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Abstract In this paper, we propose a biologically
inspired, global and segmentation free methodology for
manuscript noise reduction and classification. Our
method consists of developing well-adapted tools for
writing enhancement, background noise, text and draw-
ing separation and handwritten patterns characteriza-
tion with orientation features. We have used here
analysis of handwritten images in the spectral domain
by frequency decompositions (Hermite transforms) and
Gabor filtering for selective text information extrac-
tion. We have tested our approach of writing classifica-
tion on ancient manuscripts corpus, mainly composed of
18th century authors’ documents. The current results are
very promising: they show that our biologically inspired
methodology can be efficiently used for handwriting
analysis without any a priori grapheme segmentation.

Keywords Handwriting characterization ·
Patrimonial manuscripts · Background noise
reduction · Hermite polynomial decomposition ·
Gabor filtering · Orientations signature · Similarity
measure · Classification · Writer identification

1 Introduction

History is full of people who spent their life writing, for
pleasure or obligation, all possible sorts of text. These
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texts are of great interest because they testify to the life-
style, the ideas and thoughts of people of those times.
These are the reasons why these documents are so
precious now, and the subject of so careful attention.

Most of these documents, and the ones that interest
us in this work, are made of paper. Unfortunately, even
if paper is a proven method to preserve writing through
time and space, these documents are very fragile and
easily damaged. Because they were handled and manip-
ulated so many times, most of them are in a really bad
condition. To avoid more damage, old documents are
most often not directly accessible and kept in public or
private collections. Converting them to digital formats is
a good solution to give access to these documents with-
out more damage, but it takes time and effort, and done
little by little and step by step. Various research projects
have been undertaken to get things moving. For exam-
ple, various projects are supported by French national
financing to help local libraries to digitalize documents
of inheritance. The most famous research projects are
based on the development of image processing tools
like: BAMBI, DEBORA, Philectre, METAe, DMOS,
Agora, etc. Other projects are mainly based on digitiza-
tion with manual textual annotation and metadata, like
the Gallica project from the BNF (you can find more
references on the web sites www.bnf.fr or http://www.
culture.gouv.fr/mrt/numerisation). Another project, on
Word Spotting, has been sponsored by the National
Science Foundation Digital Libraries II program. This
project develops innovative techniques for indexing
handwritten historical manuscripts written by a single
author. This work has essentially been developed by
Toni M. Rath, R. Manmatha and Victor Lavrenko. We
are involved in the project “Culture, Inheritance and
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Creation” 1 but the documents that we could collect are
not as numerous as we would like, especially for spe-
cific studies. In such cases, we cannot treat documents
coming from various sources, but need to focus on few
documents of a precise origin (e.g., one author or one
period).

Documents for our study came from a very recently
digitized corpus of handwritten pages from the con-
temporary period of 18th and 19th centuries. From this
period, we have some famous French authors like
Montesquieu and Flaubert, whose works are found in
rare collections in libraries or specialized institutes.
Among those collections, we focused on manuscripts
that have been extensively handled, that can also contain
multi-writer annotations or corrections, with sometimes
background spots or delocalized folds, see Fig. 1.

These documents are the subject of many studies and
much research. In our case, we want to identify the
authors of some of these manuscripts, or at least iden-
tify and group together the manuscripts written by the
same author. This identification of author/writer is of
great interest because it gives important clues for the
comprehension of the genesis of these manuscripts. This
is especially the case for collective documents, even if
some writers were only copyists or secretaries. A typi-
cal example is that of Montesquieu’s work. His manu-
scripts are characterized by great diversity of writers.
They were written by more than 20 secretaries having
different visual characteristics of handwriting [33]. The
pages of this collection can be considered as drafts with
lots of corrections, cross-outs and scribbles.

Our goal here is to prove that it is possible to char-
acterize handwritings and to classify them into families
that share some common visual properties and that give
similar visual impression to the reader at first glance or
after a short inspection. For that purpose, we chose to
extract features on these documents using tools whose
principles are linked to the human visual system (HVS)
of perception.

It is well known that the HVS codes efficiently visual
stimuli. Both neurophysiology and psychophysics sup-
port the hypothesis that early visual processing can be
described by a set of channels operating in parallel that
transform the input signal to obtain a coded version of
the stimulus characteristics. This code can subsequently
be used as the basis for all kinds of perceptual attri-
butes. It is thus desirable to have a feature extractor

1 Project “Digitization and Documents Recognition” in the field
of a regional project “Cluster Région Rhône Alpes: culture, Inher-
itance and Creation” in collaboration with literary partners, Lyon
(2006).

that approximates, in such a way, the channels used to
describe the HVS.

One of the most famous models of the perceptive
fields of the visual system is the family of Gabor fil-
ters. Another very interesting model is the family of
Hermite filters. We will see in this paper that both fami-
lies (Hermite and Gabor) are interesting in the context
of our application. As good models of the same sys-
tem, they share common properties, but they also some
have differences that we will exploit to perform different
tasks.

From the large diversity of handwriting features,
Gabor or Hermite filters focus on the orientations. We
do believe in the relevance of this feature for hand-
writing characterization, because it reveals both global
and local handwriting characteristics. According to our
point of view, this is discriminative enough for a well-
identified corpus. In practice, we compute a signature for
each analysed handwritten image and define a similarity
measure to compare different samples.

The directional analysis we propose in this paper is
based on the exploitation of Gabor filter banks. It could
be Hermite based as well, but Gabor filter banks offer
more parameterization possibilities that are especially
interesting here. Gabor filters are then parameterized
to detect relevant handwriting orientations. This is per-
formed through the analysis of the autocorrelation func-
tion. Using this signature, we create handwriting families
(grouping handwritings with similar visual features) for
the authentication and the identification of copyists. This
approach is a relevant technique to evaluate the trace-
ability of handwritings all over a book or a work and to
authenticate different writers who have taken part in the
realization of a single book [8,21,26]. In that sense, we
are able to make a precise discrimination between writ-
ers (different authors who are involved in the writing
of a single book, through different periods, from differ-
ent geographic places and sometimes different historical
and social contexts, etc.). We have tested the method on
almost 500 handwritten pages coming from 48 different
writers.

But before the computation of these characteristics,
we try to reduce the noise of the images as much as
possible. As explained earlier, the documents we treat
are most of the time damaged for different reasons,
and these degradations are mainly visible on paper (the
background of the image). As this background repre-
sents the most important part of the image, its influ-
ence with the computed signatures should be as weak
as possible in order to characterize the authors by their
handwritings and not by the type of degradation we see
on their manuscripts. We shall demonstrate the interest
of Hermite decompositions for that purpose. Hermite
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Fig. 1 Examples of old manuscripts. Montesquieu’s autograph (De l’Esprit des Lois 1789). Montesquieu’s secretary (1780), Bordeaux
Library. Pasteur correspondences [11] (GALLICA, BNF2)

decompositions are reversible and allow a reconstruc-
tion of the image after filtering (modifications applied
directly on the decomposition). Gabor filters do not
perform a reversible decomposition and they are more
interesting for analysis purposes than reconstruction
after filtering. These decompositions are based on sets of
Hermite filters that analyse the image in the frequency
domain where signal (writings) and noise (damages)
can be more easily identified. After noise reduction, the
image is reconstructed (see Sect. 3).

