a complete project dedicated to
printed document structuring where information is re-
trieved according to its visual saliency, i.e., its perceptual
attraction power over the reader’s eye. The purpose is to
propose a visual and functional labeling of text zones of
composite documents having a well-defined and repro-
ducible structure. The visual features that are used to
characterize text zones of pages are the complexity, com-
pactness, visibility, and some physical primitives. They
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are valuable because they correspond to a reality of vi-
sual perception by expressing the visual hierarchy of text
zones and their functional properties. By reflecting what
attracts the eye in a document, these nonredundant and
complementary primitives allow a quick classification of
font styles. The final labeling reflects these complemen-
tarities. The development of textural primitives is a low-
level process, very close to the roots of visual perception,
and a generic way to establish a visual and functional hi-
erarchy among all text blocks on one page. This work is a
first step toward the text identification that could be as-
sociated with a semantic approach. The accuracy of the
method is very promising with an average performance
of 96% correct labeling.
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