2 Existing approaches for handwriting analysis
and our contribution

In the field of writer identification, it is neither required
to transcribe the texts nor to recognize word content,
because the graphical aspect of the written shapes is the
focus of all attention.

2.1 Existing approaches

In that context, we mainly find two types of approaches:
the first type is based on the definition of structural local
features that mainly describe structural properties of
the shapes, like the height, the width or the legibility of
characters [19], or gradient, curvature of the contours

2 GALLICA, digital library of the BNF (Bilbiothèque Nationale
de France).

and concavity-based features [5]. For this kind of
approach, it is mainly required to segment the text in
characters or graphemes or to localize it precisely. The
graphemes are actually elementary patterns of hand-
writing, extracted by a segmentation algorithm. Nosary
et al. [21] proposes a characterization of different levels
of graphemes based on the analysis of the minima on
their upper contour.

Some authors [4–6] propose to detect some typical
handwriting invariants (presence of characteristic loops,
typical words cuttings, recurrent orthography errors,
etc.). In [6] and in [24], Srihari et al. build their anal-
ysis on a PCA-based approach with a set of macro and
micro-features that characterize the handwritings. The
elements that capture the local characteristics of the
writer’s individual writing style are regarded as micro-
features and correspond to gradient, concavity and struc-
ture. In [4], Bulacu and Schomaker propose a system
that evaluates edge-based directional probability dis-
tributions extracted from handwriting contours for the
uppercase and lowercase handwriting discrimination.

But, usual handwriting segmentation approaches
become inefficient in ancient degraded corpus (con-
nected components analysis, directional filtering like
RLSA, lines and columns projection profiles [15]).
Moreover, a thresholding step degrades the handwritten
regions by merging words and text lines together. In that
context, the existing segmentation methods show their
limits because handwritten text areas are sometimes
multi-oriented or not written on straight lines. We can



104 V. Eglin et al.

find also marginal annotations and irregular body para-
graphs (see Fig. 1). These characteristics lead to unpre-
dictable page layouts that cannot be modelled by any
formal representation technique. The second difficulty
deals with the irregularities of handwritten shapes, which
can have small interline spaces and frequent word con-
tacts. The separation of text and non-text areas becomes
also difficult in case of insufficient pen pressure. Some
techniques have very good accuracy, like Zois’s work
[37] where the author reports a correct writer identifica-
tion performance of 92% among 50 writers by using
45 samples of the same word from modern and not
degraded manuscripts. Precision could not be found in
the context of degraded source images.

A second type of approach for writer identification
is based on global features that are based on statistical
measurements, and extracted from whole blocks of text.
This kind of approach is usually based on the extrac-
tion of features from texture: in this case, the manuscript
is considered as a whole image and not as handwrit-
ing, and is not segmented into characters. We can give
as examples, the work of Kuckuck [14], who considers
handwriting as a texture with visually strong proper-
ties, broadly used by human experts. Some texture-based
approaches have also been later developed by Said [25]
with multi-spectral text images decomposition and
co-occurrence matrix. In this work, the authors report
a correct accuracy of 95% on 40 writers with only some
handwriting text lines and on clean handwriting images.

Finally, we can notice that it is also possible to com-
bine the two different types of approaches, as proposed
by some authors like Catalin et al. [5]. In their previous
works [28], they present global statistical macro-features
at the document level and micro-features at the charac-
ter-level.

The evaluation of the performance of those works is
quite difficult to establish because the conditions and
parameters for the tests (number of writers, volume of
the corpus, existence and size of the training set, size
of the tested image samples, etc.) are broadly different.
Nevertheless, some studies have been proposed these
last years [2] to compare global and local approaches
for writer identification. They have proposed to catego-
rize writer identification works according to the num-
ber of writers and the nature of the training samples
(whole text pages, paragraphs of text, single lines and
few words). As a conclusion, we retain that the best per-
formances belong to the systems using a great number
of writers, with consequent training sets and a significant
number of samples. Srihari et al. [28] currently holds the
best performance results with more than 1,000 writers
and with the same text samples three times written by
each hand.

2.2 Our contribution

Basically, the accuracy of writer identification techniques
depends on the above parameters and also on the image
quality, and we are working on degraded documents
with mostly bad appearance and noisy background. In
that context, we propose an alternative that combines a
reduction noise step at the beginning and, afterwards, an
analysis step that takes advantage of both global feature
extraction and local shape analysis. Indeed, the origi-
nality of our approach comes from the consideration
of both texture properties of handwriting and local ori-
ented variations along pattern contours.

Because degraded handwritten documents cannot be
easily segmented into lines or words, we have chosen a
“segmentation-free” method which does not need any
separation of characters or graphemes.

The global scheme of our proposition is illustrated in
Fig. 2. All steps of the scheme are described in the next
sections: Sect. 3 is dedicated to the Hermite-based noise
reduction and Sect. 4 presents the Gabor filtering for
handwriting characterization.

3 Noise reduction step

3.1 Existing approaches

Many digital images of documents and more generally
ancient manuscripts are degraded by the presence of
strong artifacts in the background. This can either affect

Fig. 2 Global scheme of image noise reduction and handwriting
characterization
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Fig. 3 Examples of handwritings with typical noisy background (multi-spots, ink on the reverse side and granularity of the support)
[32]

the readability of the text or, in some cases, the rele-
vance of our handwriting characterization. Background
artifacts can arise from many different kinds of degra-
dations such as scan optical blur and noise, spots, under-
writing or overwriting, time wearing, intensive use or
bad preservation conditions (see Fig. 3). All these degra-
dations create dark areas most of the time, with more or
less uniform colours and different sizes.

Among all the possible degradations of the back-
ground, the visibility on the reverse side of the page
(or bleeding of ink), ink degradation (attenuation of the
ink marks which affects correct text reading) or palimps-
ests (an earlier text was erased and another writer had
reused the vellum or parchment) were especially studied
in literature. The purpose here is to reduce the influence
of these damages, included in the background, and to
highlight the handwriting, which is the interesting and
informative part of the document. More generally, we
can consider documents as a combination of a textured

background and a handwriting signal or foreground. A
lot of different approaches exist to extract this fore-
ground part of the signal. The most naïve methods use
thresholding techniques. A comparative study of global
thresholding appears in Leedham et al. [17] for text
and background separation. The authors conclude that
“no single global thresholding algorithm/scheme can
work with degraded document images”. The main rea-
son is the peculiar characteristics of these images (vary-
ing background/foreground intensities, varying contrast,
bleeding of ink from the other side of the page, etc.).
Other techniques based on adaptative filtering have
been tested on forensic documents to separate homoge-
neous textured background from handwriting marks [9].
But for [17], these local adaptative thresholding algo-
rithms are not effective with these types of images.

Many authors consider the specific problem of bleed-
through handwriting pages, which is very often encoun-
tered in ancient documents: writings on the backside are
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visible through the paper on the front side [20,26]. Most
of the time, the backside image is not available. Some
approaches consider a physical model of degradation
for text enhancement and background cleaning [26]. In
Tonazzini et al. [32], the authors propose to decompose
the signal into two blind sources where the overlapping
texts and the supports (paper) texture are the unknown
sources to be recovered with different spectral bands of
the documents. Fairly recently, we can find in Nishida
and Suzuki [20], a method of frontside/backside separa-
tion using colour information by local adaptative thres-
holding. Here again, the backside image is not needed.
Finally, recent research uses wavelet analysis to perform
foreground extraction [30,31]. In Tonazzini et al. [31],
the decomposition of wavelets is used to filter the high
frequencies containing most of the background noise
energy. This filter process is based on the estimation of
the noise level in the background.

This approach is very close to the one we use. Our
proposition uses a decomposition of the original image
by Hermite transforms, which cannot be considered as
a wavelet transform (even if it realizes a localized fre-
quencies decomposition), because it realizes an over-
complete decomposition. Overcomplete decomposition
means that redundant information is present and that
is not the case for wavelet decompositions. Before the
explanation of our noise reduction process, we will pres-
ent the Hermite transform.

3.2 The Hermite theory

Basically, a polynomial transform locally decomposes a
signal into a set of orthogonal polynomials. A local ver-
sion of the signal is computed through a multiplication
of the whole signal by a window W (signal null outside a
given interval). Each point of the signal can be reached
through translations of the window W. In the follow-
ing subsection, we present in detail the definition of the
Hermite transform and its discrete representation. This
discrete representation, called Krawtchouk transform,
is the one we use in practice in our treatments.

3.2.1 Cartesian Hermite filters

We present the definitions of Hermite filters, which agree
with the Gaussian derivative model of the HVS [18,24].
We will focus on the Cartesian representation, which
is more oriented to extract spatial primitives such as
edges, lines, bars and corners, into the vertical, horizon-
tal and oblique directions rather than oriented textures.
However, this is similar to Gabor filters [18], which are
more often used, for texture, in image processing and

feature extraction. Hermite and Gabor filters are equiv-
alent models of receptive field profiles (RFPs) of the
HVS [18,24]. Hermite filters dn−m,m(x, y) decompose a
localized signal lv(x − p, y − q) = v2(x − p, y − q)l(x, y)

by a Gaussian window v(x, y) with spread σ and unit
energy, defined as

v(x, y) = 1

(σ
√

π)e−(x2+y2)
/
(2σ 2)

(2.1)

into a set of Hermite orthogonal polynomials
Hn−m,m(x/σ , y/σ ). Coefficients ln−m,m(p, q) at lattice
positions (p, q) ∈ P are then derived from the signal
l(x, y) by convolving with the Hermite filters. These fil-
ters are equal to Gaussian derivatives where n − m and
m are, respectively, the derivative orders in x- and y-
directions, for n = 0, . . . , D and m = 0, . . . , n. Thus,
the two parameters of Hermite filters are the maxi-
mum derivatives of order D (or polynomial degree) and
scale σ .

Hermite filters are separable both in spatial and polar
coordinates, so they can be implemented very efficiently.
Thus, dn−m,m(x, y) = dn−m(x)dm(y), where each 1D
filter is

dn(x) =
(
(−1)n

/
(
√

2n · n!√πσ)
)

Hn(x/σ)e−x2/σ 2
,

(2.2)

where Hermite polynomials are represented by Hn(x),
which are orthogonal with respect to the weighting func-
tion exp(− x2), and are defined by Rodrigues’ formula:

Hn(x) = (−1)nex2 dn

dxn e−x2
. (2.3)

In the frequency domain, these filters are Gaussian-like
band-pass filters with extreme value for (ωσ)2 = 2n
[18,24], and hence filters of increasing order analyse
successively higher frequencies in the signal.

3.2.2 Discrete implemention: Krawtchouk filters

Krawtchouk filters are the discrete equivalents of
Hermite filters. They are equal to Krawtchouk polyno-
mials multiplied by a binomial window:

v2(x) = Cx
N

2N , (2.4)

which is the discrete counterpart of a Gaussian window.
These polynomials are orthonormal with respect to this
window and are defined as [18]:

Kn(x) = 1
√

Cn
N

n∑

τ=0

(−1)n−τ Cn−τ
N−xCτ

x (2.5)

for x = 0, . . . , N and n = 0, . . . , D with D ≤ N.
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Fig. 4 1D Krawtchouk filters for N = 16 and up to degree n = 5

It can be shown that the Krawtchouk filters of length

N approximate the Hermite filters of spread σ =
√

N
/

2.
In order to achieve fast computations, we present a nor-
malized recurrence relation to compute these filters

Kn+1(x) = 1
√

(N − n)(n + 1)
[
(2x − N)Kn(x) −

√
n(N − n + 1)Kn−1(x)

]

(2.6)

for n > 0 and with initial conditions

K0(x) = 1, K1(x) = 2√
N

[
x − N

2

]
.

In practice, we use these Krawtchouk polynomials
and filters to compute the Hermite transform. These
formulas lead to a set of orthonormal filters of length N
that decomposes a local area of the original signal in the
frequencies domain (see Fig. 4). We apply a translation
T to the set of filters to treat the next (and neighbour)
area and so on, on the whole signal. This way we have a
frequencies decomposition of every treated area.

It is possible to have an exact reconstruction of the
original signal if the translation T leads to overlapped
areas. All the filter results (from n = 0 to N) are then
necessary. With a minimal overlap, there is no redun-
dancy in the decomposition. With a higher overlap
(lower value for T), some information is redundant,
and the decomposition becomes overcomplete. Then,
it presents smoother proprieties and gives a more con-
tinuous analysis of the signal.

3.2.3 2D version of Krawtchouk filters

These formulas can be generalized in 2D to obtain the
filters we use in practice on images. The 2D discrete
Hermite transform is built on the Krawtchouk 1D fil-
ters, using the separability property. Consequently, the
parameters N and T can be chosen independently of
the rows and the columns, and are not necessarily equal.
In our document application, we use a longer weighting
window to treat the rows because of the word shape,
which is most of the time larger in the horizontal direc-
tion. Figure 6 presents an example of discrete Hermite
transform (or Krawtchouk transform) of the image of
Fig. 5. As we described earlier, this is an overcomplete
transformation because of the redundancy introduced
by the undersampling parameter T. This property allows
a much smoother analysis and reconstruction of the
original signal or image after filtering, without block
effects or discontinuities that we observe in wavelet-
based reconstructions.

3.3 Application of Hermite to handwriting image noise
reduction

Most of the time, the noise or degradations we can see
on ancient documents have lower frequency character-
istics, while the writing by itself is composed of higher
frequencies. Degradations coming from darker areas,
spots or even writings visible from the backside have
a more blurred aspect than the writings from the font
side. Thus, they contain lower frequencies. Moreover,
degradations have a smaller contrast than the writing on
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Fig. 5 An example of handwritten document with different kinds
of noises or damages

Fig. 6 2D Krawtchouk filters for N = 6 and up to degree n = 2
for the rows and the columns

the front side. This is also an important characteristic.
If we take into account even higher frequencies with a
sufficiently high level, we can extract the contours of the
writings. The threshold value depends on the original
contrast. These are the hypotheses we assume to dis-
tinguish handwritings on the front side from the noise
on the background. If this noise does not verify these
characteristics (like cross out on the writings, for exam-

ple), our method would give poor results. Fortunately,
the documents we treat mainly contain noise of this
type.

Consequently, if we assume that high frequencies with
a sufficiently high level represent the contour of the
writings we want to keep, and lower frequency regions
(in background regions) mostly contain degradations,
it is interesting to separate them. Keeping the first one
and suppressing the second one will then restore the
degraded page. This is exactly what we can achieve with
the Hermite transform. The size of the localization win-
dow selects the range of frequencies used for the anal-
ysis. The smaller the size of the window, the higher the
analysis frequencies are.

Figure 6 presents the Hermite decomposition of a
document at a given scale N = 6 and up to degree 2, and
with an undersampling parameter T = 3. The quadrant
(0,0) is equivalent to a Gaussian filtered image using a
(N + 1) × (N + 1) = 7 × 7 filter and undersampled by
three (one sample for each window position). The other
quadrants correspond to frequencies analysed in that
7 × 7 window. Consequently, the complete decomposi-
tion contains 7 × 7 quadrants. The analysed frequencies
are thus relatively high frequencies of the original image.
Middle grey values correspond to zeros, darker values
are negative and bright values are positive.

Our noise reduction process uses the Hermite decom-
position. In a first step, we localize the writing areas
using the energy contained in quadrants (1, 0) and (0, 1)
(see Fig. 6). This information is very close to gradient
energy. The second step uses the normalized energy
map M (values between 0 and 1) as a mask to filter
all the quadrant of the decomposition. The normal-
ized energy map gives, for each position, a probability
to contain writing. An example of normalized energy
mask is given in Fig. 7a. The coefficients of the Hermite
decomposition are then thresholded using the following
method:

Ci,j(x, y) =
{

sign(Ci,j(x, y)) · (
∣
∣Ci,j(x, y)

∣
∣ − σ̄i,j(x, y)) × Ki,j,

0 if
∣∣Ci,j(x, y)

∣∣ < σ̄i,j(x, y)

(2.7)

and

σ̄i,j(x, y) = σi,j · (1 − Mi,j(x, y)),

where:

• Ci,j(x, y) is the coefficient at position (x, y) in the
quadrant (i, j),

• σi,j the weighted level of the noise in the quadrant
(i, j), estimated in an area that does not contain writ-
ings,
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• Mi,j(x, y) the normalized coefficient at position (x, y)

in the mask quadrant of gradient energy,
• Ki,j is a normalization coefficient to keep the original

maximum level to its original value in the quadrant
(i, j).

In the third step, we reconstruct the image using the
thresholded Hermite quadrants. We obtain an image
with a cleaner background. Figure 7b presents an exam-
ple of the image on Fig. 5 after noise reduction by
Hermite reconstruction. A more detailed view is pre-
sented in Fig. 7d. Another example, coming from an
artificial degradation of image 5 is presented in Fig. 7e
and f. In this case, simulations of ink spots were added.
The main part of this method is based on adaptative
thresholding steps. Nevertheless, the results we obtain
are different from the results of adaptative thresholding
methods, because these adaptative thresholding steps
are applied independently on each quadrant, i.e., on

Fig. 7 Example of document noise reduction. Energy mask used
to localize writings (a), denoised document (b), details of an orig-
inal document (c), details of a denoised document (d), another
example with artificial noise effect (e) and its denoised version (f)

each frequency domain. Consequently, smooth edges
with low contrast, like those coming from backside writ-
ing are treated differently than sharp edges with higher
contrast. In that point of view, our method has some
similarities with wavelet-based methods.

The main interest of this noise reduction step in the
context of this paper is to suppress as much as possible
the information coming from the background, which will
modify the following analysis. An image with reduced
noise allows focusing on the handwriting by itself.

4 Handwriting signature using Gabor filters

4.1 Principle of the Gabor-based approach

In this part, we develop an original method for the clas-
sification of handwritings in visual separable families.
Writer identification is the task that consists in deter-
mining the author of a given document. In this case,
it is essential to repeat individual verification between
the tested sample and all individual identified hand-
writing families among known writers [5]. The first step
in the process consists in defining a similarity measure
to compare two handwritings. The second step consists
in taking a decision, which must answer the following
question: “Is there any intra-class stability (the within-
writer stability) and does any visible difference between
the tested handwriting and the training set exist?” To
be sound and consistent, the similarity measures must
minimize wrong acceptations and wrong rejections.

Writer identification needs a characterization as rele-
vant as possible of the graphical proprieties of its hand-
writing. It is difficult to pretend to be exhaustive in such
descriptions. We chose a biologically inspired approach
using adapted Gabor-based filtering. Thus, the feature
we focus on is the orientation, which expresses both
global and local handwritings proprieties. In this
analysis, we evaluate the ratios, which exist between
the main orientations found in the handwriting shapes.
In that way, two distinct handwritings, even identically
skewed, will not be considered as similar because all
other detected orientations will show significant differ-
ences. Of course, for a word-based writer identification,
as proposed by Srihari et al. [28], the orientation is not
a sufficient dimension and must be completed by other
features.

Our method lies on the evaluation of a compact
signature for each handwriting. The signature is obtained
by the estimation of Gabor filter coefficients, which
reveal the presence of salient orientations. The
Hermite-based noise reduction process is essential here
to separate the background information to the writing
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itself. Nevertheless, the orientation is no more rele-
vant if the background is textured too much and if
it contains too many oriented noisy strokes, or when
the samples contain very badly written texts with too
many irregularities (non-constancy of a same writer).
But those limitations are also valuable for other
techniques.

A small written text with great stems and down-
strokes does not present the same orientation distribu-
tion as a curved handwriting. The approach is based on
image frequencies decomposition with the application
of directional Gabor bank filters. The frequencies
decomposition is based on the detection of most regular
directions obtained by the application of the autocorre-
lation function on a sample of the entire initial image,
which contains a minimum of five handwritten lines.
This image sample must be as homogeneous as possible:
it is chosen so as to contain normalized text density and
bounded entropy (this measure is presented in Sect. 4.2).
The selection of the sample has been automated for all
digitalized pages of the corpus. According to this pro-
cess, the Gabor analysis needs homogeneous handwrit-
ing image samples with no empty areas or noisy strokes
line regions. For a given image, Gabor filters are com-
puted in all significant directions of the handwriting. In
this work, the scale of Gabor filters bank is constant in
order to produce readable results (a good compromise
between a too blurred response and a not significant
filtering; see Fig. 12).

The directional Gabor filters produce directional
maps that reveal oriented patterns (graphemes). For
each θ -direction, these graphemes are then quantified
by a density measure that reveals the contribution of
the θ -direction in the handwriting. The validity of the
approach lies on a within- and a between-writer stabil-
ity analysis.

4.2 Initial hypotheses of handwriting density

The analysed handwriting blocks must contain quantita-
tively significant handwritten patterns that are estimated
by two extreme entropy values: a minimal entropy value
EMIN and a maximal one EMAX. That means that the
image must contain a significant number of text lines to

be exploited by the method and inversely it must not
contain numerous black strokes (often visible in draft
pages, which the noise reduction step cannot suppress;
see Fig. 9).

The entropy is directly correlated to the visual impres-
sion of “complexity” that we have during the observa-
tion. A text made of small letters seems more “complex”
than a text with big letters. Our study quantifies this
complexity with a measure of entropy. Practically, we
compute the number of transitions from the background
to the text that can be found on random oriented lines,
which leads to the estimation of transition probability
occurrence on a pixel for each horizontal line. We only
keep the maximum probability p in a considered text
block TB because it is representative of how complex the
analysed text block can be (or the grapheme in a reduced
analysis scale). The Entropy E(TB) is then defined for
each block by the following formula:

E(TB) = p Log
1
p

+ (1 − p)Log
1

(1 − p)
. (3.1)

Figure 8 presents the hierarchy of entropy values that are
estimated in a set of representative handwriting images
of the Montesquieu’s corpus.

In practice, an initial handwriting image must con-
tain no less than five text lines to be interesting, with
a minimal entropy value corresponding to the thresh-
old EMIN = 0.18 and a maximal value corresponding
to EMAX = 0.6. These two values have been selected
so as to keep significant homogeneous samples and to
reject unreadable draft blocks. In each original hand-
writing page, we have also considered a WI window
with an entropy value that verifies the condition EMIN <

EW1 < EMAX. This condition is automatically applied
to all tested samples because it has been shown that it
was difficult in practice to normalize ancient handwrit-
ten texts (in size and in density) and that a normaliza-
tion process could be responsible for irreversible visual
damages in handwritten patterns [26]. The WI cutting is
based on a first global density estimation (naively com-
puted as the ratio between dark and light points): for
an original entire page, we consider 2n × 2m sized sam-
ples that recover the initial page area—the samples can
be square (n = m) or rectangular (n �= m)—and we

Fig. 8 Linear scale of complexity for significant handwriting samples
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Fig. 9 Entire handwritten page and selected 256 × 512 samples
with weak (E = 0.12) and high (E = 0.75) entropies

only keep the ones that have a density equal or superior
to the entire image density. If this condition cannot be
satisfied, we consider the whole image. Within this prin-
ciple, we keep away quite empty background areas in
the frontier of the main text. Finally, we keep the win-
dow that has the maximal entropy value and that also
verifies the condition EMIN < EW1 < EMAX. There are
mainly several samples that verify the conditions, but
we chose only one for the tests. In conclusion, we allow
comparing two handwriting samples only if they have
near Grey level densities and entropy values included
in the [EMIN; EMAX] interval. In that way, compari-
son is possible even if the sample sizes are not equal.
Figure 9 shows examples of page samples that were
rejected because they contained too weak or too high
entropy.

4.3 Selection of salient handwriting directions

The salient directions are highlighted by a directional
rose computed through the autocorrelation function.
This function correlates the image with itself, highlights
periodicities and orientations of texture. It has been
widely used in a context of texture characterization
[7,29]. The definition for a bi-dimensional signal is:

CII(i, j) =
+∞∑

i′=−∞

+∞∑

j′=−∞
I(i′, j′) · I(i′ + i, j′ + j). (3.2)

The autocorrelation function CII(i, j), applied to an
image I, combines image I with itself after a translation
of vector (i, j). The different translations that are con-
sidered by the function give information on the differ-
ent directions of the image. The data relative to the
same direction will be located in the same line. With
this principle, it is possible to detect orientations of the
texture blocks. For example, the translation of a line in
its direction leads to a complete correspondence and is

expressed by a great value of autocorrelation in the line
direction. In the orthogonal direction of this line, the
resulting value will be low. The autocorrelation under-
lines objects overlapping obtained by translation. This
principle can be generalized to a set of objects having a
common direction: in our work, we use it to show that
text lines can be characterized by the horizontal direc-
tion and can be also considered with a possible skew
variation. The autocorrelation result can be analysed by
the construction of a corresponding directions rose. This
rose gives, with a great precision, the main orientations
of the block. In Bres [3], we propose an approach for
directions rose computation. It is based on the mean
value that is computed from the autocorrelation result.
Let us consider I, the image block, and {(x, y)} the set
of coordinates in this image. We also consider θ as a
salient direction of the block. The mean value Eθ is then
defined by the following formula:

Eθ =
N∑

X=1

N∑

Y ′=1

I(x, y) · I(x + a, y + b)

with Arctan(b/a) = θ . (3.3)

Eθ is the mean value of consecutive products I(x, y) ×
I(x + a, y + b) for all sets of couples (x, y) and val-
ues a and b that verifiy Arctan (b/a) = θ . So, a point
C(a, b) in the autocorrelation function contains the sum
of grey level products of overlapping points after a trans-
lation (a, b). The autocorrelation function gives values
that are proportional to this mean value Eθ . The direc-
tional rose represents the sum R(θi) of different values
CII(i, j) (defined in 4.2.1) in a given θi-direction. So, the
directional rose corresponds to the polar diagram where
each direction θi is represented by the sum R(θi). For all
points (a, b) in the θi-direction along the Dθ i line, we
have the following relation:

R(θi) =
∑

Dθ i

CII(a, b). (3.4)

From this set of values, we only keep relative variations
of all contributions for each direction. So, the relative
sum R′(θi) is the following:

R′(θi) = R(θi) − Rmin

Rmax − Rmin
. (3.5)

From the polar angular rose representation, we decide
to keep only significant directions and to neglect micro-
scopic orientations, which are naturally present in the
background image (even after the Hermite process).
The principle of significant directions extraction lies on
the location of rose petals centres (local extreme ampli-
tude values that are greater than the extreme average),
neglecting all secondary non-interesting orientations.
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Fig. 10 Directional rose and zooms in significant directions of
the rose petals (a). Visual differences between two copyists (b).
Regular distribution of orientations for a curved handwriting (c)

This technique reveals the visual differences existing
between writings in only the significant directions. Espe-
cially here, the presence of loops and curves is high-
lighted by a regular orientation distribution (except in
the 0◦-direction that represents the horizontal text lines)
as different from most compact and irregular handwrit-
ings (see Fig. 10). From this representation, we only keep
the eight most significant values in the interval [0◦, 180◦].
The relevance of those significant directions is linked to
their local amplitudes (which are directly determined in
the rose) and the area quantization of the corresponding
Gabor filter responses in the significant directions (see
next section).

Gabor quantization is mainly necessary to express the
real contribution of the horizontal direction (near 0◦).
This direction is often overvalued in the tested samples,
because it does not only express the directions of all
cumulated local horizontal strokes but also the orienta-
tion of the global dominant text lines.

4.4 Adaptative directional Gabor filtering

4.4.1 Gabor functions and orientations quantification

Multi-channel Gabor filtering is inspired by the psycho-
physical findings of the cortex that has a set of parallel
and quasi-independent mechanisms usually modelled

by bandpass filters [34,35]. Here, we use this multi-
channel filtering technique to precisely localize direc-
tional information of handwritten data. Those filters are
mainly used for texture segmentation by tuning the fil-
ters to the image dominant spectral information [12].
This filter function is given by the following formula:

G(u, v) = A
{

exp

[
−1

2

(
(u − u0)

2

σ 2
u

+ v2

σ 2
v

)]

+ exp

[
−1

2

(
(u + u0)

2

σ 2
u

+ v2

σ 2
v

)]}
, (3.6)

where σu = 1/2πσx, σv = 1/2πσy and A = 2πσxσy,
where σx and σy are standard deviations in the x- and
y-axis. Uo is the sinusoidal bandwidth in the x-axis (cor-
responding to the 0◦ orientation). We have implemented
adaptative bank filters with a very precise selection of
parameters for frequency, orientation and bandwidth.
This selection is highly dependent on the image and
an automatic parameterization is a non-trivial process
in image analysis because it needs to parameterize the
filters in each selected direction θ [7,34,35]. The imple-
mentation of a complete Gabor expansion entails an
impractical number of filters. In our work, we have pro-
posed an automatic process of bank filters selection.

4.4.2 Multi-channel Gabor filtering for the selection
of interesting patterns

We have limited the number of filters by selecting rele-
vant directions in the extremes of the directional rose.
Handwriting images have the specificities to contain a
typical frequencies distribution: the handwritten pat-
terns are globally contained in the high frequencies,
whereas the background is in majority contained in the
low frequencies. As for noise frequencies, they can be
both on high and low frequencies that will depend on
its type. Considering here again that the noise in our
documents is mainly concentrated in the low frequen-
cies, we favoured high frequencies of the outlines of
patterns and massively filtered low frequencies of the
residual background (after the Hermite noise reduction
step). The filtering produces a set of directional maps
that are then quantified to sort the responses accord-
ing to their increasing relevance. We are interested in
four different parameters in Gabor functions that rep-
resent the selection in frequencies and in orientations.
The scale factor selection is determined by the ampli-
tude of the standard deviations in Gaussian functions
of Gabor expressions. In all tested samples, we apply a
generic formula to determine Gabor deviations for all
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significant directions in the interval [0◦, 180◦]:

DevH(θ) =
√

DevH

(π

4

)2 + DevV

(π

4

)2 × cos(θ),

DevV(θ) =
√

DevH

(π

4

)2 + DevV

(π

4

)2 × sin(θ).

(3.7)

DevH(θ) and DevV(θ), respectively, correspond to
horizontal and vertical deviations for a direction θ .
DevH(π/4) et DevV(π/4) correspond to reference hor-
izontal and vertical deviations with θ = π/4 and is
represented in Fig. 11.

Figure 11a shows the graphical representation of a
filters bank in four fixed directions in the frequency
domain. The choice of the standard deviation σu,v (also
called scale factor) is fundamental and modifies the
diameter of the non-filtered regions. It is proportional
to the tested image size. In Fig. 12, we have illustrated

Fig. 11 Filters bank in four standard directions (θ = 0◦, 45◦, 90◦
and 135◦) (a). Gabor spectrum filter for θ = 45◦ with σu,v = 1/256
(in a 256 × 256 image) (b)

Fig. 12 Examples of Gabor filter responses for θ = 45◦ and their
bi-level versions for a sample of Montesquieu’s draft

Gabor filter responses with four increasing scale factors
and different orientations. A satisfying scale has been
obtained by an evaluation of the ratio between Gabor
response and the initial handwriting thickness.

The more the filtered areas are close to the FFT cen-
tre (in the low frequencies), the more the background
of the image is filtered. Inversely, when high frequencies
are weakly attenuated, outlines of handwriting regions
are significantly underlined. In this work, we have been
working with a constant standard deviation.

4.4.3 Quantification and directional sketches analysis

In our work, the relevance of a direction is estimated
by the measure of the quantity of bi-level Gabor fil-
ter response to the direction in consideration. We can
notice from Fig. 12 that Gabor response (white regions
of the images) are concentrated in the high frequen-
cies regions and are present in the handwriting outlines.
The background is mainly black, filled without signifi-
cant response for each orientation. Now, we are able
to evaluate Gabor response by quantifying the thres-
holded regions. Binarization thresholds are fixed for all
handwritten pages of the same book. Gabor responses
allow decomposing the initial image into a set of sep-
arable directional maps containing oriented patterns
(see Fig. 13). The significant orientations are given by
the directional rose analysis and determine the basic
parameters of Gabor bank filters. In the example of
Fig. 13, the represented directions are 2◦, 55◦, 90◦ and
145◦. The successive AND-logical operations that are
applied between the four maps guarantee that the initial
selection of significant directions is relevant. The
handwriting outline reconstruction and the complete
recovering of handwriting patterns allow us to neglect a
lot of secondary insignificant directions (we only keep

Fig. 13 Handwriting reconstruction from only four directional
maps
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Fig. 14 a Sample signature with E = 0.59 and six emergent ori-
entations. b Examples of numerical full scale signatures of hand-
written text block extracted from our corpus (here Montesquieu’s

secretaries’ writing). E entropy, Nθ : number of angular values,
θ list of angular values

four directions here). After the binarization step, we
evaluate the density of object pixels in the directional
maps. Each direction is then weighted and ordered in a
list, which is called the handwriting signature.

4.5 Individual handwriting signature

The signature is expressed by a list of significant orienta-
tions and their corresponding Gabor densities
measured over the entire handwriting sample. Figure 14
shows numerical signatures of a handwriting block that
have been obtained by quantifying Gabor densities in
all significant directions. In the x-axis, we have the angu-
lar θ -values and in the y-axis the corresponding Gabor
quantification.

The local maxima of the curves for θ -directions sig-
nify that the corresponding θ -oriented shapes of the
handwriting samples are significantly represented. The

local minima of the curves (the valleys) show that other
directions are less important in the handwriting. The
more the curve is horizontal, the more the handwrit-
ing is curved, with a balanced distribution of angular
direction in the handwriting. On the other hand, when
angular Gabor densities are strongly contrasted with
high maxima, the handwriting presents eye-catching
shape properties with generally skewed and thin hand-
written lines.

5 Application to writers’ identification

5.1 Dynamic comparisons of handwritings

The comparison between two signatures uses a warping
function that allows possible fusion and fraction oper-
ations between them. The warping function consists of
non-linear matching.
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It is found that in different domains, it is necessary to
match sequences with tolerance of small local misalign-
ments. In that context, Dynamic Time Warping has been
shown to be an efficient tool for this [13,22,23]. It solves
the problem of correspondences between two sequences
by searching the optimal warping path, along which the
accumulated distance or distortion is minimized. This
distance has been widely used in handwriting and doc-
ument recognition [1], because it allows series to be
locally stretched or shrunk before applying the base dis-
tance measure.

Considering two signatures, SθI and SθJ , the goal of
the warping function is to make a correspondence (with
a matching curve C between two signatures SθI and SθJ)
between the I-values of SθI and the J-values of SθJ .

Within it, it is possible to compare two signatures SθI
(with I different values) and SθJ (with J different values)
that have non-identical sizes. It is possible to compare
two signatures that characterize two image samples hav-
ing different sizes with, for example, big or small writ-
ings. With the entropy-based selection, it is not necessary
to normalize text blocks. In practice, the condition of a
relevant comparison consists in comparing entropy val-
ues of the set of handwriting samples before computing
their warping distances, DTW. This measure is consid-
ered in the following section as the within-writer and
the between-writer distance. In this work, we retain the
definition proposed by Fu et al. [10].

Definition Given two sequences, SθI = SθI(1),
SθI(2), . . . , SθI(I) and SθJ = SθJ(1), SθJ(2), . . . , SθJ(J),

the warping distance DTW is defined recursively
as follows:

DTW(∅, ∅) = 0

DTW(SθI , SθJ) =

⎧
⎪⎨

⎪⎩

1
I + J

(d(First(SθI), First(SθJ))

+ min

⎧
⎪⎨

⎪⎩

DTW(SθI , rest(SθJ))

DTW(rest(SθI), SθJ)

DTW(rest(SθI), rest(SθJ))

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
,

where ∅ is the empty sequence, First (SθI) = SθI (1),
rest (SθI) = SθI(2), . . . , SθI (I) and d denotes the distance
between two entries. Several metrics can be used for d,
such as Manhattan Distance [36] and squared Euclidean
Distance [13]. Here, we used the Euclidean distance to
ensure the symmetry of the result, that is:

d(SθI , SθJ) =
√

(SθI(i) − SθJ(j))2.

The difference DTW(SθI , SθJ) between two signatures
SθI and SθJ can also be expressed by the sum of the
differences that exist between the two values θi and θj,.
So, the warping path can be compared to the minimal
deformation that exists between the two vectors. If the
warping path between the two signatures SθI and SθJ
is completely linear (and it is not the case in Fig. 15),
that means that both signatures present similar angular
densities, and in that context they can be considered as
similar.

Fig. 15 Comparison of signatures and warping path between SθI and SθJ
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Fig. 16 Within-writer variability. a For an Economist of 1789 in the Bastille (Library of the Municipality of Lyon, France). b For a
Montesquieu’s copyist. c For Montesquieu himself, Histoire Véritable 1750

The complete comparison between two signatures
lies on three criteria: the DTW(SθI , SθJ), the differences
of Gabor-based quantification DGQ only used for the
quantization of the writing thickness (useful for the
within-writer stability analysis) and the variance of
the differences σ(SθI , SθJ)that is estimated over the set
of angular differences and that quantifies the dispersion
of the differences between two signatures.

The tolerance threshold between two handwriting
samples that belong to the same writer has been chosen
for a maximum value DTW(SθI , SθJ) = 18 and a maxi-
mum standard deviation σ(SθI , SθJ) = 2. The distance,
DTW, the deviation, σ , and the differences of Gabor
quantification, DGQ, are all three necessary to express
the resulting similarity between two handwritings.

5.2 Experiments

5.2.1 Within-writer stability

The system is required to deal with as many writers as
possible. This study deals with 48 different writers with
sometimes very similar styles that have been identified
by literary experts. The training samples for each writer
represent several lines of text with a certain entropy
value. The training set has been created so as to recover
the entire set of writers. For the training set, we use ten
different samples per writer.

With D and σ , we can notify the similarities that exist
between writers. This similarity is used here to distintin-
guish different writing styles and to characterize the sta-
bility of a particular writing (the within-writer stability).
We show here that the warping distance D, the deviation
σ and the Gabor quantification are efficient indicators
for the within-writer stability evaluation. These mea-
sures will also be used to generalize the between-writer
discrimination.

The warping distance is computed between two hand-
written samples having similar entropy values. Figure 16
shows examples of within-writer stability evaluation, all
signatures are superposed and warping distances, stan-
dard deviations and Gabor quantifications are automat-
ically computed. Ten separate pages were involved in
each of the within-writer tests. In Fig. 16b, the sam-
ples are characterized by weak variations that reveal
a rather curved handwriting. In all the samples, we can
notice that the signatures present similar tendencies with
possible top or bottom curve translations that can be
quantified by Gabor differences and that reveal hand-
writing thickness. The main orientations are close to a
maximal average standard deviation of 0.6 for all tested
samples.

The global results are presented in Table 1 according
to the 3D vector [D(SθI , SθJ); Gabor Diff; σ (SθI , SθJ)]
with the following notations: Mtq for Montesquieu, Si

for Montesquieu’s secretaries, Ei for 18th century econ-
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Table 1 Results of ten separate handwritings of the corpus

Mtq S1 S2 S3 S4 E1 E2 A1 A2 A3

Mtq 13-1.5-0.9
S1 67-9.6-8.4 10-2.4-0.3
S2 43-12.7-2.3 56-8.9-2.7 14-1.1-0.6
S3 54-10.6-10.2 45-12.6-5.4 39-4.9-2.1 8-1.7-0.9
S4 21-5.8-1.9 78-26.2-5.7 67-5.2-1.9 74-5.8-8.9 11-3.4-0.2
E1 89-22.6-14.5 67-14.2-4.6 49-9.2-1.8 52-12.7-2.3 67-14.2-4.6 16-1.8-0.4
E2 59-14.9-9.8 59-12.5-1.8 77-22.6-4.7 69-5.9-8.4 45-8.4-1.9 49-10.6-5.4 11-1.8-0.6
A1 43-5.8-8.9 45-8.4-1.9 27-12.2-2.8 29-12.8-2.8 27-12.2-2.8 21-4.8-1.9 39-4.9-3.1 13-1.2-0.8
A2 77-32.2-14.7 37-8.9-2.1 18-1.2-1.6 34-7.8-1.9 52-12.7-2.3 29-8.6-4.6 50-8.9-2.7 21-5.8-2.9 12-2.8-0.9
A3 22-8.6-4.6 67-10.2-3.1 46-16.7-3.1 43-4.6-3.2 77-32.2-14.7 53-8.4-3.9 29-12.8-6.8 41-12.7-1.3 89-22.6-14.5 9-1.2-0.4

omists, Ai for 18th century independent authors. In this
reduced corpus, the within-writer analysis is synthesized
in the first bold diagonal: the average warping distance
is around 12 (i.e., less than 2◦ differences between each
main orientation), the average Gabor quantification
differences are equal to 1.9 and the average standard
deviation is equal to 0.6 (i.e., the main angular values
present a very small difference near 0.6 on average).

This quantification is stable for 93% of the corpus
even on samples that do not have the same sizes, the
same grapheme size or the same contrast. The seven
residual percentages concern very badly written samples
with too many irregularities, non-constancy of the same
writer, large variations between uppercase and lower-

case characters for the same writer, poor draft quality
and heterogeneity of the page layout (see Fig. 17).

The approach presents some limitations that are fore-
seeable because it concerns ancient degraded pages
whose appearance cannot be sufficiently improved by
a noise reduction process. Moreover, as we compute a
global analysis on a document, without any previous
segmentation step, the signature we obtain is represen-
tative of the whole document, and each handwritten
text area gives a contribution to this signature. Con-
sequently, we cannot analyse documents containing
multiple writers. In such a case, the result will be a signa-
ture that will not represent correctly any of the writings.
We have to suppose that an expert makes a selection

Fig. 17 Typical irregularities in handwriting samples: style inconstancy of a writer (Saint-Saens 1860) and low draft quality
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Fig. 18 Individual handwriting signatures for ten selected writers of the corpus. Each signature is computed on an inner selected sample
(black bordered window)

of areas containing only one kind of writing before the
analysis.

5.2.2 Between-writer analysis and classification results

Figure 18 shows a simplified set of relevant visual hand-
writing classes (or families) of the test corpus. Each class
is represented here by a single handwriting reference

that is characterized by an individual typical signature.
The samples of Fig. 18 have been chosen here among
the 48 different writers of the database, because they
are specific to the Montesquieu’s collection only. As
for the within-writer stability analysis, the writer clas-
sification step lies on the computation of the similarity
measure, based on the 3D vector [D(SθI , SθJ), Gabor
Diff, σ(SθI , SθJ)]. This measure is estimated between the



Hermite and Gabor transforms for noise reduction and handwriting classification in ancient manuscripts 119

Fig. 19 Illustration of individual comparisons between two sets of samples

handwriting query and the handwriting references. The
classification decision lies on a set of individual verifica-
tions between two samples, the query sample and each
individual reference samples of the database. Figure 19
illustrates the distances between two sets from sample
(1–2) and (2–3).

For each query handwritten page, we compute the
signature on a reduced region that verifies the initial
conditions of entropy and density. The relevance of the
analysis is systematically evaluated by a priori knowl-
edge of the writers’ styles that historians have taught
us. In practice, we observe that two handwritten images
can be compared if their size ratio are not inferior to 1/2.
Over this limit, the distance measure and the similarity
value are no more relevant.

The output of this process is a list of images that
are ordered according to their similarity with the query.
Figure 20 presents an example of classification: the pages
have been extracted from an entire book entitled “ His-
toire Véritable” written by Montesquieu in 1750. By com-
paring the test sample with all other reference images,
we order the images according to the resulting warping
distances and the standard deviations. The within-writer
average values are used as thresholds to choose the final
class. In this example where the writing is very stable,
we have produced 98% of correct classification.

With this methodology, we statistically obtained 91%
of correct classification with the correct class as first
response. The remaining 9% corresponds to queries,
which are not homogeneous or which contain too many
irregularities (essentially on draft pages containing many
crossings out).

By enlarging the problem to a larger corpus, we
can decide to generate automatically a new class when
the warping distance between the tested handwriting
and the reference models exceeds the predetermined
threshold.

5.3 Discussion

Orientation is a psycho-visual feature with strong per-
ceptive properties. The results underline the ability of
the system to categorize handwritings with a single direc-
tional analysis and without any graphemes segmentation.
The proposed approach is based on a small assump-
tion on the content of the handwritten block, mini-
mal entropy and a significant occupation rate. One of
the advantages of the approach is that two extracts of
different sizes (and also of different writing sizes) can
be compared. The second original point of this study
deals with the background noise reduction. Considering
all background frequencies, the signature contains more
than 50% of background orientations (with the hypoth-
esis that the background represents more than 50% of
the information). In that context, the Hermite noise
reduction step is considered here as a necessary pre-
process for the undesirable low frequencies reduction.

The remaining difficulties we have encountered deal
with some writers’ instability and carelessness, especially
in draft documents. In those cases, it is difficult to clas-
sify two handwritings of the same author. In some situa-
tions, we have also noticed that some handwriting lines
are not necessarily horizontally aligned. The orientation
rose expresses a possible shift between the expected
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Fig. 20 Examples of handwriting samples of a complete book (Histoire Véritable 1750) that must be classified. Best matching with one
of the proposed reference models

Fig. 21 Example of similar writings that cannot be differentiated with our orientation-based approach

main horizontal direction (the main directional pick)
and the real lines’ orientations. Consequently, significant
angular values must be rotated. In most of the cases, the
single orientation is not efficient for a complete robust
handwriting categorization (robust to simple transforms
like rotations and scale changes; see Fig. 21). In this
figure, both samples of different writers cannot be dis-
tinguished with our global orientation-based approach.

For these reasons, we are currently trying to imple-
ment complementary local grapheme-based features to
complete the description (e.g., continuity, compactness
and density of the writing) in accordance with the Srihari
and Schomaker approaches [4–6]. In their works, partic-
ular care has been taken in the detection of some typ-
ical handwriting invariants (presence of characteristic
loops, of typical words cuttings, of recurrent orthography

errors, etc.). But it is important to recall here, that in
those systems, the handwriting identification and verifi-
cation processes are based on no less than 75,000 images
written by more than 1,000 writers and do not need a
priori knowledge on reference writers’ signatures like in
our extended Montesquieu’s database.

6 Conclusion

This work deals with handwriting categorization in noisy
documents and is applied here to writer identification of
ancient 18th and 19th century authors’ manuscripts. This
paper is the first part of a global indexation and classifi-
cation system for degraded historical handwritten docu-
ments. We propose here a biologically inspired approach
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for image noise reduction (by background cleaning) and
handwriting categorization (based on orientation). The
orientation feature is currently complemented by other
spatial primitives of handwritten text (curvature, com-
plexity, linearity and pattern invariance). Two percep-
tion-based models have been used for that purpose: the
Hermite frequency transforms (for the noise reduction)
and the Gabor filter banks (for the multi-scale orienta-
tion characterization). Our motivation is directly linked
to the difficulty in performing efficient image process-
ing on degraded handwritten historical documents. In
this way, we have chosen a segmentation-free approach
that also leads to a selective page mapping in textual
areas. The results of handwriting classification with only
one feature are very promising and show that a unique
measure can be a discriminative factor for a relevant
visual classification in a reduced and labelled corpus. We
are currently working on automatic learning of rejected
test images that have not been classified into reference
classes.
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